Theoretical Foundations of the UML Lecture 09: Realisability

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

May 18, 2020

(C) MSG
requirements
realisability

CFM

Outline

- Introduction
- Properties of CFMs
 - Deterministic CFMs
 - Deadlock-free CFMs
 - Synchronisation messages add expressiveness
- Realisability
- 4 Inference of MSCs
- 6 Characterisation and complexity of realisability by weak CFMs

synchonisehon messages

←□ → ←□ → ←□ → □ → へ○

Overview

- Introduction
- 2 Properties of CFMs
 - Deterministic CFMs
 - Deadlock-free CFMs
 - Synchronisation messages add expressiveness
- Realisability
- 4 Inference of MSCs
- 6 Characterisation and complexity of realisability by weak CFMs

Motivation

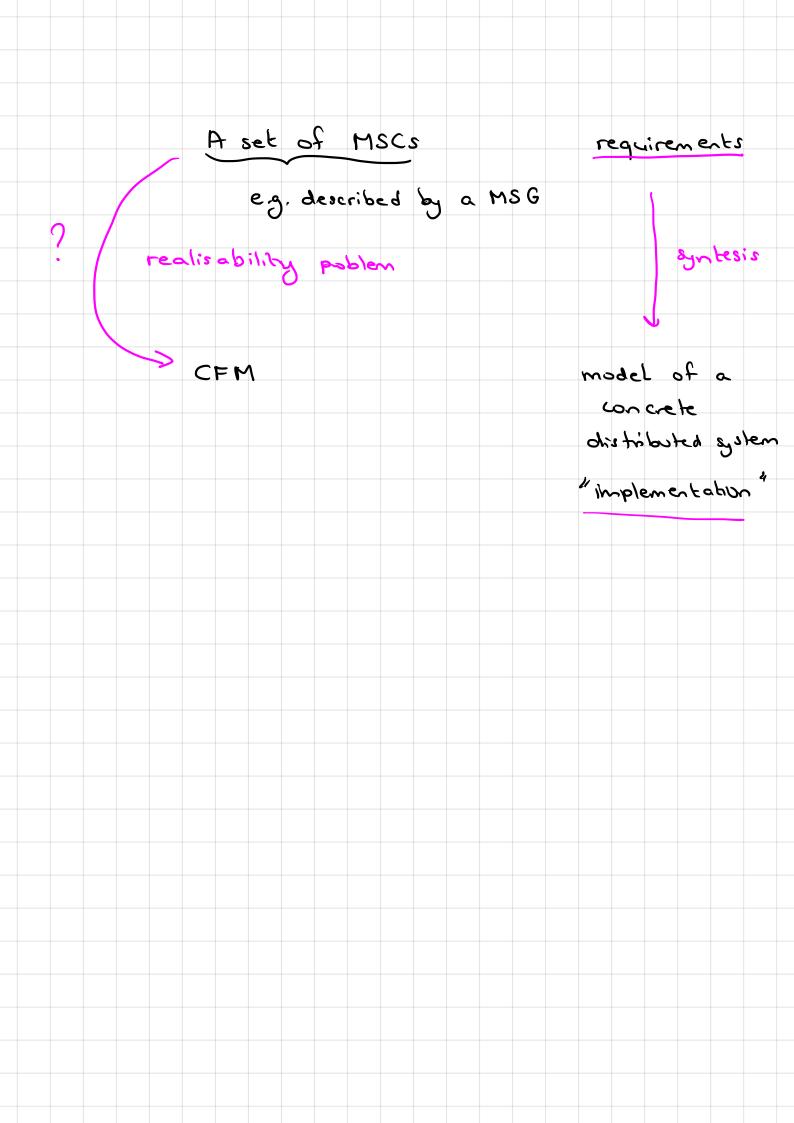
Practical use of MSCs and CFMs

- MSCs and MSGs are used by software engineers to capture requirements.
- These are the expected behaviours of the distributed system under design.
- Distributed systems can be viewed as a collection of communicating automata.

