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@ Realisability and safe realisability
© Regular MSCs | MsGs, CFHAs
© Regularity and realisability for MSCs

@ Regularity and realisability for MSGs
@ Communication closedness
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Overview

@ Realisability and safe realisability
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Realisabiliy and safe realisability

Definition (Realisability)

© MSC M is realisable whenever {M} = L(A) for some CFM A.

@ A finite set {Mi, ..., My} of MSCs is realisable whenever
{M,...,M,} = L(A) for some CFM A.

© MSG G is realisable whenever £(G) = £L(A) for some CFM A.

Definition (Safe realisability)
Same as above except that the CFM should be deadlock-free.
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Summary of results

Approach so far:

The (safe) realisation of a (finite) set of MSCs by a weak CFM is the
one where the automaton A, of process p generates the projections of
these MSCs on p.

sofRcret +necess oy Corditons

Results so far:

© Conditions for (safe) realisability for finite sets of MSCs.
© Checking safe realisability for finite sets of MSCs is i P.
© Checking realisability for finite sets of MSCs is<co-NP complete:
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Some remaining questions

@ Can similar results be obtained for larger classes of MSGs?

@ What happens if we allow synchronisation messages?
o recall that weak CFMs do not involve synchronisation messages

@ How do we obtain a CFM realising an MSG algorithmically?
@ in particular, for local-choice MSGs

/ SU$C\C\%\:
o Are there snnple “conditions on MSGs that guarantee realisability?
o e.g., easily 1denf1ﬁable subsets of (safe) realisable MSGs

eosy do Meck
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Today's lecture
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Today's lecture

(Safe) Realisability of a regular set of MSCs.

Or, equivalently: (safe) realisability of a regular set of well-formed
words. Vi
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Today's lecture

(Safe) Realisability of a regular set of MSCs.

Or, equivalently: (safe) realisability of a regular set of well-formed
words.

Results:
© Checking whether a regular language L is well-formed is decidable.

@ For well-formed language L:
L is regular iff it is (safely) realisable by a V-bounded CFM.

© Checking whether an MSG is regular is undecidable.

@ Every communication-closed MSG is regular.

© Checking whether an MSG is comm.-closed is coNP-complete.
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Today's lecture

(Safe) Realisability of a regular set of MSCs.

Or, equivalently: (safe) realisability of a regular set of well-formed
words.

Results:
© Checking whether a regular language L is well-formed is decidable.

@ For well-formed language L:
L is regular iff it is (safely) realisable by a V-bounded CFM.

© Checking whether an MSG is regular is undecidable.
@ Every communication-closed MSG is regular.

© Checking whether an MSG is comm.-closed is coNP-complete.

Q@ Checking whether an MSG is locally communication-closed is in P.

v
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Overview

© Regular MSCs
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Regular MSCs

Definition (Regular MSCs, MSGs, and CFMs)

QO M={M,...,M,} withn e NU{oo} is called regular if
Lin(M) = Uz 1 Lin(M;) is a regular word language over Act”.

© MSG G is regular if Lin(G) isar
© CFM A is regular if Lin(A) i

Here, Act is the set of actions j

ular word language over Act*.
regular word language over Act*.
M, G, and A, respectively.

e (M) = &% & W rgdec
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Regular MSCs

Definition (Regular MSCs, MSGs, and CFMs)

QO M={M,...,M,} withn € NU{oo} is called regular if
Lin(M) = U}, Lin(M;) is a regular word language over Act™.

Q@ MSG G is regular if Lin(G) is a regular word language over Act*.

© CFM A is regular if Lin(A) is a regular word language over Act*.

Here, Act is the set of actions in M, G, and A, respectively.

Every V-bounded CFM is regular. Why?

‘r\o.s AR ‘«b mong cm%‘)\.ra\d‘oh.i'
ks Cwsﬂsvm\bn Sfo\.\\ 35 o Bwte_streke N onn aSon
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Regularity and well-formedness

Theorem [Henriksen et. al, 2005]

The decision problem “is a regular language L C Act® well-formed”?
—that is, does regular L represent a set of MSCs?— is decidable.

Proof.

Since L is regular, there exists a minimal DFA A = (S, Act, s, 9, F)
with £(A) = L. Consider the productive states in this DFA, i.e., all
states from which some state in F' can be reached. We label every
productive state s with a channel-capacity function K, : Ch — N such
that four constraints (cf. next slide) are fulfilled. Then: L is well-formed
iff each productive state in the DFA A can be labelled with K
satisfying these constraints. In fact, if a state-labelling violates any of
these constraints, it is due to a word that is not well-formed. O

v
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Constraints on state-labelling

Q s e FU{so}, implies K,((p,q)) = 0 for every channel (p,q).
Q i(s,!(p,q,a)) = s implies

Ko(©) Ks(c)+1 ife=(p,q)
s'\C) =
Ks(c) otherwise.
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Constraints on state-labelling

Q s e FU{so}, implies K,((p,q)) = 0 for every channel (p,q).
Q i(s,!(p,q,a)) = s implies

Ka(©) Ks(c)+1 ife=(p,q)
s'\C) =
Ks(c) otherwise.

