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Safe realisability

Definition (Realisability of MSGs)
1 MSG G is realisable whenever L(G) = L(A) for some CFM A.
2 MSG G is safely realisable whenever L(G) = L(A) for some

deadlock-free CFM A.
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Summary of results

Results so far:
1 Conditions for (safe) realisability for finite sets of MSCs.
2 Checking these conditions is co-NP complete (in P).
3 Regular MSGs are (safely) realisable by ∀-bounded CFMs.
4 Checking regularity of MSGs is undecidable.
5 Communication-closedness implies regularity; its check is co-NP

complete.
6 Local communication-closedness implies realizability, and can be

checked in P.
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Some remaining questions

Can results be obtained for other classes of MSGs?

What happens if we allow synchronisation messages?
recall that weak CFMs do not involve synchronisation messages

How do we obtain a CFM realising an MSG algorithmically?
in particular, for non-local choice MSGs
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Today’s topics

The next two lectures
Safe realisability of (a somewhat restricted class of) MSGs. So as to
obtain deadlock-free CFMs, the input MSG is required to be local
choice. The CFMs are no longer weak. They exploit synchronisation
messages.

Results:
1 Realisability for certain regular expressions of local-choice MSGs.
2 An algorithm that generates a CFM from such local-choice MSG.
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Non-local choice

p q

a

msc p q

b

msc

G:

v1 v2
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Non-local choice

p q

a

msc p q

b

msc

G:

v1 v2

Inconsistency if process p behaves according to vertex v1
and process q behaves according to vertex v2

=⇒ realisation by a CFM may yield a deadlock

Problem:
Subsequent behavior in G is determined by distinct processes. When several
processes independently decide to initiate behavior, they might start executing
different successor MSCs (= vertices). This is called a non-local choice.
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A (more involved) non-local choice

p1 p2 p3

a

msc

p1 p2 p3

b

msc p1 p2 p3

c

msc
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A (more involved) non-local choice

p1 p2 p3

a

msc

p1 p2 p3

b

msc p1 p2 p3

c

msc

Problem:
Inconsistency if p1 decides to send a and p3 decides to send c.
Which branch to take in the initial vertex?
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Preliminaries

Definition (Minimal event)
Let (E,!) be a poset. Event e ∈ E is a minimal event wrt. ! if
¬(∃e′ $= e. e′ ! e).
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Preliminaries

Definition (Minimal event)
Let (E,!) be a poset. Event e ∈ E is a minimal event wrt. ! if
¬(∃e′ $= e. e′ ! e).

Intuition: there is no event that has to happen before e happens.
That is to say: the occurrence of e does not depend on any other event.

Definition (Partial order of a path)
For finite path π = v1 . . . vn in MSG G, let <M(π) be the partial order of
the MSC M(π) = λ(v1) • . . . • λ(vn).
Let min(π) be the set of minimal events wrt. <M(π) along finite path π.
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Branching vertices

A branching vertex in MSG G either has at least two successors, or is a
final vertex with at least one successor.

Pictorially, vertex v is branching if either:

v

v1 vn

v

. . .

...

or

︸ ︷︷ ︸
n ≥ 2





≥ 1

Without loss of generality we assume that branching final vertices do not
occur.
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Branching vertices

A branching vertex in MSG G either has at least two successors, or is a
final vertex with at least one successor.

Pictorially, vertex v is branching if either:

v

v1 vn

v

. . .

...

or

︸ ︷︷ ︸
n ≥ 2





≥ 1

Without loss of generality we assume that branching final vertices do not
occur. They can be always be removed at the expense of copying such vertices.
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Local choice property

Definition (Local choice)
Let MSG G = (V,→, v0, F,λ). MSG G is local choice if for every
branching vertex v ∈ V it holds:

∃process p.
(
∀π ∈ Paths(v). |min(π′)| = 1 ∧ min(π′) ⊆ Ep

)

where for π = vv1v2 . . . vn we have π′ = v1v2 . . . vn.
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Local choice property

Definition (Local choice)
Let MSG G = (V,→, v0, F,λ). MSG G is local choice if for every
branching vertex v ∈ V it holds:

∃process p.
(
∀π ∈ Paths(v). |min(π′)| = 1 ∧ min(π′) ⊆ Ep

)

where for π = vv1v2 . . . vn we have π′ = v1v2 . . . vn.

Intuition:
There is a single process that initiates behavior along every path from the
branching vertex v.
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Local choice property

Definition (Local choice)
Let MSG G = (V,→, v0, F,λ). MSG G is local choice if for every
branching vertex v ∈ V it holds:

∃process p.
(
∀π ∈ Paths(v). |min(π′)| = 1 ∧ min(π′) ⊆ Ep

)

where for π = vv1v2 . . . vn we have π′ = v1v2 . . . vn.

Intuition:
There is a single process that initiates behavior along every path from the
branching vertex v. This process decides how to proceed. In a realisation by a
CFM, it can inform the other processes how to proceed.

