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Realisabiliy and safe realisability

Definition (Realisability)
1 MSC M is realisable whenever {M} = L(A) for some CFM A.
2 A finite set {M1, . . . ,Mn} of MSCs is realisable whenever

{M1, . . . ,Mn} = L(A) for some CFM A.
3 MSG G is realisable whenever L(G) = L(A) for some CFM A.

Definition (Safe realisability)
Same as above except that the CFM should be deadlock-free.
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Summary of results

Approach so far:
The (safe) realisation of a (finite) set of MSCs by a weak CFM is the
one where the automaton Ap of process p generates the projections of
these MSCs on p.

Results so far:
1 Conditions for (safe) realisability for finite sets of MSCs.
2 Checking safe realisability for finite sets of MSCs is in P.
3 Checking realisability for finite sets of MSCs is co-NP complete.

Joost-Pieter Katoen Theoretical Foundations of the UML 5/30

sufficient t  necessary conditions

O
o



Some remaining questions

Can similar results be obtained for larger classes of MSGs?

What happens if we allow synchronisation messages?
recall that weak CFMs do not involve synchronisation messages

How do we obtain a CFM realising an MSG algorithmically?
in particular, for local-choice MSGs

Are there simple conditions on MSGs that guarantee realisability?
e.g., easily identifiable subsets of (safe) realisable MSGs
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Today’s lecture

(Safe) Realisability of a regular set of MSCs.

Or, equivalently: (safe) realisability of a regular set of well-formed
words.
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Today’s lecture

(Safe) Realisability of a regular set of MSCs.

Or, equivalently: (safe) realisability of a regular set of well-formed
words.

Results:
1 Checking whether a regular language L is well-formed is decidable.
2 For well-formed language L:

L is regular iff it is (safely) realisable by a ∀-bounded CFM.
3 Checking whether an MSG is regular is undecidable.
4 Every communication-closed MSG is regular.
5 Checking whether an MSG is comm.-closed is coNP-complete.
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Today’s lecture

(Safe) Realisability of a regular set of MSCs.

Or, equivalently: (safe) realisability of a regular set of well-formed
words.

Results:
1 Checking whether a regular language L is well-formed is decidable.
2 For well-formed language L:

L is regular iff it is (safely) realisable by a ∀-bounded CFM.
3 Checking whether an MSG is regular is undecidable.
4 Every communication-closed MSG is regular.
5 Checking whether an MSG is comm.-closed is coNP-complete.
6 Checking whether an MSG is locally communication-closed is in P.

Joost-Pieter Katoen Theoretical Foundations of the UML 7/30



Overview

1 Realisability and safe realisability

2 Regular MSCs

3 Regularity and realisability for MSCs

4 Regularity and realisability for MSGs
Communication closedness
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Regular MSCs

Definition (Regular MSCs, MSGs, and CFMs)
1 M = {M1, . . . ,Mn } with n ∈ N ∪ {∞ } is called regular if

Lin(M) =
⋃n

i=1 Lin(Mi) is a regular word language over Act∗.
2 MSG G is regular if Lin(G) is a regular word language over Act∗.
3 CFM A is regular if Lin(A) is a regular word language over Act∗.

Here, Act is the set of actions in M, G, and A, respectively.
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Regular MSCs

Definition (Regular MSCs, MSGs, and CFMs)
1 M = {M1, . . . ,Mn } with n ∈ N ∪ {∞ } is called regular if

Lin(M) =
⋃n

i=1 Lin(Mi) is a regular word language over Act∗.
2 MSG G is regular if Lin(G) is a regular word language over Act∗.
3 CFM A is regular if Lin(A) is a regular word language over Act∗.

Here, Act is the set of actions in M, G, and A, respectively.

Lemma:
Every ∀-bounded CFM is regular. Why?
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Regularity and well-formedness

Theorem [Henriksen et. al, 2005]

The decision problem “is a regular language L ⊆ Act∗ well-formed”?
—that is, does regular L represent a set of MSCs?— is decidable.

Proof.
Since L is regular, there exists a minimal DFA A = (S,Act , s0, δ, F )
with L(A) = L. Consider the productive states in this DFA, i.e., all
states from which some state in F can be reached. We label every
productive state s with a channel-capacity function Ks : Ch → N such
that four constraints (cf. next slide) are fulfilled. Then: L is well-formed
iff each productive state in the DFA A can be labelled with Ks

satisfying these constraints. In fact, if a state-labelling violates any of
these constraints, it is due to a word that is not well-formed.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/30



Constraints on state-labelling

1 s ∈ F ∪ {s0}, implies Ks((p, q)) = 0 for every channel (p, q).
2 δ(s, !(p, q, a)) = s′ implies

Ks′(c) =

{
Ks(c) + 1 if c = (p, q)

Ks(c) otherwise.
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Constraints on state-labelling

1 s ∈ F ∪ {s0}, implies Ks((p, q)) = 0 for every channel (p, q).
2 δ(s, !(p, q, a)) = s′ implies

