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Overview

@ Communicating finite-state machines: a refresher
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Communicating finite-state machines

@ A communicating finite-state machine (CFM) is a collection of
finite-state machines, one for each process

@ Communication between these machines takes place via (a priori)
unbounded reliable FIFO channels

@ The underlying system architecture is parametrised by the set P of
processes and the set C of messages

@ Action !(p,q,m) puts message m at the end of the channel (p,q)

@ Action ?(q,p, m) is enabled onl; if m is at head of buffer, and its
execution by process ¢ removes m from the channel (p,q)

@ Synchronisation messages are used to avoid deadlocks
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Example communicating finite-state machine

CFH %rep\eme-ks ‘ nSG

A (p.g.(req,L)) ©‘ (1,4, (req, 1))

?(p,q, (ack, L))

" (Y (g (req,R)

p.a.(eq.R) )P0 (ckR)

This CFM accepts if A, and A, are in some local state,
and (as usual) all channels are empty
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Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CEFM) over P and C is a tuple

A= (((SP,A ))pEP’]D) SmitaF)

where ‘Q“‘ \ 3\‘,\‘,.,\ RIS
o for each p € P: otomete shete
Sbv\t
deto oﬁo\oe\
Qweel
L
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Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CEFM) over P and C is a tuple

A= (((Spv AP))pEP)D’ Sinit, F)

where ( (?si“)
o for each p € P: 2(pas)
e S, is a non-empty finite set of local states (the S, Are disjoint)
o A, C S5, x Act, x D x S, is a set of local transitigns
~——~—

g,™

(s, 5, 5') A s ——% ¢

In sequel, let A = (((Sp, Ap))per, D, sinit, ) be a CFM over P and C.
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Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CEFM) over P and C is a tuple

A= (((Spv AP))pEP)]D)’ Sinit, F)

where
o for each p € P:

e S, is a non-empty finite set of local states (the S, are disjoint)
o Ay, C S, x Act, x D x Sp is a set of local transitions

o D is a nonempty finite set of synchronization messages (or data)

LR

In sequel, let A = (((Sp, Ap))per, D, sinit, ) be a CFM over P and C.
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Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CEFM) over P and C is a tuple

A= (((Spv AP))pEP)]D)’ Sinit, F)

where
o for each p € P:
e S, is a non-empty finite set of local states (the S, are disjoint)
o Ay, C S, x Act, x D x Sp is a set of local transitions
o D is a nonempty finite set of synchronization messages (or data)
@ Sinit € S4 is the global initial state
@ where Sy := HpeP Sp is the set of global states of A

—_— —

In sequel, let A = (((Sp, Ap))per, D, sinit, ) be a CFM over P and C.
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Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CEFM) over P and C is a tuple

A= (((Spv AP))pEP)D’ Sinit, F)

where
o for each p € P:

e S, is a non-empty finite set of local states (the S, are disjoint)
o Ay, C S, x Act, x D x Sp is a set of local transitions

o D is a nonempty finite set of synchronization messages (or data)
@ Sinit € S4 is the global initial state

@ where Sy := HpeP Sp is the set of global states of A
o F C SBS the set of global final states

In sequel, let A = (((Sp, Ap))per, D, sinit, ) be a CFM over P and C.
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Formal semantics of CFMs

Definition (Configuration)
Configurations of A: Conf, := Sa x {n|n: Ch— (C x D)*}

/

o) conkeX of eV
35\-\-& chonnels
@)
W ocke oek,\.l ved R vrea L
—

q(pa)) = he).(c)) (ram) (es,1)
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Formal semantics of CFMs

Definition (Configuration)
Configurations of A: Conf, := Sa x {n|n: Ch— (C x D)*}

Definition (Transitions between configurations)
=4 C Conf 4 x Act x D x Conf 4 is defined as follows:

o sending a message: ((5,7),!(p,q,a),m, (5',1)) € =>4 if

> ([l (p,q,0),m. o)) €

b=

o 0 =nl(p,q) = (a,m) - n((p, 9))]
o 3[r]=%[r] for all r € P\ {p} \[ceq L
w®s) u (r = )
————WM F"—'(E"VL‘)
VLI

v
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Formal semantics of CFMs

Definition (Configuration)
Configurations of A: Conf, := Sa x {n|n: Ch— (C x D)*}

