

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

May 25, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML

(日)、

sufficient and necessary e-dition

Joost-Pieter Katoen Theoretical Foundations of the UML

3

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

2 Closure and inference revisited

Characterisation and complexity of safe realisability

Joost-Pieter Katoen Theoretical Foundations of the UML

< 同 ▶

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Questions:

- Is this possible? (That is, is this decidable?)
- If so, how complex is it to obtain such CFM?
- If so, how do such algorithms work?

or to check realisability

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

★ • Consider finite sets of MSCs, given as an enumerated set. $\{m_1, ..., m_k\}$

- Consider MSGs, that may describe an infinite set of MSCs.
- Consider MSCs whose set of linearisations is a regular word language.

inputs

• Consider MSGs that are non-local choice.

÷

▲ 同 ▶ → 目 ▶ → 日 ▶ →

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

- outputs

Different system models

.

- Consider CFMs without synchronisation messages.
- Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
- Forbid CFMs that deadlock. No realisation will ever deadlock.
- Consider CFMs that are deterministic.
- Consider CFMs that are bounded.

Y-bounded =-bounded

・ 同 ト ・ ヨ ト ・ ヨ ト

Today's lecture

Today's setting

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

+ simpler acreptance condition

 $F = \prod_{p \in P} F_p$

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

3

Today's lecture

Today's setting

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

÷

・ 同 ト ・ ヨ ト ・ ヨ ト

Today's lecture

Today's setting

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

This is known as <u>safe</u> realisability.

÷

・ 「 ト ・ ヨ ト ・ ヨ ト

Today's setting

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

This is known as safe realisability.

This is the setting of the previous lecture, but now focusing on deadlock-free CFMs Results:

• Conditions for realisability of a finite set of MSCs by a deadlock-free weak CFM.

Today's setting

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

This is known as safe realisability.

This is the setting of the previous lecture, but now focusing on deadlock-free CFMs

Results:

- Conditions for realisability of a finite set of MSCs by a deadlock-free weak CFM.
- ² Checking safe realisability by deadlock-free CFMs is in P.

Today's setting

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

This is known as safe realisability.

This is the setting of the previous lecture, but now focusing on deadlock-free CFMs

Results: Conditions for realisability of a finite set of MSCs by a deadlock-free weak CFM. Checking safe realisability by deadlock-free CFMs is in P. (Realisability for weak CFMs that may deadlock is co-NP complete.)

Safe realisability

Possibly a set of MSCs is realisable only by a CFM that may deadlock

process p and q have to agree on either a or b

Realisation of $\{M_1, M_2\}$ by a weak CFM:

reclisable

Safe realisability

Definition (Safe realisability)

- MSC *M* is safely realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .
- **2** A finite set $\{M_1, \ldots, M_n\}$ of MSCs is safely realisable whenever $\{M_1, \ldots, M_n\} = \mathcal{L}(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .
- MSG G is safely realisable whenever $\mathcal{L}(G) = \mathcal{L}(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .

Phrased using linearisations

 $L \subseteq Act^*$ is safely realisable if $L = Lin(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .

Note:

Safe realisability implies realisability, but the converse does not hold.

イロト イポト イヨト イヨト

э

2 Closure and inference revisited

Characterisation and complexity of safe realisability

Joost-Pieter Katoen Theoretical Foundations of the UML

< /₽ > <

э

< E

Weak closure

Definition (Inference relation and closure)

For well-formed $L \subseteq Act^*$, and well-formed word $w \in Act^*$, let:

- 「「「」 (三) (=) (=

Definition (Inference relation and closure)

For well-formed $L \subseteq Act^*$, and well-formed word $w \in Act^*$, let:

$$L \models w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in L. w \restriction p = v \restriction p)$$

Language L is closed under \models whenever for every $w \in Act^*$, it holds: $L \models w$ implies $w \in L$. L is closed under \models \land L is veckby \models Definition (Weak closure) Language L is weakly closed under \models whenever for every well-formed prefix w of some word in L, it holds $L \models w$ implies $w \in L$.

Weak closure thus restricts closure under \models to well-formed prefixes in L only. So far, closure was required for all $w \in Act^*$.

Deadlock-free closure

For language L, let $pref(L) = \{w \mid \exists u. w \cdot u \in L\}$ the set of prefixes of L.

Definition ((Deadlock-free) Inference relation)

For well-formed $L \subseteq Act^*$, and proper word $w \in Act^*$, i.e., w is a prefix of a well-formed word, let:

 $L \models^{df} w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in pref(L). w \upharpoonright p \text{ is a prefix of } v \upharpoonright p)$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Deadlock-free closure

For language L, let $pref(L) = \{w \mid \exists u. w \cdot u \in L\}$ the set of prefixes of L.

Definition ((Deadlock-free) Inference relation)

For well-formed $L \subseteq Act^*$, and proper word $w \in Act^*$, i.e., w is a prefix of a well-formed word, let:

 $L \models^{df} w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in pref(L). w \upharpoonright p \text{ is a prefix of } v \upharpoonright p)$

Definition (Closure under \models^{df})

Language L is closed under \models^{df} whenever $L \models^{df} w$ implies $w \in pref(L)$.

(日本) (日本) (日本) 日

Deadlock-free closure

For language L, let $pref(L) = \{w \mid \exists u. w \cdot u \in L\}$ the set of prefixes of L.

Definition ((Deadlock-free) Inference relation)

For well-formed $L \subseteq Act^*$, and proper word $w \in Act^*$, i.e., w is a prefix of a well-formed word, let: $L \models^{df} w$ iff $(\forall p \in \mathcal{P}. \exists v \in pref(L). w \upharpoonright p \text{ is a prefix of } v \upharpoonright p)$ Petral MSC Petricl Definition (Closure under \models^{df}) Language L is closed under \models^{df} whenever $L \models^{df} w$ implies $w \in pref(L)$.

