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Overview

@ Introduction
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Motivation

Practical use of MSCs and CFMs

@ MSCs and MSGs are used by software engineers to capture
requirements.

@ These are the expected behaviours of the distributed system under
design.

@ Distributed systems can be viewed as a collection of
communicating automata.

Central problem

Can we synthesize, preferably in an automated manner, a CFM whose
behaviours are precisely the behaviours of the MSCs (or MSG)?

This is known as the realisability problem.
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From requirements to implementation

Realisability problem
INPUT: a set of MSCs

OutpuT: a CFM A such that L(A) equals the set of input MSCs.

Questions:
© Is this possible? (That is, is this decidable?)
@ If so, how complex is it to obtain such CFM?
© If so, how do such algorithms work?
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Problem variants (1)

Realisability problem

OutpUT: a CFM A such that £(.A) equals the set of input MSCs.

Different forms of requirements

@ Consider finite sets of MSCs, given as an enumerated set.

{ M\,MZ; i ,Mk§
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Problem variants (1)

Realisability problem
a set of MSCs
OutpUT: a CFM A such that £(.A) equals the set of input MSCs.

Different forms of requirements

@ Consider finite sets of MSCs, given as an enumerated set.

@ Consider MSGs, that may describe an infinite set of MSCs.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/35



Problem variants (1)

Realisability problem
a set of MSCs
OutpUT: a CFM A such that £(.A) equals the set of input MSCs.

Different forms of requirements

@ Consider finite sets of MSCs, given as an enumerated set.
@ Consider MSGs, that may describe an infinite set of MSCs.
@ Consider MSCs whose set of linearisations is @ord language.
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Problem variants (1)

Realisability problem
a set of MSCs
OutpUT: a CFM A such that £(.A) equals the set of input MSCs.

Different forms of requirements

@ Consider finite sets of MSCs, given as an enumerated set.
@ Consider MSGs, that may describe an infinite set of MSCs.
@ Consider MSCs whose set of linearisations is a regular word language.

@ Consider MSGs that are‘non-local choice.
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Problem variants (2)

Realisability problem

INPUT: a set of MSCs
OutpuUT: a CFM A such that L(.A) equals the set of input MSCs.

Different system models

@ Consider CFMs without synchronisation messages.

Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
Forbid CFMs that deadlock. No realisation will ever deadlock.
Consider CFMs that are deterministic.

Consider CFMs that are bounded.

(]

(]
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Today's lecture

Today's setting

Realisation of a finite set of MSCs by a CFM without synchronisation
messages, a simpler acceptance condition, and that may possibly
deadlock.

Stated differently:
Realisation of a finite set of well-formed words (= language) by a CFM
without synchronisation messages and that may possibly deadlock.

© Weak CFMs (no syncs, product acceptance) are weaker than
CFMs.

© Conditions for realisability of a finite set of MSCs by a weak CFM.
© Checking realisability for such sets is co-NP complete. — Fomorrow
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© Properties of CFMs
@ Deterministic CFMs
@ Deadlock-free CFMs
@ Synchronisation messages add expressiveness
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Determinism

Definition (Deterministic CFM)
A CFM A is deterministic if for all p € P, the transition relation A

satisfies the following two conditions:

0 (87 (p7 q, (a’ml))’sl) € AP and (87 '(pv q, (a’mQ))v‘SQ) € AP 1mphes
mi1 = mo and s1 = So

e (8,?(]), q, (a”m))781) € AP and (8,?(]), q, (a7m))782) = AP 1mphes

S1 = S9

S
\(pa, (o) >Q

AF'-'x — Sy =5 N "=,

S S2

| Cea 1(“'“‘7.)) O
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Determinism

Definition (Deterministic CFM)

A CFM A is deterministic if for all p € P, the transition relation A,
satisfies the following two conditions:

Q (5,/(p,q, (a,m1)),s1) € Ap and (s,!(p,q, (a,m2)), s2) € A, implies
mi1 = mo and s1 = So

g (8,?(]), 4, (a7m))781) € AP and (8,?(]), q, (a7m))782) = AP 1mphes
S1 = 89

From a given state, process p may have the possibility of sending
messages to more than one process.
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Determinism

Definition (Deterministic CFM)

A CFM A is deterministic if for all p € P, the transition relation A,
satisfies the following two conditions:

Q (5,/(p,q,(a,m1)),s1) € Ap and (s,!(p,q, (a,m2)), s2) € A, implies
mi1 = meo and s1 = So

Q (s,7(p,q,(a,m)),s1) € A, and (s,?(p, ¢, (a,m)), s2) € A, implies
S1 = 89

| \

Note:
From a given state, process p may have the possibility of sending
messages to more than one process.

