Theoretical Foundations of the UML Lecture 13: Local Choice MSGs and Regular Expressions on MSCs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

June 8, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML

▲ 🗇 🕨 🔺

2 Local Choice MSGs

3 Regular Expressions over MSCs

▲ 御 ▶ → ● ▶

< ≣ >

æ

2 Local Choice MSGs

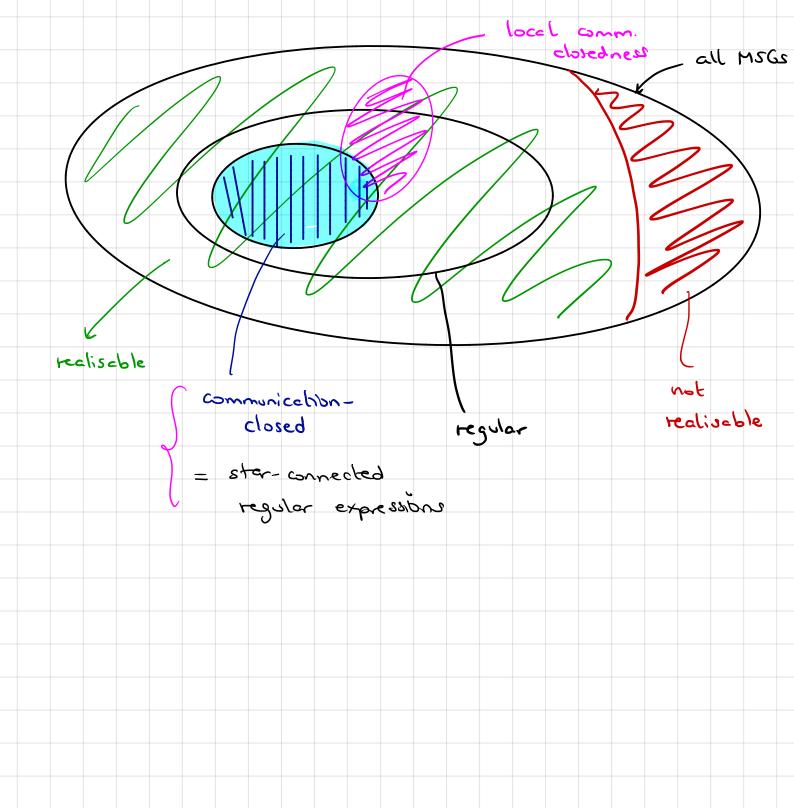
3 Regular Expressions over MSCs

Joost-Pieter Katoen Theoretical Foundations of the UML

æ

(人間) 人 ヨト 人 ヨト

Definition (Realisability of MSGs)


- **()** MSG G is realisable whenever $\mathcal{L}(G) = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- **2** MSG G is safely realisable whenever $\mathcal{L}(G) = \mathcal{L}(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .

Summary of results

necessary + sufficient

Results so far:

- Conditions for (safe) realisability for finite sets of MSCs.
- Checking these conditions is co-NP complete (in P).
- So Regular MSGs are (safely) realisable by \forall -bounded CFMs.
- Checking regularity of MSGs is undecidable.
- Communication-closedness implies regularity; its check is co-NP complete.
- Local communication-closedness implies realizability, and can be checked in P.

- Can results be obtained for other classes of MSGs?
- What happens if we allow synchronisation messages?recall that weak CFMs do not involve synchronisation messages
- How do we obtain a CFM realising an MSG algorithmically?
 in particular, for local choice MSGs

The next two lectures

Safe realisability of (a somewhat restricted class of) MSGs. So as to obtain deadlock-free CFMs, the input MSG is required to be local choice. The CFMs are no longer weak. They exploit synchronisation messages.

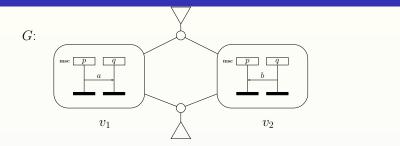
Results:

• Realisability for certain regular expressions of local-choice MSGs.

② An algorithm that generates a CFM from such local-choice MSG.