Q i(s,7(p,q,a)) = s implies Ks((¢,p)) > 0 and

o 2 | B@=1 o=@
= Kg(c) otherwise.

@ ?(ﬂ&\a) @
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Constraints on state-labelling

Q s e FU{so}, implies K,((p,q)) = 0 for every channel (p,q).
Q i(s,!(p,q,a)) = s implies

K (c)+1 ifc=(p, @G
Ks’(c):{ s () 0‘/6&—1

kpa)=3

Ks(c) otherwise. 4 @ @
Q i(s,7(p,q,a)) = s implies Ks((¢,p)) > 0 and /
. ¢ *
Ks(c)—1 if c=(q, +
g2 @1 ie=tan) G
Ky(c) otherwise.
Q i(s.a) = sy and 0(s1,3) = so with o € Ac@and RS Ac@ D # q,

implies
not (@ =1(p,q,a) and 8 =7(q,p,a)), or K;((p,q)) >0

implies 6(s, 8) = s} and §(s}, @) = sy for some s) € S. Sremend
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Constraints on state-labelling

Q s e FU{so}, implies K ((p,q)) = 0 for every channel (p,q).
Q i(s,!(p,q,a)) = s implies

Ky (e)+1 ife=(p,
g | BT o=

Ks(c) otherwise.
Q i(s,7(p,q,a)) = s implies Ks((¢,p)) > 0 and

Ks(c)—1 if ¢c=(q,
o = { (@:0)
Ky(c) otherwise.
Q (s, ) = s1 and d(s1, B) = sp with a € Act,, and 5 € Acty, p # q,

implies

not (« =!(p,q,a) and 8 =7(q,p,a)), or Ks((p,q)) >0
implies 6(s, 8) = s} and §(s}, @) = sy for some s} € S.

These constraints can be checked in linear time in the size of relation §.
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Boundedness and regularity

Definition (B-bounded words)

Let Be Nand B > 0. A word w € Act™ is called B-bounded if for any
prefix u of w and any channel (p,q) € Ch:

0 < Z‘uh@,q,a)_Z|U\?(q,p,a) < B

acC acC

v
Corollary:

For any regular, well-formed language L, there exists B € N and B > 0
such that every w € L is B-bounded.

The bound B is the largest value attained by the channel-capacity functions

assigned to productive states in the proof of the previous theorem. ]
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Overview

© Regularity and realisability for MSCs
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Regularity and realisability

Theorem: [Henriksen et al., 2005], [Baudru & Morin, 2007]

For well-formed L, the following four statements are equivalent:
O L is regular. } £ lechure A0
@ L is realisable by a V-bounded CFM.
© L is realisable by a deterministic V-bounded CFM.
Q L is safe realisable by a V-bounded CFM. § ef.\echue A4
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Regularity and realisability

Theorem: [Henriksen et al., 2005], [Baudru & Morin, 2007]

For well-formed L, the following four statements are equivalent:
© L is regular.
@ L is realisable by a V-bounded CFM.
© L is realisable by a deterministic V-bounded CFM.
© L is safe realisable by a V-bounded CFM.

Lemma:

| \

The maximal size of the CFM realising L is such that for each process p, the
number |@,| of states of local automaton A, is:

© double exponential in the bound B and k2, where k = |P|, and
@ exponential i@here m is the size of the minimal DFA for L.

4
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Overview

@ Regularity and realisability for MSGs
@ Communication closedness
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Regularity for MSGs is undecidable

-
VS L\v-(G) o r'tsv\er \cnaw: Qe

Theorem [Henriksen et. al, 2005]

The decision problem “is MSG G regular? i§ undecidablé

Outside the scope of this lecture.
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Towards structural conditions for regular MSGs

@ MSG G is regular if Lin(G) is a regular language

(]

Regularity yields deterministic, or safe, but bounded CFMs

(]

But, “is MSG G regular? is unfortunately undecidable
Shv\o\e-

Is it possible to impose structural conditions on MSGs that
guarantee regularity?

MSG G sekishes Vvplies g s reahsasle
Jve Hacthoral — 2
o~k oo
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Towards structural conditions for regular MSGs

@ MSG G is regular if Lin(G) is a regular language

(]

Regularity yields deterministic, or safe, but bounded CFMs

(]

But, “is MSG G regular? is unfortunately undecidable

Is it possible to impose structural conditions on MSGs that
guarantee regularity?

@ Yes we can. For instance, by constraining:

—» © the communication structure of the MSCs in loops of G, or
© the structure of expressions describing the MSCs in G
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Communication graph

Definition (Communication graph)

The communication graph of the MSC M = (P, E,C,l,m,<) is the
directed graph (V, —) with:

o V=P\{peP|E,=a}, the set of active processes

@ (p,q) € — if and only if L(e) =!(p, ¢, a) for some e € E and a € C

g [, [] [P
a
[

a F—F—H—®

0 a

rneauoh CEINA >

an example MSC

4
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Strongly connected components

Let G = (V,—) be a directed graph.