Example CFM (1) and (2) are deterministic, while (3) is not.
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Example (1)

b q
process p: process qg: req
I(p, q,req) ?(q,p,req) red
1 A req
req
5 KCY))
|| ||
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Example (2)

process p: process q:
p q
‘ req ack
'(p, q,req) ?(q, p,req)
req ack
10
req
'(p, q,req) . ?(p, q,ack)

deod\ock el D) =14
F= T §
F-§ Gua)) pe? F
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Example (3)

Seodlock
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Deadlock-freeness

Definition (Deadlock-free CFM)

A CFM A is deadlock-free if, for all w € Act* and all runs « of A on w,
there exist w’ € Act* and run 7/ in A such that -7’ is an accepting run

of A on w-w'.

Example CFM (1) is deadlock-free, while (2) and (3) are not.

[Genest et. al, 2006]

Theorem:
For an ounded CFM A, the decision problem “is A
deadlock-Tree?” is decidable (and is PSPACE-complete).
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Weak CFMs

Definition (Weak CFM)

A CFM is called weak if [D| = 1and F' = [[, Fp.
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Weak CFMs

Definition (Weak CFM)
A CFM is called weak if [D| = 1and F' = [[, Fp.

Example (1) and (2) are weak CFMs. Example (3) is not.

e

Q: Are CFMs more expressive than weak CFMs? That is, do there exist
languages (over linearizations or, equivalently, MSCs) that can be
generated by CFMs but not by weak CFMs
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CFM vs. weak CFM
Weak CFMs are strictly less expressive than CFMs. l
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CFM vs. weak CFM

Weak CFMs are strictly less expressive than CFMs.

Proof.
For m,n > 1, let M(m,n) € M over P = {1,2} and C = {req, ack} be:
o M11=(!(1,2,req))™ (?(1,2,ack) !(1,2,req))™ 2
o M[2=(2(2,1,req) (2,1, ack))™ (2(2,1,req))™ .
A L —> o
NEE
—> .
M ack o
f— =
—
—
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CFM vs. weak CFM
Weak CFMs are strictly less expressive than CFMs.

Proof.
For m,n > 1, let M(m,n) € M over P = {1,2} and C = {req, ack} be:

@ M[1=(I(1,2,req))™ (?(1,2,ack) !(1,2,req))"

@ M[2=(?(2,1,req) !(2,1,ack))™ (?(2,1,req))™
Claim: there is no weak CFM over P = {1, 2} and C = {req, ack} whose
language is L = {M (n,n) | n > 0}. W M A

_— —> \wehave see~ a CFM

Wity LU%: L

m=n
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CFM vs. weak CFM
Weak CFMs are strictly less expressive than CFMs.

Proof.

For m,n > 1, let M(m,n) € M over P = {1,2} and C = {req, ack} be:
o M11=(!(1,2,req))™ (?(1,2,ack) !(1,2,req))™
® M[2=(7(2,1,req) (2,1, ack))™ (?(2,1,req))™

Claim: there is no weak CFM over P = {1,2} and C = {req, ack} whose
language is L = {M (n,n) | n > 0}. By contraposition. Suppose there is a
weak CFM A = ((A1, A2), Sinit, F') with L(A) = L. For any n > 0, there is an
accepting run of A on M (n,n). If n is sufficiently large, then

® A; visits a cycle of length¢ > 0 to read the first n letters of M(n,n)[1
@ A, visits a cycle of length j > 0 to read the last n letters of M (n,n)[2

Then there is an accepting run of A on M(n+ (i - j),n) € L. Contradiction.

-
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CFM vs. weak CFM

Weak CFMs are strictly less expressive than CFMs.

Intuition proof

If A; traverses a cycle of size i at least once to “generate” (!(1,2,req))™, then
it can autonomously traverse this cycle more often and thus “pump” to an
expression of the form (!(1,2,req))™".