Central problem

Can we synthesize, preferably in an automated manner, a CFM whose behaviours are precisely the behaviours of the MSCs (or MSG)?

This is known as the realisability problem.



From requirements to implementation

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Questions:

- Is this possible? (That is, is this decidable?)
- ② If so, how complex is it to obtain such CFM?
- 3 If so, how do such algorithms work?

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

• Consider <u>finite</u> sets of MSCs, given as an enumerated set.

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

- Consider finite sets of MSCs, given as an enumerated set.
- Consider MSGs, that may describe an infinite set of MSCs.

Realisability problem

INPUT a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

- Consider finite sets of MSCs, given as an enumerated set.
- Consider MSGs, that may describe an infinite set of MSCs.
- Consider MSCs whose set of linearisations is a regular word language.

input MSCs can be described as
Rivite-state automata

Realisability problem

(NPUT) a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

- Consider finite sets of MSCs, given as an enumerated set.
- Consider MSGs, that may describe an infinite set of MSCs.
- Consider MSCs whose set of linearisations is a regular word language.
- Consider MSGs that are non-local choice.

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Different system models

- Consider CFMs without synchronisation messages.
- Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
- Forbid CFMs that deadlock. No realisation will ever deadlock.
- Consider CFMs that are deterministic.
- Consider CFMs that are bounded.
-

Today's lecture

Today's setting

Realisation of a finite set of MSCs by a CFM without synchronisation messages, a simpler acceptance condition, and that may possibly deadlock.

Stated differently:

Realisation of a finite set of well-formed words (= language) by a CFM without synchronisation messages and that may possibly deadlock.

Results:

- Weak CFMs (no syncs, product acceptance) are weaker than CFMs.
- ② Conditions for realisability of a finite set of MSCs by a weak CFM.

Overview

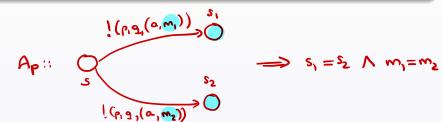
- Introduction
- 2 Properties of CFMs
 - Deterministic CFMs
 - Deadlock-free CFMs
 - Synchronisation messages add expressiveness
- Realisability
- 4 Inference of MSCs
- 6 Characterisation and complexity of realisability by weak CFMs

Determinism

Definition (Deterministic CFM)

A CFM \mathcal{A} is <u>deterministic</u> if for all $p \in \mathcal{P}$, the transition relation Δ_p satisfies the following two conditions:

- **②** $(s,!(p,q,(a,m_1)),s_1) \in \Delta_p$ and $(s,!(p,q,(a,m_2)),s_2) \in \Delta_p$ implies $m_1 = m_2$ and $s_1 = s_2$
- ② $(s,?(p,q,(a,m)),s_1) \in \Delta_p$ and $(s,?(p,q,(a,m)),s_2) \in \Delta_p$ implies $s_1 = s_2$



Determinism

Definition (Deterministic CFM)

A CFM \mathcal{A} is *deterministic* if for all $p \in \mathcal{P}$, the transition relation Δ_p satisfies the following two conditions:

- $(s,!(p,q,(a,m_1)),s_1) \in \Delta_p$ and $(s,!(p,q,(a,m_2)),s_2) \in \Delta_p$ implies $m_1 = m_2$ and $s_1 = s_2$
- ② $(s,?(p,q,(a,m)),s_1) \in \Delta_p$ and $(s,?(p,q,(a,m)),s_2) \in \Delta_p$ implies $s_1=s_2$

Note:

From a given state, process p may have the possibility of sending messages to more than one process.