Definition (Transitions between configurations)
=4 C Conf 4 x Act x D x Conf 4 is defined as follows:

o sending a message: ((3,7),!(p,q,a),m, (3',7)) € =4 if
e (3[p],!(p, q,a),m,3'[p]) €
o ' =nl(p,q) = (a,m) -n((p,2))]
e 5[r] =9[r] for all r € P\ {p}
@ receipt of a message: ((3,7),?(p,q,a),m, (3,1)) € =4 if
° (‘[p] (p,¢/a),m,3'[p]) € A,
n((g,p)) = @ (@;m) # € and o’ = 7[(q,p) := @
° s[r] s[]forallrep\{p}

v
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Linearizations of a CFM

Definition ((Accepting) Runs)

Arun of Aonoy...0, € Act” is a sequence p = Y9 M1 Y1 - - - Yn—1Mn Yn
such that - - -

® Y0 = (Sinit, Me) with . mapping any channel to &
° 'yi_l%f\ v; for any ¢ € {1,...,n}

e —

previdus s\ide
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Linearizations of a CFM

Definition ((Accepting) Runs)

A run of Aon ogy...0, € Act” is a sequence p = Yo mM1 Y1 - - - Yn—1 M Vn
such that

® Y0 = (Sinit, Me) with . mapping any channel to &

Ti,My o
@ yi_1j———= i forany i € {1,...,n}

Run p is accepting if v, € F x {n:}.

)

S o F\V(\G\. o\"¥ ck
stete
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Linearizations of a CFM

Definition ((Accepting) Runs)

Arun of Aonoy...0, € Act” is a sequence p = Y9 M1 Y1 - - - Yn—1Mn Yn
such that

® Y0 = (Sinit, Me) with . mapping any channel to &

Ti,My o
@ yi_1j———= i forany i € {1,...,n}

Run p is accepting if v, € F x {n:}.

Definition (Linearizations)

The set of linearizations of CFM A:

Lin(A) := {w € Act* | there is an accepting run of A on w}
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Example communicating finite-state machine

This CFM accepts if A, and A4 are in some local state,
and (as usual) all channels are empty
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P, g, (req, 1)) »g‘ p,q, (req,L))
Ap:
!(p, g, (req,R)) 7(1) q, (ack,L))
—»Q[ ) ?(r,q. (ack.R))
!(p, q,(req,R)) ARt
S
) B
?(q.p,(req,L)) ® ‘\'](qlp.(reqiL))
{l\/
Ag: A \
q i
’(q,p.(req,R)) }!(q.p.(ack.l—))
?(¢,p, (req,R)) ’bﬁg’w-mack-““
c
‘Y\\H c\ Qoa‘c\‘aﬁﬂ‘n\\s\n X
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Overview

© Well-formedness of CFMs

Joost-Pieter Katoen Theoretical Foundations of the



Well-formedness (reminder)

Let Ch:={(p,q) | p# q, p,q € P} be a set of channels over P.

We call w =ay...a, € Act™ proper if
@ every receive in w is preceded by a corresponding send, i.e.:
Y(p,q) € Ch and prefix u of w, we have:

Z [ulip,gm) = Z |ul2(qpm)

meC meC

# sends from p to q # receipts by ¢ from p
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Well-formedness (reminder)

Let Ch:={(p,q) | p# q, p,q € P} be a set of channels over P.

We call w =a7...a, € Act j

@ every receive in w is preceded by a corresponding send, i.e.:
Y(p,q) € Ch and prefix u of w, we have:

Z [ulip,gm) = Z |ul2(qpm)

meC meC

# sends from p to q # receipts by ¢ from p

where |u|, denotes the number of occurrences of action a in u

@ the FIFO policy is respected, i.e.:
Vi<i<j<mn, (pq) € Ch, and a = (p,q,m1), a; = ?(q,p,m2):

Z |a1 Qg 1| (p,qym) — Z |a1 CLJ 1|7 (¢,p,m) implies mi1 = mo
meC meC
\___‘/—\_/

# sends Ko pog H vecedves ok Rom p
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Well-formedness (reminder)

Let Ch:={(p,q) | p# q, p,q € P} be a set of channels over P.

We call w =ay...a, € Act™ proper if

@ every receive in w is preceded by a corresponding send, i.e.:
Y(p,q) € Ch and prefix u of w, we have:

Z [ulip,gm) = Z |ul2(qpm)

meC meC

# sends from p to q # receipts by ¢ from p

where |u|, denotes the number of occurrences of action a in u

@ the FIFO policy is respected, i.e.:
Vi<i< j <n, (p»Q) € Ch7 and a; = !(p7q7m1)7 a; = ?(Q7p7m2):

E |a1 000 ai_1|!(p)q)m) = E |0,1 600 aj_1|7(q)p)m) implies mip = ma
meC meC

A proper word wi 2mec [Whip.gm) = 2mee [Wl2(g.pm)
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Well-formedness and CFMs

fz \WJ € Psck*\ e is an nec.,;\s{?

