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@ Introduction
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Safe realisability

Definition (Realisability of MSGs)

© MSG G is realisable whenever L(G) = L(A) for some CFM A.

© MSG G is safely realisable whenever £(G) = £L(.A) for some
deadlock-free CFM A.
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Summary of results
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Results so far:

© Conditions for (safe) realisability for finite sets of MSCs.

@ Checking these conditions is co-NP complete (in P).

© Regular MSGs are (safely) realisable by V-bounded CFMs.

@ Checking regularity of MSGs is undecidable.

© Communication-closedness implies regularity; its check is co-NP
complete.

© Local communication-closedness implies realizability, and can be
checked in P.
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Some remaining questions

@ Can results be obtained for other classes of MSGs?

@ What happens if we allow synchronisation messages?
o recall that weak CFMs do not involve synchronisation messages

@ How do we obtain a CFM realising an MSG algorithmically?
@ in particular, for local choice MSGs
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Today's topics

The next two lectures

Safe realisability of (a somewhat restricted class of ) MSGs. So as to
obtain deadlock-free CFMs, the input MSG is required to be local
choice. The CFMs are no longer weak. They exploit synchronisation
messages.

© Realisability for certain regular expressions of local-choice MSGs.

© An algorithm that generates a CFM from such local-choice MSG.
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Overview

© Local Choice MSGs
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Non-local choice
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Non-local choice

Inconsistency if process p behaves according to vertex v;
and process q behaves according to vertex ve

— realisation by a CFM may yield a deadlock

Subsequent behavior in G is determined by distinct processes. When several

processes independently decide to initiate behavior, they might start executing
different successor MSCs (= vertices). This is called a non-local choice.
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A (more involved) non-local choice
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A (more mvolved non-local choice

&}II}A

BTTTET Jo

Inconsistency if p; decides to send a and ps decides to send c.
Which branch to take in the initial vertex?

Problem:
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Preliminaries

Definition (Minimal event)

Let (E, =) be a poset. Event ¢ € E is a minimal event wrt. < if
—(3e' #£e. e <e).
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Preliminaries

Definition (Minimal event)

Let (E, =) be a poset. Event ¢ € E is a minimal event wrt. < if
—(3e' #£e. e <e).

Intuition: there is no event that has to happen before e happens.
That is to say: the occurrence of e does not depend on any other event.

Definition (Partial order of a path)

For finite path m = v; ... v, in MSG G, let <j(,) be the partial order of
the MSC M(7) = A(v1) o ... @ A(uvy,).

Let min(7) be the set of minimal events wrt. <p(,) along finite path .
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Branching vertices

A branching vertex in MSG G either has at least two successors, or is a
final vertex with at least one successor.

Pictorially, vertex v is branching if either:

Without loss of generality we assume that branching final vertices do not
occur.
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Branching vertices

A branching vertex in MSG G either has at least two successors, or is a
final vertex with at least one successor.

Pictorially, vertex v is branching if either:

A

Without loss of generality we assume that branching final vertices do not

occur. They can be always be removed at the expense of copying such vertices.
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Local choice property

Definition (Local choice)

Let MSG G = (V, —,vg, F, \). MSG G is local choice if for every
branching vertex v € V it holds:

Jprocess p. (Vr € Paths(v). |min(7’)| =1 A min(x’) C E,)

where for 7 = vvivy . .. v, we have 7’ = vivy ... v,.

@——>,_ — ,'W:= V- -e-
L/ @ /{-9“11‘\‘1.--—-
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Local choice property

Definition (Local choice)

Let MSG G = (V, —,vg, F, \). MSG G is local choice if for every
branching vertex v € V it holds:

Jprocess p. (Vr € Paths(v). |min(7’)| =1 A min(x) C E,)

where for m = vvjvs ... v, we have 7’ = vivy ... v,.

There is a single process that initiates behavior along every path from the

N

branching vertex v.
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Local choice property

Definition (Local choice)

Let MSG G = (V, —,vg, F, \). MSG G is local choice if for every
branching vertex v € V it holds:

Jprocess p. (Vr € Paths(v). |min(7’)| =1 A min(x) C E,)

where for m = vvjvs ... v, we have 7’ = vivy ... v,.

There is a single process that initiates behavior along every path from the

branching vertex v. This process decides how to proceed. In a realisation by a
CFM, it can inform the other processes how to proceed.

Local choice or not?

Deciding whether MSG G is local choice or not is in P. (Exercise.)
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Local choice
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Local choice

How to resolve a non-local choice?