Determinism

Definition (Deterministic CFM)

A CFM \mathcal{A} is <u>deterministic</u> if for all $p \in \mathcal{P}$, the transition relation Δ_n satisfies the following two conditions:

- **1** $(s,!(p,q,(a,m_1)),s_1) \in \Delta_p$ and $(s,!(p,q,(a,m_2)),s_2) \in \Delta_p$ implies $m_1 = m_2$ and $s_1 = s_2$
- $(s, ?(p, q, (a, m)), s_1) \in \Delta_p \text{ and } (s, ?(p, q, (a, m)), s_2) \in \Delta_p \text{ implies}$ $s_1 = s_2$

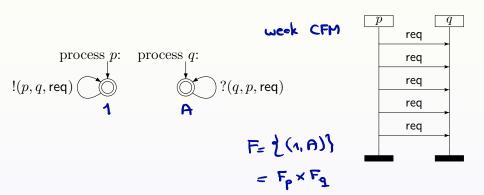
Note:

From a given state, process p may have the possibility of sending messages to more than one process.

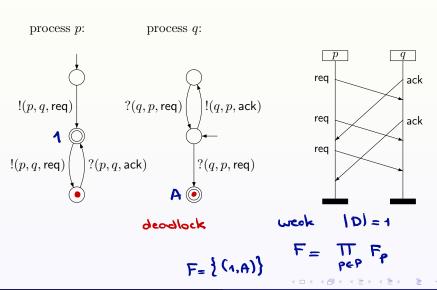
Example:

Example CFM (1) and (2) are deterministic, while (3) is not.

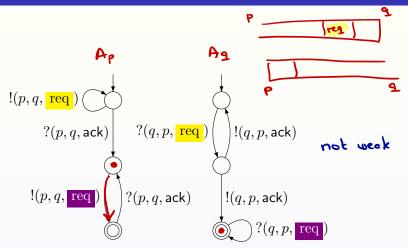
Example (1)



Example (2)



Example (3)



deadlock

Deadlock-freeness

Definition (Deadlock-free CFM)

A CFM \mathcal{A} is deadlock-free if, for all $w \in Act^*$ and all runs γ of \mathcal{A} on w, there exist $w' \in Act^*$ and run γ' in \mathcal{A} such that $\gamma \cdot \gamma'$ is an accepting run of A on $w \cdot w'$.

Example:

Example CFM (1) is deadlock-free, while (2) and (3) are not.

Theorem:

[Genest et. al, 2006]

For any $\exists B$ -bounded CFM \mathcal{A} , the decision problem "is \mathcal{A} deadlock-free?" is decidable (and is PSPACE-complete).

Weak CFMs

Definition (Weak CFM)

A CFM is called weak if $|\mathbb{D}| = 1$ and $F = \prod_{p} F_{p}$.

if each of the local one ync automata are in a final message local state no you messages

Weak CFMs

Definition (Weak CFM)

A CFM is called *weak* if $|\mathbb{D}| = 1$ and $F = \prod_p F_p$.

Example (1) and (2) are weak CFMs. Example (3) is not.

Q: Are CFMs more expressive than weak CFMs? That is, do there exist languages (over linearizations or, equivalently, MSCs) that can be generated by CFMs but **not** by weak CFMs? Yes.

Theorem:

Weak CFMs are strictly less expressive than CFMs.

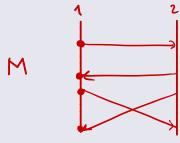
Theorem:

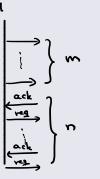
Weak CFMs are strictly less expressive than CFMs.

Proof.

For $\underline{m,n\geqslant 1},$ let $\underline{M(m,n)}\in\mathbb{M}$ over $\underline{\mathcal{P}=\{1,2\}}$ and $\mathcal{C}=\{\text{req},\text{ack}\}$ be:

- $M \upharpoonright 1 = (!(1, 2, req))^m (?(1, 2, ack) !(1, 2, req))^n$
 - $\bullet \ M \! \upharpoonright \! 2 = (?(2,1,\operatorname{req}) \ !(2,1,\operatorname{ack}))^n \ (?(2,1,\operatorname{req}))^m$





Theorem:

Weak CFMs are strictly less expressive than CFMs.

Proof.