Similar reasoning applies to automaton Ay for the last n letters of the input
word M [2. Suppose its cycle is of size j.

Now if A; traverses its cycle of size i, j times, and Ay traverses its cycle of
size j, i times, then the number of requests sent by process 1 matches the
number of receipts by process 2.

But this yields a word in M (n + (¢ - j),n) that is not in L.

— — y

Joost-Pieter Katoen Theoretical Foundations of the UML 17/35



Overview

© Realisability
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What is realisability?

Definition (Realisability)

L(A) for some CFM A.

rea\ Sa‘*\\v\/

Mp\em'\'c-
on
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What is realisability?

Definition (Realisability)

Q@ MSC M is realisable whenever {M} = L(A) for some CFM A.

O A finite set {M,..., M,} of MSCs is realisable whenever
{M,...,M,} = L(A) for some CFM A.

A reclises

TM,- MY
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What is realisability?

Definition (Realisability)
Q@ MSC M is realisable whenever {M} = L(A) for some CFM A.
Q A finite set {M,..., M,} of MSCs is realisable whenever

{M,...,M,} = L(A) for some CFM A. Pevplemen
© MSG G is realisable whenever £(G) = L(.A) for some CFM A.
U:(QM ks ( CFn H

™4 “ setof MsCs realides

o.ccepVed \pJ G MG G
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What is realisability?

Definition (Realisability)
O MSC M is realisable whenever {M} = L(A) for some CFM A.

Q A finite set {M,..., M,} of MSCs is realisable whenever
{M,...,M,} = L(A) for some CFM A.

© MSG G is realisable whenever £(G) = L(.A) for some CFM A.

© MSC M is realisable whenever Lin(M) = Lin(.A) for some CFM A.
| ©Q Set {My,...,M,} of MSCs is realisable whenever
Ui, Lin(M;) = Lin(A) for some CFM A.
© MSG G is realisable whenever Lin(G) = Lin(A) for some CFM A. )

We will consider realisability using its characterisation by lincarisations.J
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Overview

@ Inference of MSCs
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Two example MSCs

Consider the MSCs M, (top) and My, (bottom):

[~ | [v ] [~ ] [ |
Mthc inc e . {Hhc) Ha\,}
—— —— —— ——
Re, ©
msc ) PN
1 [ [ [= e
—
double
N AL V\/\/V\'\ double J/ \ ab
©
—— —— —— —— ﬁ‘)zss‘w:\\or, QN)

Aw

Intuition

In M., the volume of U (uranium) and N (nitric acid) is increased by one
unit; in Mg, both volumes are doubled. For safety reasons, it is essential that
both ingredients are increased by the same amount!
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A third, inferred fatal scenario

msc

L~ | |

U

double

Y

inc

A

Miod

The set { Mine, Mgy } is not realisable, as any CFM that realises this set

also realises the inferred MSC My,q above.

MSCSEMWC! or!M db!alone do not imply Mp,q. Together they do.
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Definition (Inference)
The set L of MSCs is said to infer MSC M & L if and only if:

for any CFM A. (L C L(A) implies M € L(A)).

What we will show later on:
The set L of MSCs is realisable iff L contains all MSCs that it infers.

A realisable set of MSCs contains all its implied scenarios.

For computational purposes, an alternative characterisation is required.
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Projection (1)

Definition (MSC projection)
For MSC M and process p let M [p, the projection of M on process p,

be the ordered sequence of actions occurring at process p in M.
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Projection (1)

Definition (MSC projection)

For MSC M and process p let M [p, the projection of M on process p,
be the ordered sequence of actions occurring at process p in M.

An MSC M over the processes P = { p1,...,pn } is uniquely
determined by the projections M [p; for 0 < i < n.