Strongly connected component

@ T C V is strongly connected if for every v,w € T, vertices v and w
are mutually reachable (via —) from each other.

Joost-Pieter Katoen Theoretical Foundations of the UML 21/30



Strongly connected components
o0
\O</8CC

Let G = (V,—) be a directed graph.

Strongly connected component
@ T C V is strongly connected if for every v,w € T, vertices v and w
are mutually reachable (via —) from each other.

e T is a strongly connected component (SCC) of G it T is strongly
connected and 7' is not properly contained in another SCC.

Determining the SCCs of a digraph can be done in linear time in the
size of V and —. /

4

/
e depth-Frst  olgoathm

Joost-Pieter Katoen Theoretical Foundations of the UML 21/30



Communication closedness
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Communication closedness

A loop is simple if it visits a vertex at most once, except for the start- and
end-vertex which are visited twice.

NN
R
T

4 22 3 no¥ Siwple
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Communication closedness

A loop is simple if it visits a vertex at most once, except for the start- and
end-vertex which are visited twice.

Definition (Communication closedness)

MSG G is communication-closed if for every simple loop 7 = v1vsy ... vy,
(with v1 = v,) in G, the communication graph of the MSC
M(m) = Av1) @ A(v2) @ ... ® A(vy,) is strongly connected.

On the black board. l
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Communication-closed vs. regularity
Every communication-closed MSG G is regular.

C -~ ——

subficiert ertenoa For LL.\r\S rnao\a(

Example on the black board.

The converse does not hold (cf. next slide).
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Communication-closed vs. regularity

Y
?
(\ o 'e? L) Weher\eave d (iif/\_si_b_)
W
Lehueen p, ond P, W"‘\’sw?‘-«
Communication-closedness is not a necessary condition for regularity:

G-
w, Uy

msc

] [P 7] [P 7] [P2] [P] [Pi]
a a
b b

Cornee. 3'4& @—_® A

MSG G is not communication-closed, but Lin(G) is regular. )
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Checking communication-closedness

Theorem: [Genest et. al, 2006]

The decision problem “is MSG G communication closed?” is co-NP
complete.

cqu.a\\:) Med as q\.ze\q\J e a ke s\~ of
MSCs s reoliseble by « vedk CFM (cf. Leehre AQ)
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Checking communication-closedness

Theorem: [Genest et. al, 2006]

The decision problem “is MSG G communication closed?” is co-NP
complete.

Proof
© Membership in co-NP can be proven in a standard way: guess a
sub-graph of G, check in polynomial time whether this sub-graph has a
loop passing through all its vertices, and check whether its

communication graph is not strongly connected. (iw Pab—%\u)
© Co-NP hardness can be shown by alreductlon from the 3-SAT problem.

/
PQ\D\AQNN: Q\_
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Asynchronous iteration

For M1, My C M sets of MSCs, let:
MieMy = {MyeMy| My € My, My € My}
For M C M let

@ {M} if 1=0, where M, denotes the empty MSC
| MeMiT ifi>0

The asynchronous iteration of M is now defined by:

M= M.

120
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Finitely generated

Definition (Finitely generated)

Set of MSCs M is finitely generated if there is a finite set of MSCs M
such that M C M*.

© Each set of MSCs defined by an MSG G is finitely generated.

@ Not every regular well-formed language is finitely generated.

© Not every finitely generated set of MSCs is regular.
@ It is decidable to check whether a set of MSCs is finitely generated.

Joost-Pieter Katoen Theoretical Foundations of the UML 27/30



Characterisation of communication-closedness

Theorem: [Henriksen et. al, 2005]
Let M be a (possibly infinite) set of MSCs. Then:

M is finitely generated and regular
iff
M = L(G) for some communication-closed MSG G.

— y
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Local communication-closedness

Definition (Local communication-closedness)

MSG G is locally communication-closed if for each edge (v,v") in G, the
MSCs A(v), A(v'), and A(v) @ A(v) all have weakly connected

communication graphs:

[

Cbmmf\‘(ﬂ'\"“'\ jvep\\,
g e Svedoon o8 <dqes

g ~ R wnirecked Dvs\o\s
P 4 P i
O0—0 ~> 0—O
\..r(e\g\:, Connected
v Connecked
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Local communication-closedness

Definition (Local communication-closedness)

MSG G is locally communication-closed if for each edge (v,v") in G, the
MSCs A(v), A(v'), and A(v) @ A(v) all have weakly connected
communication graphs.

© A directed graph is weakly connected if its induced undirected
graph (obtained by ignoring the directions of edges) is strongly
connected.

@ Checking whether MSG G is locally communication-closed can be
done in linear time.
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Locally communication-closed MSGs are realisable

[Genest et al., 2006]

Every locally communication-closed MSG G is realisable by a CFM A
(of size mP(PD where m is the number of vertices in G
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