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶

2 Local Choice MSGs

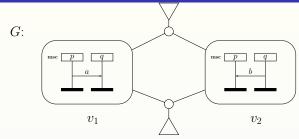

3 Regular Expressions over MSCs

Joost-Pieter Katoen Theoretical Foundations of the UML

ヘロト ヘヨト ヘヨト ヘヨト

æ

Non-local choice



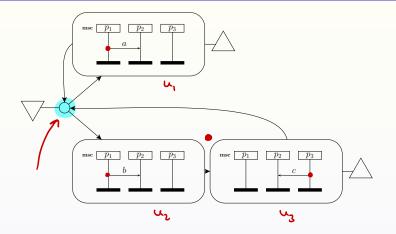
イロト イタト イヨト イヨト

æ

Non-local choice

Inconsistency if process p behaves according to vertex v_1 and process q behaves according to vertex v_2

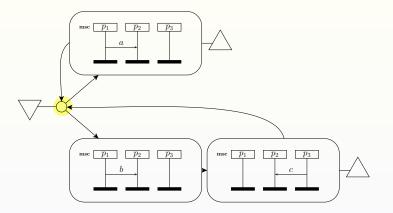
 \implies realisation by a CFM may yield a deadlock


Problem:

Subsequent behavior in G is determined by distinct processes. When several processes independently decide to initiate behavior, they might start executing different successor MSCs (= vertices). This is called a non-local choice.

< ロ > (同 > (回 > (回 >)))

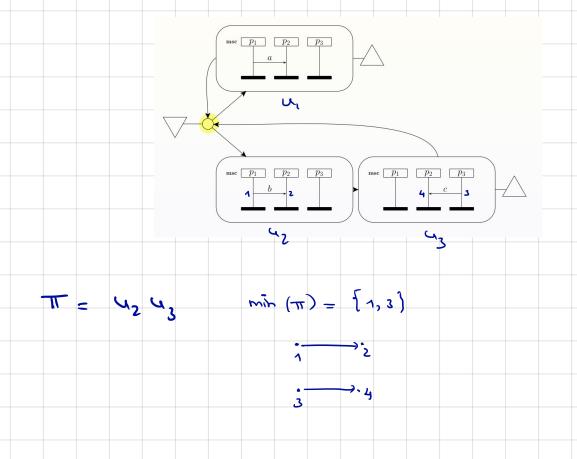
э


A (more involved) non-local choice

æ

▲御▶ ▲屋▶ ▲屋▶

A (more involved) non-local choice



Problem:

Inconsistency if p_1 decides to send a and p_3 decides to send c. Which branch to take in the initial vertex?

< ロ > (同 > (回 > (回 >)))

э

Definition (Minimal event)

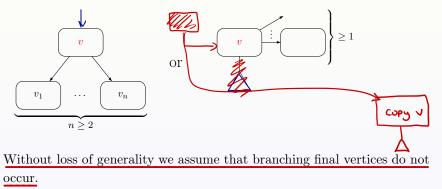
Let (E, \preceq) be a poset. Event $e \in E$ is a minimal event wrt. \preceq if $\neg(\exists e' \neq e. e' \preceq e)$.

æ

Definition (Minimal event)

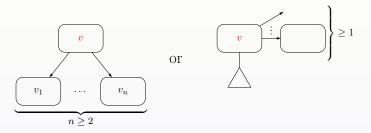
Let (E, \preceq) be a poset. Event $e \in E$ is a minimal event wrt. \preceq if $\neg(\exists e' \neq e. e' \preceq e)$.

Intuition: there is no event that has to happen before e happens. That is to say: the occurrence of e does not depend on any other event.


Definition (Partial order of a path)

For finite path $\pi = v_1 \dots v_n$ in MSG G, let $<_{M(\pi)}$ be the partial order of the MSC $M(\pi) = \lambda(v_1) \bullet \dots \bullet \lambda(v_n)$.

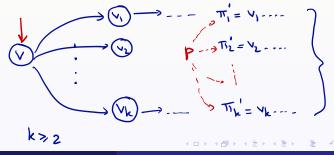
Let $\min(\pi)$ be the set of minimal events wrt. $<_{M(\pi)}$ along finite path π .


A branching vertex in MSG G either has at least two successors, or is a final vertex with at least one successor.