For $m, n \ge 1$, let $M(m, n) \in \mathbb{M}$ over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{reg, ack}\}$ be:

- $M \upharpoonright 1 = (!(1, 2, req))^m (?(1, 2, ack) !(1, 2, req))^n$
- $M \upharpoonright 2 = (?(2, 1, \text{req}) ! (2, 1, \text{ack}))^n (?(2, 1, \text{req}))^m$

Claim: there is no weak CFM over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req, ack}\}$ whose language is $L = \{M(n, n) \mid n > 0\}.$

we have seen a CFM A

m = n

with L(A) = L

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Proof.

For $m, n \ge 1$, let $M(m, n) \in \mathbb{M}$ over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req, ack}\}$ be:

- $M \upharpoonright 1 = (!(1, 2, req))^m (?(1, 2, ack) !(1, 2, req))^n$
- $M \upharpoonright 2 = (?(2, 1, \text{req}) ! (2, 1, \text{ack}))^n (?(2, 1, \text{req}))^m$

Claim: there is no weak CFM over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req, ack}\}$ whose language is $L = \{M(n, n) \mid n > 0\}$. By contraposition. Suppose there is a weak CFM $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), s_{init}, F)$ with $L(\mathcal{A}) = L$. For any n > 0, there is an accepting run of \mathcal{A} on M(n, n). If n is sufficiently large, then

- A_1 visits a cycle of length i > 0 to read the first n letters of $M(n,n) \upharpoonright 1$
- A_2 visits a cycle of length j > 0 to read the last n letters of $M(n,n) \upharpoonright 2$

Then there is an accepting run of \mathcal{A} on $M(n+(i\cdot j),n)\notin L$. Contradiction.

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Intuition proof

If \mathcal{A}_1 traverses a cycle of size i at least once to "generate" $(!(1,2,\text{req}))^n$, then it can autonomously traverse this cycle more often and thus "pump" to an expression of the form $(!(1,2,\text{req}))^{n\cdot i}$.

Similar reasoning applies to automaton A_2 for the last n letters of the input word $M \upharpoonright 2$. Suppose its cycle is of size j.

Now if A_1 traverses its cycle of size i, j times, and A_2 traverses its cycle of size j, i times, then the number of requests sent by process 1 matches the number of receipts by process 2.

But this yields a word in $M(n+(i\cdot j),n)$ that is not in L.

Overview

- Introduction
- 2 Properties of CFMs
 - Deterministic CFMs
 - Deadlock-free CFMs
 - Synchronisation messages add expressiveness
- Realisability
- 4 Inference of MSCs
- 6 Characterisation and complexity of realisability by weak CFMs

Definition (Realisability)

• MSCM is realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .

requirement

realisation/ implementation

Definition (Realisability)

- **1** MSC M is realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- A finite set $\{M_1, \dots, M_n\}$ of MSCs is <u>realisable</u> whenever $\{M_1, \dots, M_n\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .

A realises

2M1, -- , Mn}

Definition (Realisability)

- MSC M is realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- ② A finite set $\{M_1, \ldots, M_n\}$ of MSCs is realisable whenever $\{M_1, \ldots, M_n\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- **3** MSG G is <u>realisable</u> whenever $\underline{\mathcal{L}(G)} = \underline{\mathcal{L}(A)}$ for some CFM A.

requirements

accepted by G

CFM A realises M3G G

Definition (Realisability)

- **1** MSC M is realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- ② A finite set $\{M_1, \ldots, M_n\}$ of MSCs is realisable whenever $\{M_1, \ldots, M_n\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- 3 MSG G is realisable whenever $\mathcal{L}(G) = \mathcal{L}(A)$ for some CFM A.

Equivalently

- \bullet MSC M is realisable whenever Lin(M) = Lin(A) for some CFM A.
- Set $\{M_1, \ldots, M_n\}$ of MSCs is realisable whenever $\bigcup_{i=1}^n Lin(M_i) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .
 - **3** MSG G is realisable whenever Lin(G) = Lin(A) for some CFM A.

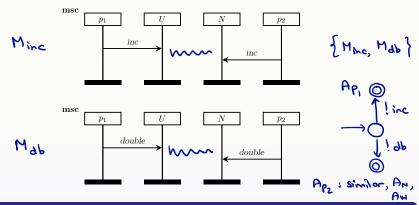
We will consider realisability using its characterisation by <u>linearisations</u>.