Amend your MSG and add control messages (cf. above example)

L
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Overview

© Regular Expressions over MSCs
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Regular expressions over MSCs

Definition (Asynchronous iteration)
For M7, My C M sets of MSCs, let:

Mie My = {M10M2|M1€M1,M2€M2}

For M C M let
)y {M} if i=0, where M, denotes the empty MSC
| MeM ifi>0
The asynchronous iteration of M is now defined by:
M= M.
i>0
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Regular expressions over MSCs

Definition (Regular expressions over MSCs)

The set REXy; of regular expressions over M is given by the grammar:

a:=0 | M | aq-ay | ar+as | af

where MSC M € M. L> Yo candhiny verle
re.su\nr c/pre3sion =

Definition {Semantics of regular expressions, £(.) : REXy — 2M)
Vo L(D) = @ e emphyder oF nscs

Vo LIM) =1 M) / \Q:;\s‘f& s\: seb of
Vo Llag as)=L(ay)eL(as) (c‘; ‘:Nm’ o) MsucS
Ve E(al + 042) = L’(al) U ﬁ(ag)

\/0 ,C(Oz*) _ ,C(Oz)* — osJ“c\\eo“m on M (Qgs.‘sce..):m s\&'\()

o
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Locally accepting CFMs

Definition (Locally accepting CFM)

CFM A = (((Sp, Ap))per: D, sinit, F) is locally accepting (la, for short) if

F =[] F, where F,CS,.
peEP
—

same ay Por ek CEML ok non \®\> AL

Thus: every combination of local accept states is a global accept state of the J
CFEM.
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Regular expressions for MSCs

Let P ={1,2,3,4} and C = {req, ack}.

req ac req

A B C
Consider the following regular expressions ofer M 2 = 8
@ a;=(A-B)* ¢ V¥ B A No)-R

Example

° ag =(A+ B)* v\ Ny
o agz(A'C)*
o as=A (A+ B)* G, (@ -
\‘| /\'l
A
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Regular expressions for MSCs

Let P ={1,2,3,4} and C = {req, ack}.

Example

req ack req

A B C
Consider the following regular expressions over M:
o oy =(A-B)*
@ (g = (A T B)*
o az=(A-0O)f

oas=A-(A+ B)*

How about realisability of £(a;)?
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Regular expressions for MSCs

Let P ={1,2,3,4} and C = {req, ack}.

Example

req ac req
A B C

Consider the following regular expressions over M:
o oy =(A-B)* det. V1-bounded dl-free weak CFM

@ a9 = (A+B)* A, { \rea Tade
° a5 =(A-C) ‘ OU
o ay=A-(A+B)

How about realisability of £(a;)?
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Regular expressions for MSCs

Let P ={1,2,3,4} and C = {req, ack}.

(31 [4]

req ack req
A B C
Consider the following regular expressions over M:
o oy =(A-B)* det. V1-bounded dl-free weak CFM
o ay=(A+ B)* det. J1-bounded la CFM
o az=(A-0O)f not realisable

e ay=A-(A+B)* Jl-bounded dl-free locally accepting CFM

How about realisability of £(a;)?
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Realising local-choice expressions by deadlock-free CFMs

F¥o
quenes

CcFM

1(1,2,req, L)

I(1,2,req, R)

2(2,1,req, L)

?(2,1,req, R)

1(1,2,req, L)

12:
21:
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Realising local-choice expressions by deadlock-free CFMs

Joost-Pieter Katoen

1(1,2,req,L)

I(1,2, req, R)

2(2,1,req, L)

?(2,1,req, R)

1—2: (req,L)
2—1:
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Realising local-choice expressions by deadlock-free CFMs
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1(1,2,req, L)

1(1,2,req, L)

I(1,2, req, R)

2(2,1,req, L)

?(2,1,req, R)

1— 2: (req,L) (req,L)
2—1:
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Realising local-choice expressions by deadlock-free CFMs
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1(1,2,req, L)

1(1,2,req, L)

I(1,2, req, R)

2(2,1,req, L)

1(2,1, ack, R)
?(2,1,req, R)

1—2: (req,L) (req,L) (req,R)
2—1:
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Realising local-choice expressions by deadlock-free CFMs
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1(1,2,req, L)

1(1,2,req, L)

I(1,2, req, R)

2(2,1,req, L)

?(2,1,req, R)

1—2: (req,L) (req.R)
2—1:
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Realising local-choice expressio

1(1,2,req, L)

1(1,2,req, L)

2(1,2,ack, R)
I(1,2, req, R)

2(2,1,req, L)
2(2,1,req, L)

?(2,1,req, R)

msc 1 2
req
Teq

—® (reqR)

1—2: (reqR)
2—1:
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Realising local-choice expressions by deadlock-free CFMs

1(1,2,req, L)

1(1,2,req, L)

I(1,2, req, R)

2(2,1,req, L)

?(2,1,req, R)

Bﬁi erpiy ‘
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Realising local-choice expressions by deadlock-free CFMs
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1(1,2,req, L)

1(1,2,req, L)

I(1,2, req, R)

2(2,1,req, L)

?(2,1,req, R)

1—2:
2 — 1: (ack,L)
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Realising local-choice expressions by deadlock-free CFMs

1(1,2,req, L)

1(1,2,req, L)

I(1,2, req, R)

2(2,1,req, L)

?(2,1,req, R)

12:
21:
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Star-connected regular expressions

Definition (Connected MSC)

An MSC M = (P,E,C,l,m,<) € M is connected if its communication
graph is strongly connected.

Definition (Star-connected)

Regular expression @ € REXyy is star-connected if, for any
subexpression 8* of a, £() is a set of connected MSCs.

Examples on the black board. ]
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Regular expressions vs. CFMs

Definition (Finitely generated)

Set of MSCs M C M is finitely generated if there is a finite set of MSCs
M C M such that M C M?*.

Theorem [Morin 2002]
Let M be finitely generated. Then:
M is regular (khas =a\is c\:\e)
iff

there exists a star-connected regular expression a with £(a) = M.

= V.
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