Pictorially, vertex v is branching if either:

A branching vertex in MSG G either has at least two successors, or is a final vertex with at least one successor.

Pictorially, vertex v is branching if either:


Without loss of generality we assume that branching final vertices do not occur. They can be always be removed at the expense of copying such vertices.

Local choice property

Definition (Local choice)

Let MSG $G = (V, \rightarrow, v_0, F, \lambda)$. MSG G is local choice if for every branching vertex $v \in V$ it holds:

 $\exists \text{process } \boldsymbol{p}. \ \left(\forall \pi \in \text{Paths}(\boldsymbol{v}). \ | \min(\pi') | = 1 \land \min(\pi') \subseteq E_{\boldsymbol{p}} \right)$ where for $\pi = \boldsymbol{v} v_1 v_2 \dots v_n$ we have $\pi' = v_1 v_2 \dots v_n$.

Definition (Local choice)

Let MSG $G = (V, \rightarrow, v_0, F, \lambda)$. MSG G is local choice if for every branching vertex $v \in V$ it holds:

 $\exists \text{process } \boldsymbol{p}. \ \left(\forall \pi \in \text{Paths}(\boldsymbol{v}). \ | \min(\pi') | = 1 \land \min(\pi') \subseteq E_{\boldsymbol{p}} \right)$

where for $\pi = vv_1v_2...v_n$ we have $\pi' = v_1v_2...v_n$.

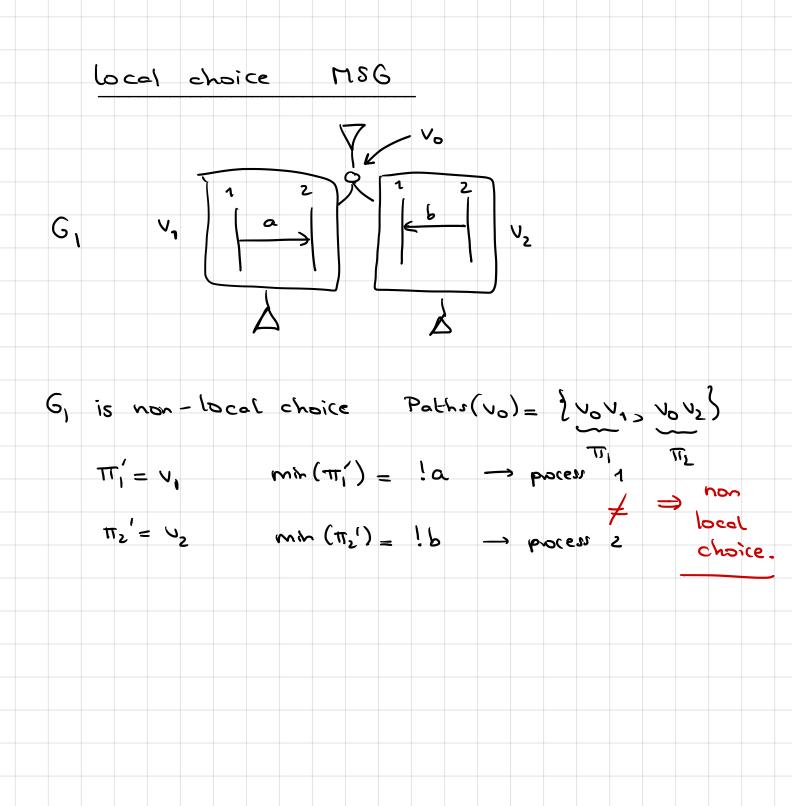
Intuition:

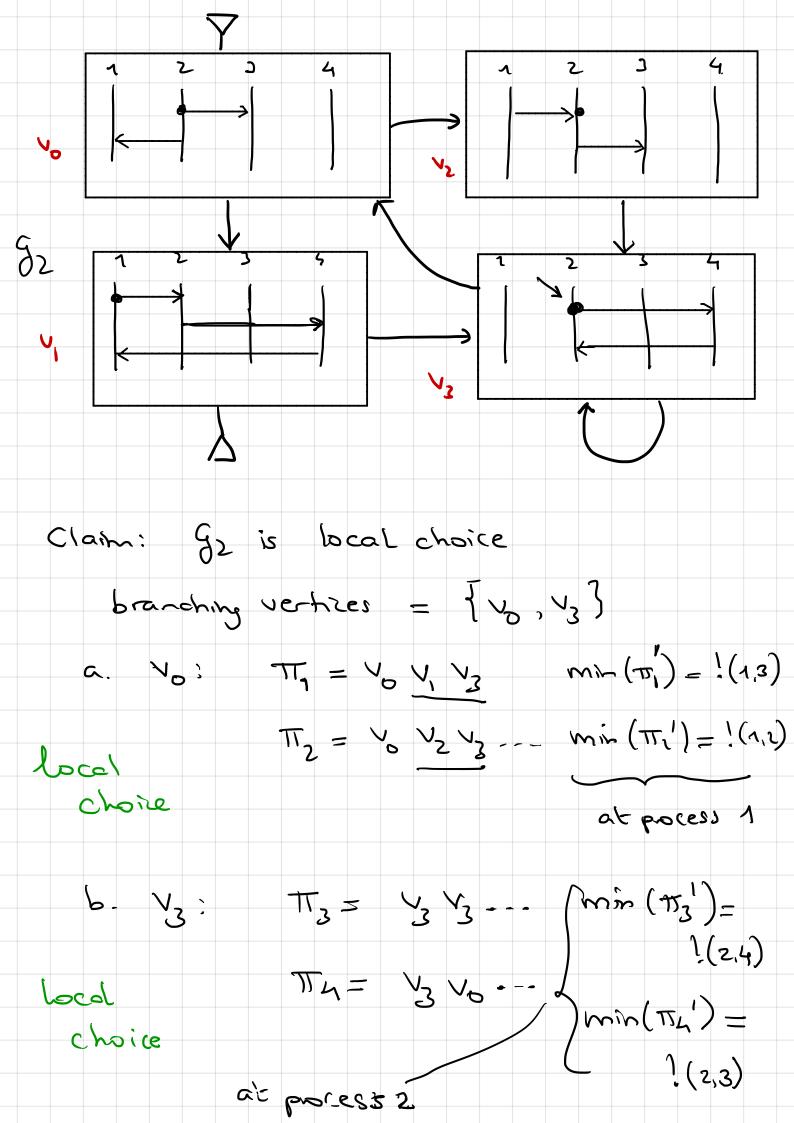
There is a <u>single</u> process that initiates behavior along every path from the branching vertex v.

Definition (Local choice)

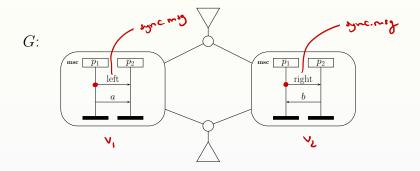
Let MSG $G = (V, \rightarrow, v_0, F, \lambda)$. MSG G is local choice if for every branching vertex $v \in V$ it holds:

 $\exists \text{process } \boldsymbol{p}. \ \left(\forall \pi \in \text{Paths}(\boldsymbol{v}). \ |\min(\pi')| = 1 \ \land \ \min(\pi') \subseteq E_{\boldsymbol{p}} \right)$

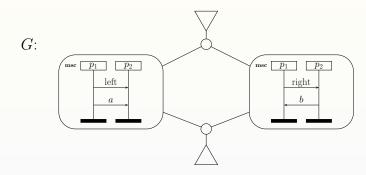

where for $\pi = vv_1v_2...v_n$ we have $\pi' = v_1v_2...v_n$.


Intuition:

There is a <u>single</u> process that initiates behavior along every path from the branching vertex v. This process decides how to proceed. In a realisation by a CFM, it can inform the other processes how to proceed.


Local choice or not?

Deciding whether MSG G is local choice or not is in P. (Exercise.)