Local choice or not?
Deciding whether MSG G is local choice or not is in P. (Exercise.)
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Local choice MSG
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Local choice

p1 p2

left

a

msc p1 p2

right

b

msc

G:
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Local choice

p1 p2

left

a

msc p1 p2

right

b

msc

G:

How to resolve a non-local choice?
Amend your MSG and add control messages (cf. above example)
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Regular expressions over MSCs

Definition (Asynchronous iteration)
For M1,M2 ⊆ M sets of MSCs, let:

M1 •M2 = {M1 •M2 | M1 ∈ M1,M2 ∈ M2 }

For M ⊆ M let

Mi =

{
{Mε} if i=0, where Mε denotes the empty MSC

M•Mi−1 if i > 0

The asynchronous iteration of M is now defined by:

M∗ =
⋃

i!0

Mi.
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Regular expressions over MSCs

Definition (Regular expressions over MSCs)
The set REXM of regular expressions over M is given by the grammar:

α ::= ∅ | M | α1 · α2 | α1 + α2 | α∗

where MSC M ∈ M.

Definition (Semantics of regular expressions, L(.) : REXM → 2M)
L(∅) = ∅
L(M) = {M }
L(α1 · α2) = L(α1) • L(α2)

L(α1 + α2) = L(α1) ∪ L(α2)

L(α∗) = L(α)∗
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Locally accepting CFMs

Definition (Locally accepting CFM)
CFM A = (((Sp,∆p))p∈P ,D, sinit , F ) is locally accepting (la, for short) if

F =
∏

p∈P
Fp where Fp ⊆ Sp.

Thus: every combination of local accept states is a global accept state of the
CFM.
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Regular expressions for MSCs

Let P = {1, 2, 3, 4} and C = {req, ack}.

Example

1 2
req

A

1 2
ack

B

3 4
req

C
Consider the following regular expressions over M:

α1 = (A · B)∗

α2 = (A+B)∗

α3 = (A · C)∗

α4 = A · (A+B)∗
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Regular expressions for MSCs

Let P = {1, 2, 3, 4} and C = {req, ack}.

Example

1 2
req

A

1 2
ack

B

3 4
req

C
Consider the following regular expressions over M:

α1 = (A · B)∗

α2 = (A+B)∗

α3 = (A · C)∗

α4 = A · (A+B)∗

How about realisability of L(αi)?
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Regular expressions for MSCs

Let P = {1, 2, 3, 4} and C = {req, ack}.

Example

1 2
req

A

1 2
ack

B

3 4
req

C
Consider the following regular expressions over M:

α1 = (A · B)∗ det. ∀1-bounded dl-free weak CFM
α2 = (A+B)∗

α3 = (A · C)∗

α4 = A · (A+B)∗

How about realisability of L(αi)?
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Regular expressions for MSCs

Let P = {1, 2, 3, 4} and C = {req, ack}.

Example

1 2
req

A

1 2
ack

B

3 4
req

C
Consider the following regular expressions over M:

α1 = (A · B)∗ det. ∀1-bounded dl-free weak CFM
α2 = (A+B)∗ det. ∃1-bounded la CFM
α3 = (A · C)∗ not realisable
α4 = A · (A+B)∗ ∃1-bounded dl-free locally accepting CFM

How about realisability of L(αi)?
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Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

msc

1 2

req

msc 1 2

ack

msc

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 :
2 → 1 :
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Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

msc

1 2

req

msc 1 2

ack

msc

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 : (req,L)
2 → 1 :

1 2

(req,L)

msc
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Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

msc

1 2

req

msc 1 2

ack

msc

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 : (req,L) (req,L)
2 → 1 :

1 2

(req,L)
(req,L)

msc
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Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

msc

1 2

req

msc 1 2

ack

msc

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 : (req,L) (req,L) (req,R)
2 → 1 :

1 2

(req,L)
(req,L)
(req,R)

msc
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Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

msc

1 2

req

msc 1 2

ack

msc

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 : (req,L) (req,R)
2 → 1 :

1 2

req

(req,L)
(req,R)

msc
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Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

msc

1 2

req

msc 1 2

ack

msc

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 : (req,R)
2 → 1 :

1 2

req
req

(req,R)

msc
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Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

msc

1 2

req

msc 1 2

ack

msc

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 :
2 → 1 :

1 2

req
req
req

msc
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Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

msc

1 2

req

msc 1 2

ack

msc

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 :
2 → 1 : (ack,L)

1 2

req
req
req

(ack,L)

msc
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Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

msc

1 2

req

msc 1 2

ack

msc

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 :
2 → 1 :

1 2

req
req
req
ack

msc
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Star-connected regular expressions

Definition (Connected MSC)
An MSC M = (P, E, C, l,m,<) ∈ M is connected if its communication
graph is strongly connected.

Definition (Star-connected)
Regular expression α ∈ REXM is star-connected if, for any
subexpression β∗ of α, L(β) is a set of connected MSCs.

Examples on the black board.
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Regular expressions vs. CFMs

Definition (Finitely generated)
Set of MSCs M ⊆ M is finitely generated if there is a finite set of MSCs
M̂ ⊆ M such that M ⊆ M̂∗.

Theorem [Morin 2002]

Let M be finitely generated. Then:

M is regular

iff

there exists a star-connected regular expression α with L(α) = M.
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