Ks′(c) =

{
Ks(c) + 1 if c = (p, q)

Ks(c) otherwise.
3 δ(s, ?(p, q, a)) = s′ implies Ks((q, p)) > 0 and

Ks′(c) =

{
Ks(c)− 1 if c = (q, p)

Ks(c) otherwise.
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Constraints on state-labelling

1 s ∈ F ∪ {s0}, implies Ks((p, q)) = 0 for every channel (p, q).
2 δ(s, !(p, q, a)) = s′ implies

Ks′(c) =

{
Ks(c) + 1 if c = (p, q)

Ks(c) otherwise.
3 δ(s, ?(p, q, a)) = s′ implies Ks((q, p)) > 0 and

Ks′(c) =

{
Ks(c)− 1 if c = (q, p)

Ks(c) otherwise.
4 δ(s,α) = s1 and δ(s1,β) = s2 with α ∈ Actp and β ∈ Actq, p &= q,

implies
not (α = !(p, q, a) and β =?(q, p, a)), or Ks((p, q)) > 0
implies δ(s,β) = s′1 and δ(s′1,α) = s2 for some s′1 ∈ S.
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Constraints on state-labelling

1 s ∈ F ∪ {s0}, implies Ks((p, q)) = 0 for every channel (p, q).
2 δ(s, !(p, q, a)) = s′ implies

Ks′(c) =

{
Ks(c) + 1 if c = (p, q)

Ks(c) otherwise.
3 δ(s, ?(p, q, a)) = s′ implies Ks((q, p)) > 0 and

Ks′(c) =

{
Ks(c)− 1 if c = (q, p)

Ks(c) otherwise.
4 δ(s,α) = s1 and δ(s1,β) = s2 with α ∈ Actp and β ∈ Actq, p &= q,

implies
not (α = !(p, q, a) and β =?(q, p, a)), or Ks((p, q)) > 0
implies δ(s,β) = s′1 and δ(s′1,α) = s2 for some s′1 ∈ S.

These constraints can be checked in linear time in the size of relation δ.
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Boundedness and regularity

Definition (B-bounded words)
Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 !
∑

a∈C
|u|!(p,q,a) −

∑

a∈C
|u|?(q,p,a) ! B

Corollary:
For any regular, well-formed language L, there exists B ∈ N and B > 0
such that every w ∈ L is B-bounded.

Proof.
The bound B is the largest value attained by the channel-capacity functions
assigned to productive states in the proof of the previous theorem.
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Regularity and realisability

Theorem: [Henriksen et al., 2005], [Baudru & Morin, 2007]

For well-formed L, the following four statements are equivalent:
1 L is regular.
2 L is realisable by a ∀-bounded CFM.
3 L is realisable by a deterministic ∀-bounded CFM.
4 L is safe realisable by a ∀-bounded CFM.
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Regularity and realisability

Theorem: [Henriksen et al., 2005], [Baudru & Morin, 2007]

For well-formed L, the following four statements are equivalent:
1 L is regular.
2 L is realisable by a ∀-bounded CFM.
3 L is realisable by a deterministic ∀-bounded CFM.
4 L is safe realisable by a ∀-bounded CFM.

Lemma:
The maximal size of the CFM realising L is such that for each process p, the
number |Qp| of states of local automaton Ap is:

1 double exponential in the bound B and k2, where k = |P|, and

2 exponential in m logm where m is the size of the minimal DFA for L.
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Overview

1 Realisability and safe realisability

2 Regular MSCs

3 Regularity and realisability for MSCs

4 Regularity and realisability for MSGs
Communication closedness
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Regularity for MSGs is undecidable

Theorem [Henriksen et. al, 2005]

The decision problem “is MSG G regular“? is undecidable.

Proof
Outside the scope of this lecture.
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Towards structural conditions for regular MSGs

MSG G is regular if Lin(G) is a regular language

Regularity yields deterministic, or safe, but bounded CFMs

But, “is MSG G regular“? is unfortunately undecidable

Is it possible to impose structural conditions on MSGs that
guarantee regularity?
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Towards structural conditions for regular MSGs

MSG G is regular if Lin(G) is a regular language

Regularity yields deterministic, or safe, but bounded CFMs

But, “is MSG G regular“? is unfortunately undecidable

Is it possible to impose structural conditions on MSGs that
guarantee regularity?

Yes we can. For instance, by constraining:
1 the communication structure of the MSCs in loops of G, or
2 the structure of expressions describing the MSCs in G
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Communication graph

Definition (Communication graph)
The communication graph of the MSC M = (P, E, C, l,m,<) is the
directed graph (V,→) with:

V = P \ { p ∈ P | Ep = ∅ }, the set of active processes
(p, q) ∈ → if and only if L(e) = !(p, q, a) for some e ∈ E and a ∈ C

Example
p1 p2 p3 p4

a
b
a

b a

msc

an example MSC
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Strongly connected components

Let G = (V,→) be a directed graph.