Ya~ O D on W

For any CFM A and w € Lin(A), w is well-formed.

Recall that there is a strong correspondence between well-formed
linearizations and MSCs.
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From linearizations to partial orders (reminder)

Associate to w = aq ...a, € Act® an Act-labelled poset

M(w) = (E7j7€)

A:E— Ak
such that:
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From linearizations to partial orders (reminder)

Associate to w = aq ...a, € Act® an Act-labelled poset
M(w) = (E7 j,ﬂ)
such that:

@ E={1,...,n} are the positions in w labelled with £(i) = a;

e
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From linearizations to partial orders (reminder)

Associate to w = aq ...a, € Act® an Act-labelled poset
M(w) = (E7 j,ﬂ)

such that: T
@ E={1,...,n} are the positions in w labelled with £(i) = a;

*
0 <= (%msg U Uper <p) where
e~ @ —
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From linearizations to partial orders (reminder)

Associate to w = aq ...a, € Act® an Act-labelled poset
M(w) = (E7 j,ﬂ)
such that:
@ E={1,...,n} are the positions in w labelled with £(i) = a;

*
o <= (%msg U Uper <p) where
o 1 <, jif and only if ¢ < j for any 4,5 € E,

o f
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From linearizations to partial orders (reminder)

Associate to w = aq ...a, € Act® an Act-labelled poset

such that:
@ E={1,...,n} are the positions in w labelled with £(i) = a;
3

o <= (%msg U Uper <p) where

o 1 <, jif and only if ¢ < j for any 4,5 € E,

o i <msg j if for some (p,q) € Ch and m € C we have:

comsg g,
¢(i) =(p, ¢, m) and £(j) ="?(g, p,m) and
Z |a1 600 ai_1|!(p’q’m) = Z |0,1 5 Qj—l|?(q,p,m)

meC meC
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CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w € Act*, M(w) is an MSC.
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CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w € Act*, M(w) is an MSC.

Definition (MSC language of a CFM)
For CFM A, let|£(A) = { M(w) | w € Lin(A) }. - equialet

({ feo 'u/\\-..\s on o CFHA

— QP ccoepYS Sk o s

— CF™ Oepts  ™SCs
(%D
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CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w € Act*, M(w) is an MSC.

Definition (MSC language of a CFM)
For CFM A, let L(A) = { M(w) | w € Lin(A) }.

Relating well-formed words to CFMs

For any well-formed words w and v with M (u) is isomorphic to M (v):

for any CFM A : W@WQA}»

MW e M) $F ME) e AB)
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CFMs
@ Bounded words

@ Bounded MSCs
@ Bounded CFMs
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Emptiness problem is undecidable for CFMs

The following (emptiness) problem:

INPUT: CEM A over processes P and message contents C
QUESTION: | Is £L(A) empty?

is undecidable.
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Emptiness problem is undecidable for CFMs

The following (emptiness) problem:

INPUT: CFM A over processes P and message contents C
QUESTION: Is £(A) empty?

is undecidable. (Even if C is a singleton set).
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Restrictions on CFMs

@ So: most elementary problems for CFMs are undecidable.

@ This is (very) unsatisfactory.

@ Main cause: presence of channels with unbounded capacity

@ Consider restricted versions of CFMs by bounding the channel
capacities. (size)

@ Thus: we fix the channel capacities a priori.
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Restrictions on CFMs

So: most, elementary problems for CFMs are undecidable.
This is (very) unsatisfactory.

Main cause: presence of channels with unbounded capacity

e © ¢ ¢

Consider restricted versions of CFMs by bounding the channel
capacities.

Thus: we fix the channel capacities a priori.
This yields:
@ universally bounded CFMs: all runs need a finite buffer capacity

o existentially bounded CFMs: some runs need a finite buffer capacity
possibly, some runs may still need unbounded buffers.

V.

We define bounded CFMs, by first considering bounded words and
bounded MSCs. Bounded CFMs will then “generate’ bounded MSCs.

