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From requirements to implementation

Realisability problem
Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.

Questions:

1 Is this possible? (That is, is this decidable?)

2 If so, how complex is it to obtain such CFM?

3 If so, how do such algorithms work?
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Problem variants (1)

Realisability problem
Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.

Different forms of requirements
Consider finite sets of MSCs, given as an enumerated set.

Consider MSGs, that may describe an infinite set of MSCs.

Consider MSCs whose set of linearisations is a regular word language.

Consider MSGs that are non-local choice.
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Problem variants (2)

Realisability problem
Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.

Different system models
Consider CFMs without synchronisation messages.

Allow CFMs that may deadlock. Possibly, a realisation deadlocks.

Forbid CFMs that deadlock. No realisation will ever deadlock.

Consider CFMs that are deterministic.

Consider CFMs that are bounded.

. . . . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 6/18

outputs

✓
tf - bounded

\ I- bounded



Today’s lecture

Today’s setting
Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a

deadlock-free weak CFM.

This is known as safe realisability.

This is the setting of the previous lecture, but now focusing on deadlock-free
CFMs

Results:
1 Conditions for realisability of a finite set of MSCs by a

deadlock-free weak CFM.

2 Checking safe realisability by deadlock-free CFMs is in P.

(Realisability for weak CFMs that may deadlock is co-NP
complete.)
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Safe realisability

Possibly a set of MSCs is realisable only by a CFM that may deadlock

p q

a a

msc
p q

b b

msc

process p and q have to agree on either a or b

Realisation of {M1,M2 } by a weak CFM:

!(p, q, a)

!(p, q, b)

?(p, q, a)

?(p, q, b) !(q, p, a)

!(q, p, b)

?(q, p, a)

?(q, p, b) Deadlock occurs when, e.g.,
p sends a and q sends b
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Safe realisability

Definition (Safe realisability)
1 MSC M is safely realisable whenever {M} = L(A) for some

deadlock-free CFM A.

2 A finite set {M1, . . . ,Mn} of MSCs is safely realisable whenever

{M1, . . . ,Mn} = L(A) for some deadlock-free CFM A.

3 MSG G is safely realisable whenever L(G) = L(A) for some

deadlock-free CFM A.

Phrased using linearisations
L ✓ Act⇤ is safely realisable if L = Lin(A) for some deadlock-free CFM A.

Note:
Safe realisability implies realisability, but the converse does not hold.
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Weak closure

Definition (Inference relation and closure)
For well-formed L ✓ Act⇤, and well-formed word w 2 Act⇤, let:

L |= w iff (8p 2 P. 9v 2 L.w �p = v �p)

Language L is closed under |= whenever for every w 2 Act⇤, it holds:

L |= w implies w 2 L.

Definition (Weak closure)
Language L is weakly closed under |= whenever for every well-formed

prefix w of some word in L, it holds L |= w implies w 2 L.

Weak closure thus restricts closure under |= to well-formed prefixes in L only.
So far, closure was required for all w 2 Act⇤.
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Deadlock-free closure

For language L, let pref(L) = {w | 9u.w·u 2 L} the set of prefixes of L.

Definition ((Deadlock-free) Inference relation)
For well-formed L ✓ Act⇤, and proper word w 2 Act⇤, i.e., w is a prefix

of a well-formed word, let:

L |=df w iff (8p 2 P. 9v 2 pref(L). w �p is a prefix of v �p)

Definition (Closure under |=df )
Language L is closed under |=df

whenever L |=df w implies w 2 pref(L).

Intuition
The closure condition asserts that the set of partial MSCs (i.e., prefixes

of L) can be constructed from the projections of the MSCs in L onto

individual processes.
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Example

p q

a a

msc
p q

b b

msc

Example
L = Lin({M1,M2}) is not closed under |=df :

w = !(p, q, a)!(q, p, b) 62 pref(L)

But: L |=df w since w is a proper prefix of a well-formed word, and

for process p, there exists u 2 L with w �p = !(p, q, a) 2 pref({u�p}), and

for process q, there exists v 2 L with w �q = !(q, p, b) 2 pref({v �q}).

Note that L is closed under |=. So this shows that closure under |= does not
imply closure under |=df .Joost-Pieter Katoen Theoretical Foundations of the UML 13/18
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Deadlock-free weak CFM are closed under |=df

Lemma:
For every deadlock-free weak CFM A, Lin(A) is closed under |=df

.

Proof.
Similar proof strategy as for the closure of weak CFMs under |= (see

previous lecture).

Basic intuition is that if w �p is a prefix of vp �p, then

from the point of view of process p, w can be prolonged with a word u,

say, such that w·u = vp. This applies to all processes, and as the weak

CFM is deadlock-free, such continuation is always possible.
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Characterisation of safe realisability

Theorem: [Alur et al., 2001]

L ✓ Act⇤ is safely realisable iff L is weakly closed under |= and closed

under |=df
.

Proof
On the black board.

Corollary
The finite set of MSCs {M1, . . . ,Mn} is safely realisable iffSn

i=1 Lin(Mi) is closed under |= and |=df
.
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Characterisation of safe realisability

Theorem
For any well-formed L ✓ Act⇤:

L is regular and closed under |=
if and only if

L = Lin(A) for some 8-bounded weak CFM A.

Theorem
For any well-formed L ✓ Act⇤:

L is regular, weakly closed under |= and closed under |=df

if and only if

L = Lin(A) for some 8-bounded deadlock-free weak CFM A.
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Complexity of safe realisability

Theorem: [Alur et al., 2001]

The decision problem “is a given set of MSCs safely realisable?” is in P.

Proof
1 For a given finite set of MSCs, safe realisability can be checked in

time O((n2 + r)·k) where k is the number of processes, n the

number of MSCs, and r the number of events in all MSCs together.

2 If the MSCs are not safely realisable, the algorithm returns an

MSC which is implied, but not included in the input set of MSCs.

(We skip the details in this lecture.)
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