— MSC M
<«

EXercise | M‘N‘;\ ) Mer_ > T 9Mre,,
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Projection (2)

Definition (Word projection)

For word w € Act* and process p, the projection of w on process p,
denoted w [ p, is defined by:

eflp = €
{ '(Tqua’)(wrp) lfT:p
)ip =

w[p otherwise

(!(T?Q?a)'w

and similarly for receive actions.

w =

1(1,2-1eq !W(?,l,req) (2,1, ack)? (2,1,req (2,1, ack)? )fac‘k /,2’(

wll=1(1,2,req)!(1,2,req)?(1, 2, ack)!(1, 2, req)
wl2="7(2,1,req)! (2,1, ack)?(2, 1,req)!(2, 1, ack)
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Projection (3)

Definition (Word projection)

For word w € Act”™ and process p, the projection of w on process p, denoted
w [ p, is defined by:

elp = €
i(r,q,a)-(w if r =

wp otherwise

and similarly for receive actions.
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Projection (3)

Definition (Word projection)

For word w € Act”™ and process p, the projection of w on process p, denoted
w [ p, is defined by:

€lp = €

{ \(r.q,a)-(w]p) ifr=p

(r,q,a)w) |
(( ) d ) ) p w|p otherwise

and similarly for receive actions.

A well-formed word w over Act* given as projections w [p1,...,w [py

uniquely characterises an MSC M (w) over P = {p1,...,pn }.

Wey -, e, > W —— wm(uw)
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Definition (Inference relation)
For well-formed® L C Act*, and well-formed word w € Act*, let:

L ):@ it (VpeP.Jvel{wlp)=vp)

“Language L is called well-formed iff all its words are well-formed.

— — -
wle = \l;(} we Ack

P! \I\'rf ="‘r{>
PFa
9: V\)-\‘3_=\JF5
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Definition (Inference relation)
For well-formed® L C Act*, and well-formed word w € Act*, let:

LEw if (WeP.veLwlp=vlp)

“Language L is called well-formed iff all its words are well-formed.

Definition (Closure under =)

Language L is closed under = whenever L = w implies w € L.

koS imPess'\\a\{ o \\n-?(r o uord \J 4 \ .
ka bg' Msc; N = HSC
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Definition (Inference relation)
For well-formed® L C Act*, and well-formed word w € Act*, let:

LEw iff (YWpeP.veL.wlp=uvlp)

“Language L is called well-formed iff all its words are well-formed.

Definition (Closure under =)

Language L is closed under = whenever L = w implies w € L.

The closure condition says that the set of MSCs (or, equivalently, well-formed

words) can be obtained from the projections of the MSCs in L onto individual
processes.
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Closure: example

Language L is closed under |= whenever L = w implies w € L.

L = Lin({Minc, Map}) is not closed under .
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Closure: example

Language L is closed under = whenever L ):@h’nplics w € L.
Example

L = Lin({Minc, Map}) is not closed under . This is shown as follows:

w = !(p1,U, double)?(U, p1, double)!(p2, N, inc)?(N, p2, inc) & L

msc

n U N D2
Mine * ine

e 1 u N P2
double

My * double
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Closure: example

Language L is closed under |= whenever L = w implies w € L.

Example
L = Lin({Minc, Map}) is not closed under . This is shown as follows:

w = !(p1,U, double)?(U, p1, double)!(p2, N, inc)?(N, p2, inc) & L

But: L = w since

L VP- 3\/. Vrpz\drf
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Closure: example

Language L is closed under |= whenever L = w implies w € L.

Example
L = Lin({Minc, Map}) is not closed under . This is shown as follows:

w = !(p1,U, double)?(U, p1, double)!(p2, N, inc)?(N, p2, inc) & L

But: L = w since

@ for process p1, there is u € L with w [p; =!(p1, U, double) = u [p;1, and

ue Lin (M \\,\c)

Joost-Pieter Katoen Theoretical Foundations of the UML 28/35



Closure: example

Language L is closed under |= whenever L = w implies w € L.

Example
L = Lin({Minc, Map}) is not closed under . This is shown as follows:

w = !(p1,U, double)?(U, p1, double)!(p2, N, inc)?(N, p2, inc) & L

But: L = w since
@ for process p1, there is u € L with w[p; =!(p1, U, double) = u [p;1, and

@ for process pa, there is v € L with w [py =!(p2, N, inc) = v [ps, and

—_—

(PN (H{nc)
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Closure: example

Language L is closed under |= whenever L = w implies w € L.

