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Overview

© Safe realisability
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From requirements to implementation

Realisability problem

INPUT: a set of MSCs
OutpuT: a CFM A such that £(.A) equals the set of input MSCs.

Questions: or- A check rta\‘.se\o\\‘.b‘

© Is this possible? (That is, is thisg“decidable?)
@ If so, how complex is it to obtain such CFM?
© If so, how do such algorithms work?
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Problem variants (1)

Realisability problem
INPUT: a set of MSCs

OutpuT: a CFM A such that £(A) equals the set of input MSCs.

‘\v\ Pmk S

Different forms of requirements

4 o Consider finite sets of MSCs, given as an enumerated set. {H\)..,.,ﬂkk

@ Consider MSGs, that may describe an infinite set of MSCs.

@ Consider MSCs whose set of linearisations is a regular word language.

@ Consider MSGs that are non-local choice.
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Problem variants (2)

Realisability problem

INPUT: a set of MSCs

OutpuT: a CFM A such that £(.A) equals the set of input MSCs.

Gb.k‘rm&S
Different systern models

@ Consider CFMs without synchronisation messages.

o Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
@ Forbid CFMs that deadlock. No realisation will ever deadlock.
Consider CFMs that are deterministic.

Consider CFMs that are bounded. <
o ...... E\ - bounded

V- bounded
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Today's lecture

Today's setting
Realisation of a finite set of MSCs by a deadlock-free weak CFM.
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Today's lecture

Today's setting
Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a
deadlock-free weak CFM.
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Today's lecture

Today's setting
Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a
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Today's lecture

Today's setting
Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a
deadlock-free weak CFM.

This is known as safe realisability.

This is the setting of the previous lecture, but now focusing on deadlock-free
(el
go)(v&:ess‘,,j CFMs

© Cohditions for realisability of a finite set of MSCs by a
deadlock-free weak CFM.
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Today's lecture

Today's setting
Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a
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© Conditions for realisability of a finite set of MSCs by a
deadlock-free weak CFM.

@ Checking safe realisability by deadlock-free CFMs is in P.
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Today's lecture

Today's setting
Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a
deadlock-free weak CFM.

This is known as safe realisability.

This is the setting of the previous lecture, but now focusing on deadlock-free
CFMs

© Conditions for realisability of a finite set of MSCs by a
deadlock-free weak CFM.
@ Checking safe realisability by deadlock-free CFMs is‘in P.
(Realisability for weak CFMs that may deadlock is co-NP

complete.)

Joost-Pieter Katoen Theoretical Foundations of the UML 7/18




Safe realisability

Possibly a set of MSCs is realisable only by a CFM that may deadlock

msc msc

L» | [ o | L» [ [« |
M‘ a  a Mz b b

process p and g have to agree on either a or b

Realisation of { Mj, Ms } by a weak CFM:

!(p, q,b) (q,p,b)

\‘:c\i&e\o\(

nokt  Sofe veelsab)e

'(p,q,0a) ?(p,q,b) Deadlock oceurs when, e.g.,
p sends a and ¢ sends b

?(p,q,a)
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Safe realisability

Definition (Safe realisability)

@ MSC M is safely realisable whenever {M} = L(A) for some
deadlock-free CFM A.

@ A finite set {Mj,..., My} of MSCs is safely realisable whenever
{M,..., My} = L(A) for some deadlock-free CFM A.

© MSG G is safely realisable whenever £(G) = L(.A) for some
deadlock-free CFM A.

Phrased using linearisations

L C Act” is safely realisable if L = Lin(A) for some deadlock-free CFM A.

Safe realisability implies realisability, but the converse does not hold.
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Overview

© Closure and inference revisited
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Weak closure

Definition (Inference relation and closure)
For well-formed L C Act*, and well-formed word w € Act*, let:

LEw iff (YpeP.FJveLwlp=uv[p)

Language L is closed under =fwhenever for every w € Act™, it holds:
L = w implies w € L.

ce\loL s

?; B \“v?\ =N r“\
v

P" S w \-rl - Urrt
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Weak closure

Definition (Inference relation and closure)

For well-formed L C Act”, and well-formed word w € Act*, let:

LEw iff (VpeP.Fve L wlp=v[p)

Language L is closed under = whenever for every w € Act™, it holds:

L |= w implies w € L.

L is closed LAder \= > L\S;\t\a =

Sar
Definition (Weak closure)

Language L is weakly closed under = whenever for every well-formed
prefix w of some word in L, it holds L = w implies w € L.

Weak closure thus restricts ‘closure under |:" to well-formed prefixes in L only.

So far, closure was required for all w € Act™.