Overview

- Introduction
- 2 Properties of CFMs
 - Deterministic CFMs
 - Deadlock-free CFMs
 - Synchronisation messages add expressiveness
- 3 Realisability
- Inference of MSCs
- 6 Characterisation and complexity of realisability by weak CFMs

Two example MSCs

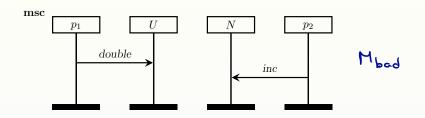
Consider the MSCs M_{inc} (top) and M_{db} (bottom):



Intuition

In M_{inc} , the volume of U (uranium) and N (nitric acid) is increased by one unit; in M_{db} both volumes are doubled. For safety reasons, it is essential that both ingredients are increased by the same amount!

A third, inferred fatal scenario



So:

The set $\{M_{inc}, M_{db}\}$ is not realisable, as any CFM that realises this set also realises the inferred MSC M_{bad} above.

Note that:

 $MSCs(M_{inc})$ or (M_{db}) alone do not imply M_{bad} . Together they do.

Inference

Definition (Inference)

The set L of MSCs is said to infer MSC $M \notin L$ if and only if:

for any CFM \mathcal{A} . $(L \subseteq \mathcal{L}(\mathcal{A}))$ implies $M \in \mathcal{L}(\mathcal{A})$.

What we will show later on:

The set L of MSCs is realisable iff L contains all MSCs that it infers.

Intuition

A realisable set of MSCs contains all its implied scenarios.

For computational purposes, an alternative characterisation is required.

Projection (1)

Definition (MSC projection)

For MSC M and process p let M
cdot p, the projection of M on process p, be the ordered sequence of actions occurring at process p in M.

Projection (1)

Definition (MSC projection)

For MSC M and process p let M
abla p, the projection of M on process p, be the ordered sequence of actions occurring at process p in M.

Lemma

An MSC M over the processes $\mathcal{P} = \{p_1, \dots, p_n\}$ is uniquely determined by the projections $M \upharpoonright p_i$ for $0 < i \le n$.

Projection (2)

Definition (Word projection)

For word $w \in Act^*$ and process p, the projection of w on process p, denoted $w \upharpoonright p$, is defined by:

$$\begin{array}{rcl} \epsilon \! \upharpoonright \! p & = & \epsilon \\ (!(r,q,a) \! \cdot \! w) \! \upharpoonright \! p & = & \left\{ \begin{array}{ll} !(r,q,a) \! \cdot \! (w \! \upharpoonright \! p) & \text{if } r = p \\ w \! \upharpoonright \! p & \text{otherwise} \end{array} \right. \end{array}$$

and similarly for receive actions.

Example

```
 \begin{split} w &= \\ !(1,2,\text{req})!(1,2,\text{req})!(2,1,\text{req})!(2,1,\text{ack})?(2,1,\text{req})!(2,1,\text{ack})?(1,2,\text{ack})!(1,2,\text{req}) \\ w &\upharpoonright 1 = !(1,2,\text{req})!(1,2,\text{req})?(1,2,\text{ack})!(1,2,\text{req}) \\ w &\upharpoonright 2 = ?(2,1,\text{req})!(2,1,\text{ack})?(2,1,\text{req})!(2,1,\text{ack}) \end{split}
```

Projection (3)

Definition (Word projection)

For word $w \in Act^*$ and process p, the projection of w on process p, denoted $w \upharpoonright p$, is defined by:

$$\begin{array}{rcl} \epsilon \upharpoonright p & = & \epsilon \\ (!(r,q,a) \cdot w) \upharpoonright p & = & \left\{ \begin{array}{ll} !(r,q,a) \cdot (w \upharpoonright p) & \text{if } r = p \\ w \upharpoonright p & \text{otherwise} \end{array} \right. \end{array}$$

and similarly for receive actions.