Local choice

Local choice

How to resolve a non-local choice? Amend your MSG and add control messages (cf. above example)

2 Local Choice MSGs

3 Regular Expressions over MSCs

Joost-Pieter Katoen Theoretical Foundations of the UML

< ロ > (同 > (回 > (回 >)))

æ

Definition (Asynchronous iteration)

For $\mathcal{M}_1, \mathcal{M}_2 \subseteq \mathbb{M}$ sets of MSCs, let:

$$\mathcal{M}_1 \bullet \mathcal{M}_2 = \{ M_1 \bullet M_2 \mid M_1 \in \mathcal{M}_1, M_2 \in \mathcal{M}_2 \}$$

For $\mathcal{M} \subseteq \mathbb{M}$ let

$$\mathcal{M}^{i} = \begin{cases} \{M_{\epsilon}\} & \text{if } i=0, \text{ where } M_{\epsilon} \text{ denotes the empty MSC} \\ \mathcal{M} \bullet \mathcal{M}^{i-1} & \text{if } i>0 \end{cases}$$

The asynchronous iteration of \mathcal{M} is now defined by:

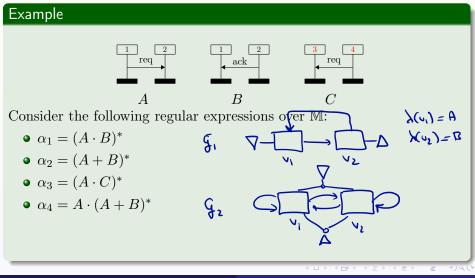
$$\mathcal{M}^* = \bigcup_{i \geqslant 0} \mathcal{M}^i.$$

(4 得) トイヨト イヨト

The set $\text{REX}_{\mathbb{M}}$ of regular expressions over \mathbb{M} is given by the grammar:

$$\alpha ::= \emptyset \mid \underline{M} \mid \underline{\alpha_1 \cdot \alpha_2} \mid \underline{\alpha_1 + \alpha_2} \mid \underline{\alpha^*}$$
where MSC $M \in \mathbb{M}$.
Definition (Semantics of regular expressions, $\mathcal{L}(.) : \operatorname{REX}_{\mathbb{M}} \to 2^{\mathbb{M}}$)
 $\checkmark \circ \mathcal{L}(\emptyset) = \emptyset \xleftarrow{enphyset of nSCs}$
 $\checkmark \circ \mathcal{L}(M) = \{M\}$
 $\checkmark \circ \mathcal{L}(\alpha_1 \cdot \alpha_2) = \mathcal{L}(\alpha_1) \circ \mathcal{L}(\alpha_2)$
 $\checkmark \circ \mathcal{L}(\alpha_1 + \alpha_2) = \mathcal{L}(\alpha_1) \cup \mathcal{L}(\alpha_2)$
 $\checkmark \circ \mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^* \xleftarrow{asynchronous on } \mathcal{M} (cf. previous slide)$

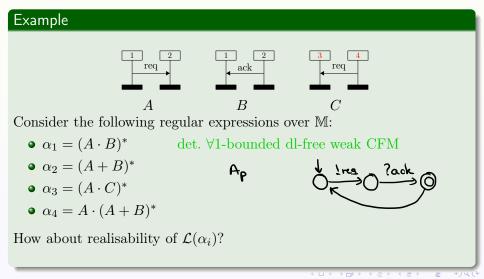
Definition (Locally accepting CFM)

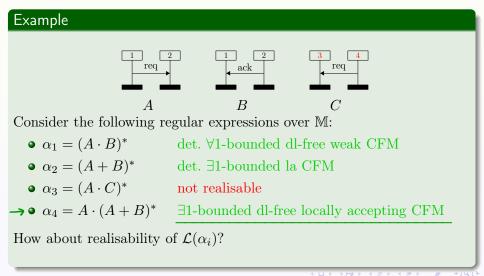

CFM $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ is locally accepting (la, for short) if

$$F = \prod_{p \in \mathcal{P}} F_p \quad \text{where} \quad F_p \subseteq S_p.$$

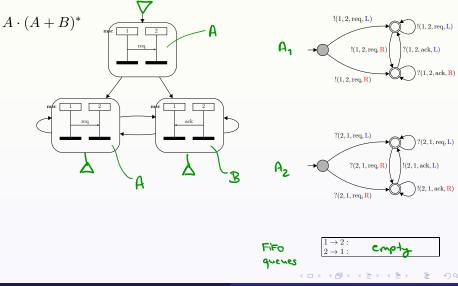
Thus: every combination of local accept states is a global accept state of the CFM.