4
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Deadlock-free closure

For language L, let pref(L) = {w | 3u. w-u € L} the set of prefixes of L.

Definition ((Deadlock-free) Inference relation)

For well-formed L C Act*, and proper word w € Act”, i.e., w is a prefix
of a well-formed word, let:

L Izdf w iff (Vp € P.3Jv € pref(L).w|p is a prefix of v [ p)

(

Poper ﬂawté J
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Deadlock-free closure

For language L, let pref(L) = {w | 3u. w-u € L} the set of prefixes of L.

Definition ((Deadlock-free) Inference relation)

For well-formed L C Act*, and proper word w € Act™, i.e., w is a prefix
of a well-formed word, let:

LEY w iff (VpeP.3ve pref(L).w|p is a prefix of v |p)

Definition (Closure under =%)
Language L is closed under =% whenever L =% w implies w € pref(L).
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Deadlock-free closure

For language L, let pref(L) = {w | 3u. w-u € L} the set of prefixes of L.

Definition ((Deadlock-free) Inference relation)

For well-formed L C Act*, and proper word w € Act*, i.e., w is a prefix
N—— ——

of a well-formed word, let: peicl ™SC
LEY w iff (VpeP.3ve pref(L).w|p is a prefix of v |p)
— = —
PerSel MSC pa-NelL

Definition (Closure under =%)
Language L is closed under =% whenever L =% w implies w € pref(L).

The closure condition asserts that the set of partial MSCs (i.e., prefixes
of L) can be constructed from the projections of the MSCs in L onto
individual processes.
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Example

L = Lin({Mi, Ms}) is not closed under =%: Lefo buk

w =1(p,g,0)!(g,p,b) & pref(L) et L)

But: L =% w since w is a proper prefix of a well-formed word, and

@ for process p, there exists u € L with w [p =!(p, ¢, a) € pref({u[p}), and

@ for process ¢, there exists v €|L with w [q =!(gyp;yb) € pref({v[q}).
W= Ve aa) T &Ees) 1@ pay7ETe)
Note that L is closed under |=. So this shows that closure under = does not
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Deadlock-free weak CFM are closed under Fdf

For every deadlock-free weak CFM A, Lin(A) is closed under =%

Similar proof strategy as for the closure of weak CFMs under |= (see
presdous lecture) :

=
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Deadlock-free weak CFM are closed under =4

For every deadlock-free weak CFM A, Lin(A) is closed under =%

Similar proof strategy as for the closure of weak CFMs under |= (see
previous lecture). Basic intuition is that if w [p is a prefix of v? [ p, then
from the point of view of process p, w can be prolonged with a word u,
say, such that w-u = vP. This applies to all processes, and as the weak
CFM is deadlock-free, such continuation is always possible. O
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Overview

© Characterisation and complexity of safe realisability
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Characterisation of safe realisability

[Alur et al., 2001]

L C Act* is safely realisable iff L is weakly closed under = and closed
L df - — . -

under =% l = \
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Characterisation of safe realisability

[Alur et al., 2001]

L C Act* is safely realisable iff L is weakly closed under = and closed
under =%,

On the black board. I
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Characterisation of safe realisability

[Alur et al., 2001]

L C Act* is safely realisable iff L is weakly closed under = and closed
under =%,

On the black board. \

The finite set of MSCs {M, ..., M,} is safely realisable iff ><

U, Lin(M;) is closed under = and =4
—
utc\«\a c\oye d wnde \=’ c\ose s\ wnder )—_—M
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Characterisation of safe realisability

Theorem reahis e

For any well-formed L C Act™:
L is regular and closed under =
if and only if
L = Lin(A) for some V-bounded weak CFM A.

Theorem sefe  eliscwliY

For any well-formed L C Act™:

L is regular, weakly closed under = and closed under =%
if and only if
L = Lin(A) for some V-bounded deadlock-free weak CFM A.
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Complexity of safe realisability

Lk

Theorem: [Alur et al., 2001]

The decision problem “is a given‘set of MSCs safely realisable?” is in P.

@ sekof MSCs is \Jﬁe\‘b Aosed
ur\é&f \=

of
@ sek & VSCS s Aoded AR =
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Complexity of safe realisability

c\sec‘g\:j realis a\a\\ﬂé is CoNP- caN?\ ke

Theorem: [Alur et al., 2001]

The decision problem “is a given set of MSCs safely realisable?” i

Proof (ske‘cw

Q If the MSCs are not safely realisable, the algorithm returns an
MSC which is implied, but not included in the input set of MSCs.

(We skip the details ilf this lecture.)

L is \hgﬁr&o\
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