L = Lin({Minc, Map}) is not closed under . This is shown as follows:
w = !(p1,U, double)?(U, p1, double)!(p2, N, inc)?(N, p2, inc) & L

But: L = w since
@ for process p1, there is u € L with w[p; =!(p1, U, double) = u [p;1, and
@ for process pa, there is v € L with w [py =!(p2, N, inc) = v [ps, and
@ for process U, there is u € L with w U =?(U, p1, double) = v |U, and
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Closure: example

Language L is closed under |= whenever L = w implies w € L.

Example
L = Lin({Minc, Map}) is not closed under . This is shown as follows:

w = !(p1,U, double)?(U, p1, double)!(p2, N, inc)?(N, p2, inc) & L

But @since

@ for process py, there is u € L with w[p1 =!(p1, U, double) = u [p;, and
p2 =!(p2, N, inc) = v [ pa, and

U =?(U,p;1,double) = u U, and
N =?(N,ps,inc) =v|[N.

/ V.
(- e bw (M'mc)
Joost-Pieter Katoen Theoretical Foundations of the UML 28/35

@ for process po, there is v € L with w

@ for process U, there is u € L with w

— 7 — —

@ for process IV, there is v € L with w




Weak CFMs

Definition (Recall: weak CFM)
CFM A is weak if D] =1 and F' = [], Fp.

A weak CFM can be considered as CFM without synchronisation messages.
(Therefore, the component D may be omitted.) For simplicity, today we
address realisability with the aim of using weak CFMs as implementation.
Recall: weak CFMs are strictly less expressive than CFMs.

Realisability by a weak CFM

A finite set {Mj, ..., M,} of MSCs is realisable (by a weak CFM)
whenever { My, ..., M,} = L(A) for some weak CFM A,
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Weak CFMs are closed under =

For any weak CEM A, Lin(A) is closed under |=.
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Weak CFMs are closed under =

For any weak CEM A, Lin(A) is closed under |=.

Proof.

Let A be a weak CFM. Since A is a CFM, any w € Lin(A) is well-formed.
Let w € Act™ be well-formed and assume Lin(A) = w.

To show that Lin(A) is closed under |=, we prove that w € Lin(A).

By definition of &, for any process p there is v? € Lin(A) with v? [p = w [ p.
Let 7 be an accepting run of 4 on v? and let run = [p visit only states of A,
while taking only transitions in A,. Then, 7 [p is an accepting run of “local“
automaton 4, on the word v? [p = w [ p.

In absence of synchronisation messages, the “local accepting runs 7 [p for all
processes p together can be combined to obtain an accepting run of A on w.

Thus, w € Lin(A). O

V.
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© Characterisation and complexity of realisability by weak CFMs
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Characterisation of realisability

[Alur et al., 2001]
Finite L C Act* is realisable (by a weak CFM) iff L is closed under |=.

—_— —_—
Line set of set of MSCs s
MSCs c\osed wAder .
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Characterisation of realisability

[Alur et al., 2001]
Finite L C Act* is realisable (by a weak CFM) iff L is closed under |=.

On the black board. O
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Characterisation of realisability

[Alur et al., 2001]
Finite L C Act* is realisable (by a weak CFM) iff L is closed under |=.

On the black board. O

The finite set of MSCs {Mj, ..., M,} is realisable (by a weak CFM) iff
Ui, Lin(M;) is closed under .
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Characterisation of realisability

For any well-formed L C Act™:

L is regular and closed under =
if and only if
L = Lin(.A) for some V-bounded weak CFM A.
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Complexity of realisability

Let co-NP be the class of all decision problems C with C, the
complement of C is in NP.

A problem C'is co-NP complete if it is in co-NP, and it is co-NP hard,
i.e., each for any co-NP problem there is a polynomial reduction to C.

PSPACE
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Complexity of realisability (by a weak CFM)

Theorem: [Alur et al., 2001]

The decision problem ‘“is a given finite set of MSCs realisable by a weak
CFM?” is decidable and is co-NP complete.
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Complexity of realisability (by a weak CFM)

Theorem:

[Alur et al., 2001]

The decision problem ‘“is a given finite set of MSCs realisable by a weak
CFM?” is decidable and is co-NP complete.

Proof.

© Membership in co-NP is proven by showing that its complement is
in NP. This is rather standard.

© The co-NP hardness proof is based on a polynomial reduction of

the join dependency problem to the above realisability problem.
(Details on the black board.)
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