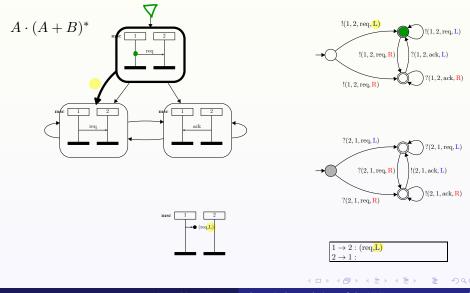
(本間) ((日) (日) (日) (日)

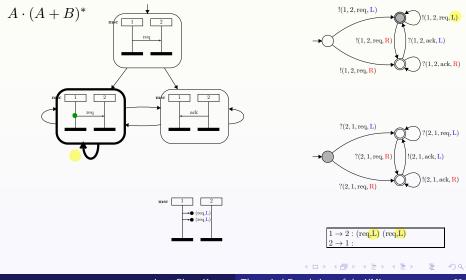

Let
$$\mathcal{P} = \{1, 2, 3, 4\}$$
 and $\mathcal{C} = \{\text{req, ack}\}.$

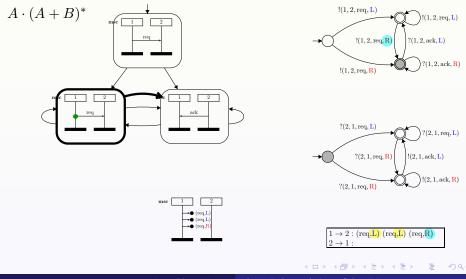

Let
$$\mathcal{P} = \{1, 2, 3, 4\}$$
 and $\mathcal{C} = \{\text{req, ack}\}.$

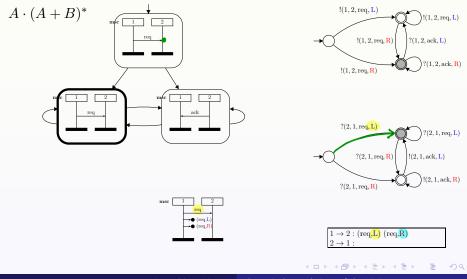
Example req ack req CA BConsider the following regular expressions over \mathbb{M} : • $\alpha_1 = (A \cdot B)^*$ • $\alpha_2 = (A+B)^*$ • $\alpha_3 = (A \cdot C)^*$ • $\alpha_4 = A \cdot (A+B)^*$ How about realisability of $\mathcal{L}(\alpha_i)$?