Intuition

The closure condition asserts that the set of partial MSCs (i.e., prefixes of L) can be constructed from the projections of the MSCs in L onto individual processes.

Example

Lemma:

For every deadlock-free weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models^{df} .

Proof.

Similar proof strategy as for the closure of weak CFMs under \models (see previous lecture).

э

▲ 伺 ▶ ▲ 三 ▶

Lemma:

For every deadlock-free weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models^{df} .

Proof.

Similar proof strategy as for the closure of weak CFMs under \models (see previous lecture). Basic intuition is that if $w \upharpoonright p$ is a prefix of $v^p \upharpoonright p$, then from the point of view of process p, w can be prolonged with a word u, say, such that $w \cdot u = v^p$. This applies to all processes, and as the weak CFM is deadlock-free, such continuation is always possible.

- 4 同 ト - 4 日 ト - 4 日 ト

2 Closure and inference revisited

3 Characterisation and complexity of safe realisability

Joost-Pieter Katoen Theoretical Foundations of the UML

< 17 >

æ

< E

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem:

[Alur et al., 2001]

 $L \subseteq Act^*$ is safely realisable iff L is weakly closed under \models and closed under \models^{df} .

Proof

On the black board.

Joost-Pieter Katoen Theoretical Foundations of the UML

3

Theorem : L is safely realisable if and only if
(1) L is weakly alosed under
$$\models$$
, and
(2) L is closed under \models^{df} .
(2) L is closed under \models^{df} .
Proof "=>". Assume L is safely realisable. Then
a. L is realisable, and by the theorem of
lecture g, it follows L is alosed under \models .
This implies L is weakly alosed under \models .
b. There is some deadlock-free (FM A s.t.
Lh (A)=L. As A is deadlock-free and
weak, it follows by the lemma in this
lecture that Lh(A)=L is alosed under \models .

*= ": Assume L is weakly closed under F, and
Lis closed under
$$\models^{df}$$
. Let $lp = \frac{1}{2}$ with $l = l_{j}^{3}$, for
any process P. Since L is finite, lp is a regular word
language. Let Ap be a DFA with state set Qp ,
initial state S_{init}^{p} and accept states Fp , with $L(Ap)=lp$
WL ag. assume that all states in Ap are productive, i.e.,
for any state $g \in Qp$ it is possible to reach some state
in Fp.
Now let CFM $D = (-(Ap)_{p \in P}, S_{init}, F)$ with
 $S_{init} = \prod_{p \in P} S_{init}^{p}$ and $F = \prod_{p \in P} Fp$,
Claim: () Lin (A) = L and () (FM A is deadlack-free.
(Obviously, then L is safe realisable).
Proof:
() "2": let we L. Then for every p, with elp. Thus
DFO Ap has an accepting run on with, and as F=
 $\prod_{p \in P} Fp$, CFM A has an accepting run on V.
per P

⊆: let we Lin (A). As Lin (A) is vell-formed, wis well-formed. Since F= TTFp, it follows w[p E Lp for each process p. Thus L = w. Since L is weakly closed under 1=, and is well-formed, it follow we L. 2 A is deadlock free. This is proven as follows. Assume A has read the input word we Act". w may be either accepted or not. If it is accepted, there is nothing to prove. Assume w is not accepted. As CFM A has successfully read w, it follows when is a prefix of a word in Lp, for every process p. Since L is closed under that, it follows that we pref (L). Let when the note As Ap is deterministic, it has a unique (local) accepting run for (w.u) [p. This applies to every process p. As F = TT Fp, it follows that CFM A has a unique accepting non for w.u. As this applies to every w, it follows that A is deadlock-free \square

Theorem:

[Alur et al., 2001]

 $L \subseteq Act^*$ is safely realisable iff L is weakly closed under \models and closed under \models^{df} .

Proof

On the black board.

Corollary

The finite set of MSCs $\{M_1, \ldots, M_n\}$ is safely realisable iff $\bigcup_{i=1}^n Lin(M_i)$ is closed under \models and \models^{df} .

Joost-Pieter Katoen Theoretical Foundations of the UML

Theorem

For any well-formed $L \subseteq Act^*$:

 $L \text{ is regular and closed under} \models \\ \text{if and only if} \\ L = Lin(\mathcal{A}) \text{ for some } \forall\text{-bounded weak CFM } \mathcal{A}.$

Theorem

safe realisability

・ロト ・ 一下・ ・ 日 ・ ・ 日

For any well-formed $L \subseteq Act^*$:

L is regular, weakly closed under \models and closed under \models^{df} if and only if

 $L = Lin(\mathcal{A})$ for some \forall -bounded deadlock-free weak CFM \mathcal{A} .

P

Complexity of safe realisability

(2) set of MSCJ is closed under = of

Joost-Pieter Katoen Theoretical Foundations of the UML

3

Complexity of safe realisability

checking realisability is CONP- complete [Alur et al., 2001]

The decision problem "is a given set of MSCs safely realisable?" is in P.

Proof (sketch)

Theorem:

- For a given finite set of MSCs, safe realisability can be checked in time $\mathcal{O}((n^2 + r) \cdot k)$ where k is the number of processes, n the number of MSCs, and r the number of events in all MSCs together.
- If the MSCs are <u>not</u> safely realisable, the algorithm returns an MSC which is implied, but not included in the input set of MSCs.

(We skip the details in this lecture.)

P