Projection (3)

Definition (Word projection)

For word $w \in Act^*$ and process p, the projection of w on process p, denoted $w \upharpoonright p$, is defined by:

$$\begin{array}{rcl} \epsilon \! \upharpoonright \! p & = & \epsilon \\ (!(r,q,a) \! \cdot \! w) \! \upharpoonright \! p & = & \left\{ \begin{array}{ll} !(r,q,a) \! \cdot \! (w \! \upharpoonright \! p) & \text{if } r = p \\ w \! \upharpoonright \! p & \text{otherwise} \end{array} \right. \end{array}$$

and similarly for receive actions.

Lemma

A well-formed word w over Act^* given as projections $w \upharpoonright p_1, \ldots, w \upharpoonright p_n$ uniquely characterises an MSC M(w) over $\mathcal{P} = \{p_1, \ldots, p_n\}$.

Closure

Definition (Inference relation)

For well-formed $L \subseteq Act^*$, and well-formed word $w \in Act^*$, let:

^aLanguage L is called well-formed iff all its words are well-formed.

$$L = \left\{ \underbrace{v_1, \dots, v_k} \right\}$$

$$W \vdash P = \underbrace{v_i \vdash P}$$

P# 9.

Closure

Definition (Inference relation)

For well-formed $L \subseteq Act^*$, and well-formed word $w \in Act^*$, let:

$$L \models w \text{ iff } (\forall p \in \mathcal{P}. \exists v \in L. w \upharpoonright p = v \upharpoonright p)$$

^aLanguage L is called well-formed iff all its words are well-formed.

Definition (Closure under \models)

Language L is closed under \models whenever $L \models w$ implies $w \in L$.

it is impossible to infer a word weL.

set of MSCs

14 - MSC

Closure

Definition (Inference relation)

For well-formed a $L \subseteq Act^*$, and well-formed word $w \in Act^*$, let:

$$L \models w \text{ iff } (\forall p \in \mathcal{P}. \exists v \in L. w \upharpoonright p = v \upharpoonright p)$$

 a Language L is called well-formed iff all its words are well-formed.

Definition (Closure under \models)

Language L is closed under \models whenever $L \models w$ implies $w \in L$.

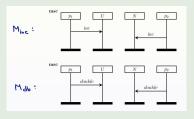
Intuition

The closure condition says that the set of MSCs (or, equivalently, well-formed words) can be obtained from the projections of the MSCs in L onto individual processes.

Language L is closed under \models whenever $L \models w$ implies $w \in L$.

Example

 $L = Lin(\{M_{inc}, M_{db}\})$ is not closed under \models .

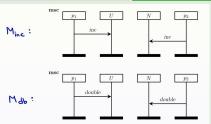


Language L is closed under \models whenever $L \models w$ implies $w \in L$.

Example

 $L = Lin(\{M_{inc}, M_{db}\})$ is not closed under \models . This is shown as follows:

$$w \ = \underline{!(p_1, U, double)?(U, p_1, double)}!(p_2, N, inc)?(N, p_2, inc) \not\in \underline{L}$$



Language L is closed under \models whenever $L \models w$ implies $w \in L$.

Example

 $L = Lin(\{M_{inc}, M_{db}\})$ is not closed under \models . This is shown as follows:

$$w \ = \ !(p_1, U, double)?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \not\in {\color{blue}L}$$

But: $L \models w$ since

Language L is closed under \models whenever $L \models w$ implies $w \in L$.

Example

 $L = Lin(\{M_{inc}, M_{db}\})$ is not closed under \models . This is shown as follows:

 $w = \underline{!(p_1, U, double)}?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \not\in \underline{L}$

But: $L \models w$ since

• for process $\underline{p_1}$, there is $\underline{u \in L}$ with $\underline{w \upharpoonright p_1} = \underline{!(p_1, U, double)} = \underline{u \upharpoonright p_1}$, and

ue Lin (Minc)

Language L is closed under \models whenever $L \models w$ implies $w \in L$.