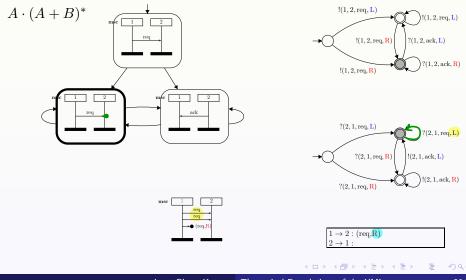

Let
$$\mathcal{P} = \{1, 2, 3, 4\}$$
 and $\mathcal{C} = \{\text{req, ack}\}.$

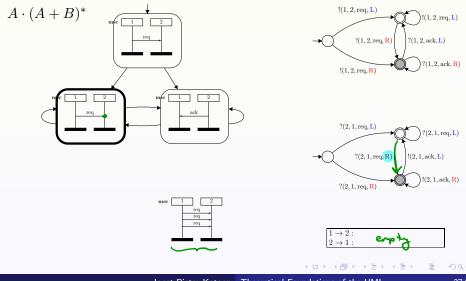


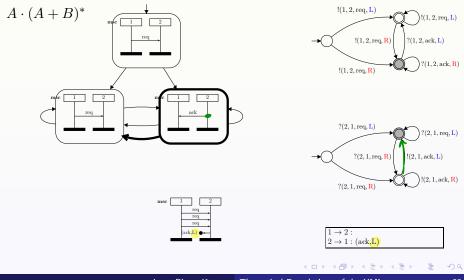

Let
$$\mathcal{P} = \{1, 2, 3, 4\}$$
 and $\mathcal{C} = \{\text{req, ack}\}.$

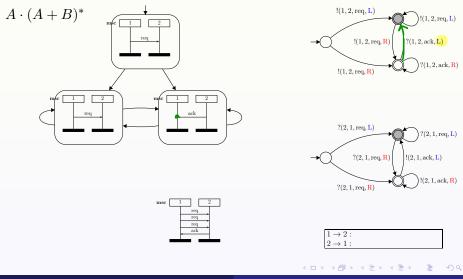




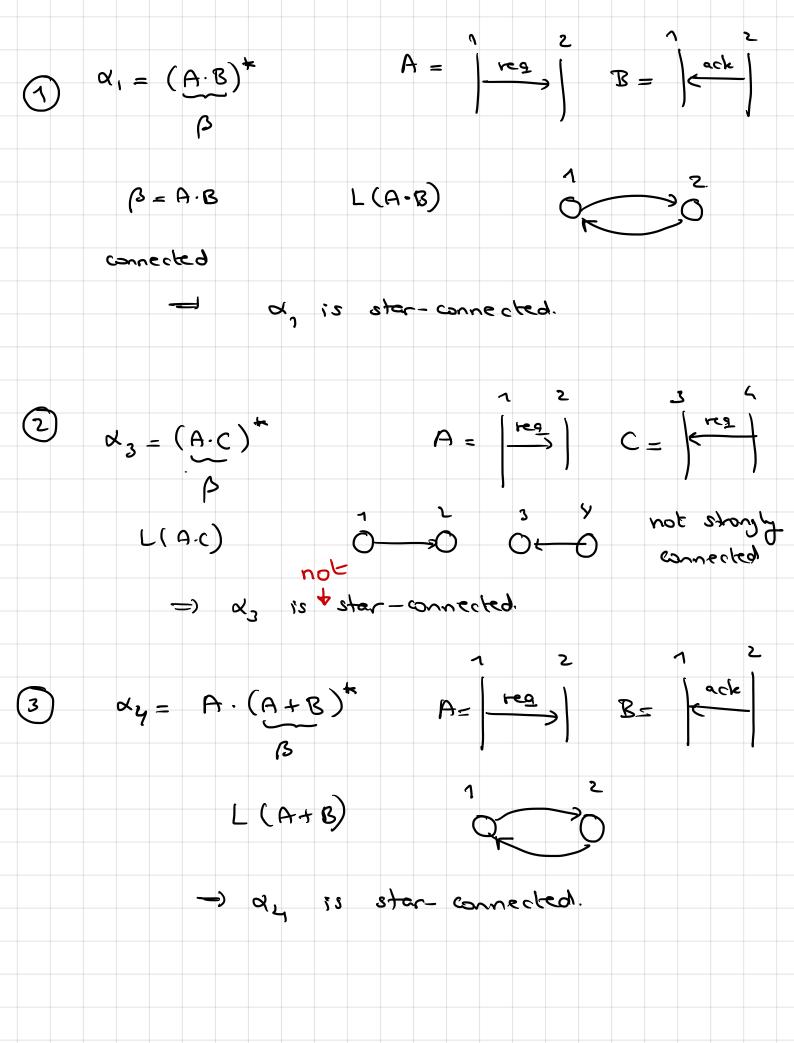






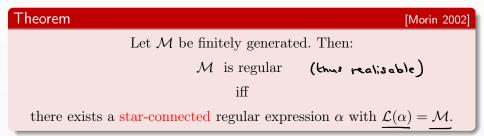


Definition (Connected MSC)


An MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, <) \in \mathbb{M}$ is connected if its communication graph is strongly connected.

Definition (Star-connected)

Regular expression $\alpha \in \text{REX}_{\mathbb{M}}$ is star-connected if, for any subexpression β^* of α , $\mathcal{L}(\beta)$ is a set of connected MSCs.


Examples on the black board.

(4 得) トイヨト イヨト

Definition (Finitely generated)

Set of MSCs $\mathcal{M} \subseteq \mathbb{M}$ is finitely generated if there is a finite set of MSCs $\widehat{\mathcal{M}} \subseteq \mathbb{M}$ such that $\mathcal{M} \subseteq \widehat{\mathcal{M}}^*$.

э

(4 得) トイヨト イヨト