Strongly connected component
T ⊆ V is strongly connected if for every v,w ∈ T , vertices v and w
are mutually reachable (via →) from each other.
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Strongly connected components

Let G = (V,→) be a directed graph.

Strongly connected component
T ⊆ V is strongly connected if for every v,w ∈ T , vertices v and w
are mutually reachable (via →) from each other.
T is a strongly connected component (SCC) of G it T is strongly
connected and T is not properly contained in another SCC.

Determining the SCCs of a digraph can be done in linear time in the
size of V and →.
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Communication closedness
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Communication closedness

A loop is simple if it visits a vertex at most once, except for the start- and
end-vertex which are visited twice.
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Communication closedness

A loop is simple if it visits a vertex at most once, except for the start- and
end-vertex which are visited twice.

Definition (Communication closedness)
MSG G is communication-closed if for every simple loop π = v1v2 . . . vn
(with v1 = vn) in G, the communication graph of the MSC
M(π) = λ(v1) • λ(v2) • . . . • λ(vn) is strongly connected.

Example
On the black board.
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Communication-closed vs. regularity

Theorem:
Every communication-closed MSG G is regular.

Example
Example on the black board.

Note:
The converse does not hold (cf. next slide).
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Communication-closed vs. regularity

Communication-closedness is not a necessary condition for regularity:

p1 p2 p3 p4

a

b

msc
p1 p2 p3 p4

a

b

msc

G:

MSG G is not communication-closed, but Lin(G) is regular.
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Checking communication-closedness

Theorem: [Genest et. al, 2006]

The decision problem “is MSG G communication closed?” is co-NP
complete.
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Checking communication-closedness

Theorem: [Genest et. al, 2006]

The decision problem “is MSG G communication closed?” is co-NP
complete.

Proof
1 Membership in co-NP can be proven in a standard way: guess a

sub-graph of G, check in polynomial time whether this sub-graph has a
loop passing through all its vertices, and check whether its
communication graph is not strongly connected.

2 Co-NP hardness can be shown by a reduction from the 3-SAT problem.
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Theorem Checking whether MSG g is Comm .  - closed
-

is CONP - hard .

Proof : Polynomial reduction from the 3 SAT - problem .

-

3 SAT : consider the Boolean formula

¢ = C
,

n
. - . . .

n Cm

F- , I
clauses

over the variables { xp ,
- . .

, Xn } such that clause

g- = Ej
'

v ej
'

v g
'

r.

,
I

literals equals Xk or The

for some KELI, .  . yn]

¢ is satisfiable if F valuation for X
, through Xn a

for every m
, Cm is true

.

Fact . 3 SAT is NP-complete . Its complement is also
-

NP - complete ,
thus 3 SAT is also co NP-complete .

Reduction

3 SAT - formula

1-7 MSG G
$ =

C
,

d
. . - .

A Cm
Comm

.

over Ex
, ,

.  - As )

I
8 is not

closed .

such that of is satisfiable Iff G has a simple keep

that is not strongly connected
.



The structure of MSG G is as follows i n variables
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Asynchronous iteration

Definition
For M1,M2 ⊆ M sets of MSCs, let:

M1 •M2 = {M1 •M2 | M1 ∈ M1,M2 ∈ M2 }

For M ⊆ M let

Mi =

{
{Mε} if i=0, where Mε denotes the empty MSC

M•Mi−1 if i > 0

The asynchronous iteration of M is now defined by:

M∗ =
⋃

i!0

Mi.
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Finitely generated

Definition (Finitely generated)

Set of MSCs M is finitely generated if there is a finite set of MSCs M̂
such that M ⊆ M̂∗.

Remarks:
1 Each set of MSCs defined by an MSG G is finitely generated.
2 Not every regular well-formed language is finitely generated.
3 Not every finitely generated set of MSCs is regular.
4 It is decidable to check whether a set of MSCs is finitely generated.
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Characterisation of communication-closedness

Theorem: [Henriksen et. al, 2005]

Let M be a (possibly infinite) set of MSCs. Then:

M is finitely generated and regular

iff

M = L(G) for some communication-closed MSG G.
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Local communication-closedness

Definition (Local communication-closedness)
MSG G is locally communication-closed if for each edge (v, v′) in G, the
MSCs λ(v), λ(v′), and λ(v) • λ(v′) all have weakly connected
communication graphs.
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Local communication-closedness

Definition (Local communication-closedness)
MSG G is locally communication-closed if for each edge (v, v′) in G, the
MSCs λ(v), λ(v′), and λ(v) • λ(v′) all have weakly connected
communication graphs.

Notes:
1 A directed graph is weakly connected if its induced undirected

graph (obtained by ignoring the directions of edges) is strongly
connected.

2 Checking whether MSG G is locally communication-closed can be
done in linear time.
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Locally communication-closed MSGs are realisable

Theorem: [Genest et al., 2006]

Every locally communication-closed MSG G is realisable by a CFM A
of size mO(|P|) where m is the number of vertices in G.
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