Example

 $L = Lin(\{M_{inc}, M_{db}\})$ is not closed under \models . This is shown as follows: $w = !(p_1, U, double)?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \not\in L$

But: $L \models w$ since

- for process p_1 , there is $u \in L$ with $w \upharpoonright p_1 = !(p_1, U, double) = u \upharpoonright p_1$, and
- for process $\underline{p_2}$, there is $\underline{v \in L}$ with $\underline{w \upharpoonright p_2} = !(p_2, N, inc) = \underline{v \upharpoonright p_2}$, and

Language L is closed under \models whenever $L \models w$ implies $w \in L$.

Example

 $\underline{L} = Lin(\{M_{inc}, \underline{M_{db}}\})$ is not closed under \models . This is shown as follows:

$$w \ = \ !(p_1, U, double) \underline{?(U, p_1, double)} !(p_2, N, inc) ?(N, p_2, inc) \not\in \underline{\textbf{\textit{L}}}$$

But: $L \models w$ since

- for process p_1 , there is $u \in L$ with $w \upharpoonright p_1 = !(p_1, U, double) = u \upharpoonright p_1$, and
- for process p_2 , there is $v \in L$ with $w \upharpoonright p_2 = !(p_2, N, inc) = v \upharpoonright p_2$, and
- for process \underline{U} , there is $u \in L$ with $w \upharpoonright U = \underline{?(U, p_1, double)} = \underline{u \upharpoonright U}$, and

Language L is closed under \models whenever $L \models w$ implies $w \in L$.

Example

 $L = Lin(\{M_{inc}, M_{db}\})$ is <u>not closed</u> under \models . This is shown as follows:

$$w = !(p_1, U, double)?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \not\in L$$

But $(L \models w)$ since

- for process p_1 , there is $u \in L$ with $w \upharpoonright p_1 = !(p_1, U, double) = u \upharpoonright p_1$, and
- for process p_2 , there is $v \in L$ with $w \upharpoonright p_2 = !(p_2, N, inc) = v \upharpoonright p_2$, and
- for process U, there is $u \in L$ with $w \upharpoonright U = ?(U, p_1, double) = u \upharpoonright U$, and
- for process N, there is $v \in L$ with $w \upharpoonright N = (N, p_2, inc) = v \upharpoonright N$.

Weak CFMs

Definition (Recall: weak CFM)

CFM \mathcal{A} is weak if $|\mathbb{D}| = 1$ and $F = \prod_p F_p$.

Intuition

A weak CFM can be considered as CFM without synchronisation messages. (Therefore, the component \mathbb{D} may be omitted.) For simplicity, today we address realisability with the aim of using weak CFMs as implementation. Recall: weak CFMs are strictly less expressive than CFMs.

Realisability by a weak CFM

A finite set $\{M_1, \ldots, M_n\}$ of MSCs is realisable (by a weak CFM) whenever $\{M_1, \ldots, M_n\} = L(\mathcal{A})$ for some weak CFM \mathcal{A} .

Weak CFMs are closed under ⊨

Lemma:

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Weak CFMs are closed under ⊨

Lemma:

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof.

Let \mathcal{A} be a weak CFM. Since \mathcal{A} is a CFM, any $w \in Lin(\mathcal{A})$ is well-formed.

Let $w \in Act^*$ be well-formed and assume $Lin(A) \models w$.

To show that Lin(A) is closed under \models , we prove that $w \in Lin(A)$.

By definition of \models , for any process p there is $v^p \in Lin(\mathcal{A})$ with $v^p \upharpoonright p = \mathbf{w} \upharpoonright p$. Let π be an accepting run of \mathcal{A} on v^p and let run $\pi \upharpoonright p$ visit only states of \mathcal{A}_p while taking only transitions in Δ_p . Then, $\pi \upharpoonright p$ is an accepting run of "local" automaton \mathcal{A}_p on the word $v^p \upharpoonright p = \mathbf{w} \upharpoonright p$.

In absence of synchronisation messages, the "local" accepting runs $\pi \upharpoonright p$ for all processes p together can be combined to obtain an accepting run of \mathcal{A} on w.