S —

cka: o«qa\:

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29




Bounded words

Definition (B-bounded words)
Let B € Nand B > 0. A word w € Act™ is called B-bounded if for any
prefix u of w and any channel (p, ¢) € Ch:

0 < Z|U|l(p,q,a) _Z|u|7(q,p,a) <@

- aeC acC \
FFo  dfse~ds 4F ceceNes N\
Rom p—a ot 3femp hee are
= Prtk)( (XN W Pﬁ.s\‘( “w ol madk F\B
V«d.b 3e~08
%am P* j_
?\AM M W
#senés P—9 3 . Mk* "

Mk hewe ok ourn
\'QCQM& 3!k A\

Joost-Pieter Katoen Theoretical Foundations of the UML 17/29



Bounded words

Definition (B-bounded words)

Let BeNand B > 0. A word w € Act* is called B-bounded if for any
prefix u of w and any channel (p,q) € Ch:

0 < Z|u|!(p,q,a)_Z|u|7(q,p,a) < B

aeC aeC

Word w is B-bounded if for any pair of processes (p, ¢), the number of sends

from p to q cannot be more than B ahead of the number of receipts by ¢ from

p (for every message a).

v
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Bounded words

Definition (B-bounded words)
Let BeNand B > 0. A word w € Act* is called B-bounded if for any
prefix u of w and any channel (p,q) € Ch:

U= Z|u|!(pyq7a)_Z|u|7(q,p,a) < B (*)

aeC aeC

v

Word w is B-bounded if for any pair of processes (p, ¢), the number of sends
from p to q cannot be more than B ahead of the number of receipts by ¢ from

p (for every message a).

s - —.‘

W =

I(1,2,a) 1(1,2,b) 7(2,1,a) ?(2,1,b) is 2-bounded but not 1-bounded.
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e e
- 2 L(a2d) A fre
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Clavn - W s 2 bourded V=2
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Bounded MSCs

Definition (Universally bounded MSCs)

Let B e Nand B > 0. An MSC M € M is called universally B-bounded
(VB-bounded, for short) if

al) \mecazetuns of
Lin(M) = Lin”(M) HIC M ace
B—leourded

where Lin” (M) := {w e Lin(M) | w is B-bounded}.
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Bounded MSCs

Definition (Universally bounded MSCs)

Let Be Nand B > 0. An MSC M € M is called universally B-bounded
(VB-bounded, for short) if

Lin(M) = Lin®(M)

where Lin” (M) := {w € Lin(M) | w is B-bounded}.

MSC M is VB-bounded if all its linearizations are B-bounded.
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Bounded MSCs

Definition (Universally bounded MSCs)

Let Be Nand B > 0. An MSC M € M is called universally B-bounded
(VB-bounded, for short) if

Lin(M) = Lin®(M)

where Lin” (M) := {w € Lin(M) | w is B-bounded}.

v

MSC M is VB-bounded if all its linearizations are B-bounded. \

So: if M is VY B-bounded, then a buffer capacity B is sufficient for all
possible runs of MSC M. }
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Bounded MSCs

Definition (Existentially bounded MSCs)

Let BeNand B > 0. An MSC M € M is called existentially
B-bounded (3B-bounded, for short) if Lin(M) N Lin® (M) # @.

R —bou~ded

\S\QO& sabiens
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Bounded MSCs

Definition (Existentially bounded MSCs)

Let Be Nand B > 0. An MSC M € M is called existentially
B-bounded (3B-bounded, for short) if Lin(M) N Lin® (M) # @.

MSC M is dB-bounded if at least one linearization of M is B-bounded.

Consequence
The eventsof an IB-bounded MSC M can be “scheduled” in such a way

that no channel ever contains more than B messages.
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Bounded MSCs

H onsgs
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12:(2.0 ¢

17:(1.2) reqe—<~— -

18: 01,1 o

19: (21 reqe- e
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An 32-bounded MSC with a corresponding justification
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Bounded MSCs
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Lk s he m¥dmel & 3.k,
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Bounded MSCs

11 2
eag——1 M
ac
=l =g ack
ack
req ¢
e ack
b re
p ack q ack
req ¢
req ]
req
req A — ——
I I

req

req

req

req

req

V4-bounded
342-bounded
not d1-bounded
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(1) req
(1.6 req
(2.1) req
req
req
req
req
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Bounded MSCs

1] [27]
req | [27]
ack 1] [27]
:q ack req ack A req 2
K ack req L)
red ack req ack req
req
req req
req -
req
=t | | — —
.| ——
V4-bounded V3-bounded V5-bounded
342-bounded J1-bounded J1-bounded
not d1-bounded
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Bounded CFMs

Definition (Universally bounded CFM)

@ Let Be Nand B > 0. CEFM A is unwersally B-bounded if each
MSC in £L(A) is VB-bounded.

Q@ CFM A is universally bounded if it is VB-bounded for some B € N
and B > 0.

Proposior ety WB —bondcd CFM tres Ralke\y

VV\GQ
Ce,mfb\\cn ‘,.,;\g\% 'ch V%—w M s
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Bounded CFMs

Definition (Universally bounded CFM)

@ Let BeNand B > 0. CFM A is universally B-bounded if each
MSC in £(A) is VB-bounded.

Q@ CFM A is universally bounded if it is VB-bounded for some B € N
and B > 0.

Definition (Existentially bounded CFM)

@ Let BeNand B > 0. CFM A is existentially B-bounded if each
MSC in £(.A) is 3B-bounded.

Q@ CFM A is existentially bounded if it is 3B-bounded for some B € N
and B > 0.
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Example (1)

CEM EAR-
1 2
process p: process q: req
3 4
'(pv q, req) 7((]7]97 req) s ot B
7 req ?
J req e
I I
31 beornded
Vf—\’a‘\d&d\

J1-bounded, but not VB-bounded for any B
so, not V-bounded.
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Example (2)

cCFrM H
process p: process q: Yaanckeakis
D ™~
. req ack
l(p, q,req) ?(q,p,req)
req ack
req
(p,q,req)| |?(p,q,ack)
. | ]
F1- bouwrded
V 3I—- boundled

J1-bounded, and V3-bounded
™Me 'k(A)
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3[%]-bounded, but not VB-bounded for any B
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= 8
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Justification

@ Phase 1: process p sends n messages to ¢
o messages of phase 1 are tagged with data req

@ ... and waits for the first acknowledgement of ¢

@ Phase 2: each ack is directly answered by p by another message
& messages of phase 2 are tagged with data

@ So, p sends@ regs to ¢ and ¢ sends@acks

existentially [ ]-bounded

q starts to send acks after [%] requests have been sent by p

after n sends, process p receives the first ack; then phase 2 starts
in phase 2, process p and ¢q keep sending and receiving messages “in

sync”

©

¢ ¢ @

@ Note: the CFM is also non-deterministic, and may deadlock.
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Justification

@ Phase 1: process p sends n messages to ¢
o messages of phase 1 are tagged with data req

@ ... and waits for the first acknowledgement of ¢

@ Phase 2: each ack is directly answered by p by another message
& messages of phase 2 are tagged with data

@ So, p sends 2n reqgs to ¢ and ¢ sends n acks

existentially [ ]-bounded

q starts to send acks after [ ] requests have been sent by p

after n sends, process p receives the first ack; then phase 2 starts
in phase 2, process p and ¢q keep sending and receiving messages “in

sync”

©

¢ ¢ @

@ Note: the CFM is also non-deterministic, and may deadlock. Why?
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Emptiness is decidable for 3-bounded CFMs

Theorem: [Genest et. al, 2006]

For any 3-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete). /

( La)=¢ 7
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Emptiness is decidable for 3-bounded CFMs

Theorem: [Genest et. al, 2006]

For any 3-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete).

This decision problem is undecidable for arbitrary CFMs, and is obviously
decidable for V-bounded CFMs, as V-bounded CFMs have finitely many

configurations, and thus one can check whether a configuration (s, 7.) with
s € F is reachable by a simple graph analysis.
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Some (un)decidability results

Undecidable

The following problems on CFM A are all undecidable:
@ For BeNand B >0, is CFM A VB-bounded?
Q Is CFM A universally bounded?
© For BeNand B >0, is CFM A 3B-bounded?
@ Is CFM A existentially bounded?

the proofs of all these facts are left as an exercise
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Deadlocks

Deadlock-free CFMs

(5,m) € Conf 4 is a deadlock configuration of CEFM A if there is no
“accepting” configuration (3',7) € F x {n.} with (5,n)=7% (3, 7).

CFM A is deadlock-free whenever it has no reachable deadlock
configuration.

Checking deadlock-freeness is undecidable
The decision problem: Is CFM A deadlock free? is undecidable.

Checking B-boundedness for deadlock-free CFMs is decidable
The decision problem: for deadlock-free CFM A and B € N with B > 0,

is A VB-bounded? is decidable.
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