Thus, $\mathbf{w} \in Lin(\mathcal{A})$.

Overview

- - Deterministic CFMs
 - Deadlock-free CFMs
 - Synchronisation messages add expressiveness

- Characterisation and complexity of realisability by weak CFMs

Characterisation of realisability

Theorem:

[Alur et al., 2001]

Finite $L \subseteq Act^*$ is realisable (by a weak CFM) iff \underline{L} is closed under \models .

finite set of MSCs

set of MSCs is closed under =.

Characterisation of realisability

Theorem:

[Alur et al., 2001]

Finite $L \subseteq Act^*$ is realisable (by a weak CFM) iff L is closed under \models .

Proof.

On the black board.

Theorem Finite L S Act is realisable (by a weak CFM)

if and only if L is closed under =.

Proof: =>. Assume L is realisable. Thus, there is a CFM A such that L= Lin (A). As Lin (A) only contains lineari-sations, and every linearisation is well-formed, each word in L is well-formed. Let we Act, wis well-formed, and assume L = w. By definition of =, for every poccess p, JVP & L with VP p = w Tp.

We show WEL. (Then it follows that Lis closed under 1=.)

Let To be an accepting run of CFM A on VP. (Such run does exist, otherwise VP does not belong to L).

Transitions along Top = TTp corresponds to the "local" bransitions of Ap. It follows from VPEL that Top is an accepting run of Ap, on the word VPTP = WTP.

This applies to all processes 2p,..., Pn of the CFM.

The local accepting runs TTP,..., TTP. Con be combined uniquely to obtain a run To of CFM A on W

To is accepting, because of the weak acceptance criterion. Thus We L.

"E". Assume L is closed under F. As F is only defined for well-formed words, each word in L is well-formed. Moreover, by definition of closure under = , L = w implies we L, for each wellformed we Act. To prove: Lis realisable. Let Ap be an automaton over Actp accepting Lp = 2wtp / wel} Ap thus accepts all projections to process p of words in L. let weak CFM A = ((Ap) pep, sinit, F) with F= TT Fp. Then: A realises L, i.e. Lin(A)=L "D": Let WEL. By construction of the CFM A, Lin (Ap) = Lp. But then we Lin (A) E : let we Lin(A). Then wipe Lin (Ap) for each p. By des of F, L = w. Since Lis closed under = it follows MEL

Characterisation of realisability

Theorem:

[Alur et al., 2001]

Finite $L \subseteq Act^*$ is realisable (by a weak CFM) iff L is closed under \models .

Proof.

On the black board.

Corollary

The finite set of MSCs $\{M_1, \ldots, M_n\}$ is realisable (by a weak CFM) iff $\bigcup_{i=1}^n Lin(M_i)$ is closed under \models .

Characterisation of realisability

Theorem

For any well-formed $L \subseteq Act^*$:

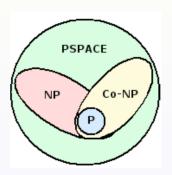
 $\frac{L \text{ is regular and closed under}}{\text{if and only if}} \models$

 $L = Lin(\mathcal{A})$ for some \forall -bounded weak CFM \mathcal{A} .

Complexity of realisability

Let co-NP be the class of all decision problems C with \overline{C} , the complement of C, is in NP.

A problem C is co-NP complete if it is in co-NP, and it is co-NP hard, i.e., each for any co-NP problem there is a polynomial reduction to C.



Complexity of realisability (by a weak CFM)

Theorem: [Alur et al., 2001]

The decision problem "is a given finite set of MSCs realisable by a weak CFM?" is decidable and is co-NP complete.

Complexity of realisability (by a weak CFM)

Theorem:

[Alur et al., 2001]

The decision problem "is a given finite set of MSCs realisable by a weak CFM?" is decidable and is co-NP complete.

Proof.

- Membership in co-NP is proven by showing that its complement is in NP. This is rather standard.
- ② The co-NP hardness proof is based on a polynomial reduction of the join dependency problem to the above realisability problem. (Details on the black board.)

