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Communicating finite-state machines

A communicating finite-state machine (CFM) is a collection of
finite-state machines, one for each process
Communication between these machines takes place via (a priori)
unbounded reliable FIFO channels
The underlying system architecture is parametrised by the set P of
processes and the set C of messages
Action !(p, q,m) puts message m at the end of the channel (p, q)
Action ?(q, p,m) is enabled only if m is at head of buffer, and its
execution by process q removes m from the channel (p, q)
Synchronisation messages are used to avoid deadlocks
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Example communicating finite-state machine

This CFM accepts if Ap and Aq are in some local state,
and (as usual) all channels are empty
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Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F )

where
for each p ∈ P:
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Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F )

where
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.
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Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F )

where
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

D is a nonempty finite set of synchronization messages (or data)

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.
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Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F )

where
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

D is a nonempty finite set of synchronization messages (or data)
sinit ∈ SA is the global initial state

where SA :=
∏

p∈P Sp is the set of global states of A

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.
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Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F )

where
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

D is a nonempty finite set of synchronization messages (or data)
sinit ∈ SA is the global initial state

where SA :=
∏

p∈P Sp is the set of global states of A
F ⊆ SA is the set of global final states

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.
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Formal semantics of CFMs

Definition (Configuration)
Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}
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Formal semantics of CFMs

Definition (Configuration)
Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Definition (Transitions between configurations)
=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]
s[r] = s′[r] for all r ∈ P \ {p}
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Formal semantics of CFMs

Definition (Configuration)
Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Definition (Transitions between configurations)
=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]
s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], ?(p, q, a),m, s′[p]) ∈ ∆p

η((q, p)) = w · (a,m) &= ε and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}
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Linearizations of a CFM

Definition ((Accepting) Runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}
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Linearizations of a CFM

Definition ((Accepting) Runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.
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Linearizations of a CFM

Definition ((Accepting) Runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition (Linearizations)
The set of linearizations of CFM A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}
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Example communicating finite-state machine

This CFM accepts if Ap and Aq are in some local state,
and (as usual) all channels are empty
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Well-formedness (reminder)

Let Ch := {(p, q) | p != q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if
1 every receive in w is preceded by a corresponding send, i.e.:

∀(p, q) ∈ Ch and prefix u of w, we have:
∑

m∈C
|u|!(p,q,m)

︸ ︷︷ ︸
# sends from p to q

!
∑

m∈C
|u|?(q,p,m)

︸ ︷︷ ︸
# receipts by q from p
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Well-formedness (reminder)

Let Ch := {(p, q) | p != q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if
1 every receive in w is preceded by a corresponding send, i.e.:

∀(p, q) ∈ Ch and prefix u of w, we have:
∑

m∈C
|u|!(p,q,m)

︸ ︷︷ ︸
# sends from p to q

!
∑

m∈C
|u|?(q,p,m)

︸ ︷︷ ︸
# receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 " i < j " n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):
∑

m∈C
|a1 . . . ai−1|!(p,q,m) =

∑

m∈C
|a1 . . . aj−1|?(q,p,m) implies m1 = m2
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Well-formedness (reminder)

Let Ch := {(p, q) | p != q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if
1 every receive in w is preceded by a corresponding send, i.e.:

∀(p, q) ∈ Ch and prefix u of w, we have:
∑

m∈C
|u|!(p,q,m)

︸ ︷︷ ︸
# sends from p to q

!
∑

m∈C
|u|?(q,p,m)

︸ ︷︷ ︸
# receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 " i < j " n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):
∑

m∈C
|a1 . . . ai−1|!(p,q,m) =

∑

m∈C
|a1 . . . aj−1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
∑

m∈C |w|!(p,q,m) =
∑

m∈C |w|?(q,p,m)
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Well-formedness and CFMs

Lemma
For any CFM A and w ∈ Lin(A), w is well-formed.

Recall that there is a strong correspondence between well-formed
linearizations and MSCs.
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From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,$, !)

such that:
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From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,$, !)

such that:
E = {1, . . . , n} are the positions in w labelled with !(i) = ai
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From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,$, !)

such that:
E = {1, . . . , n} are the positions in w labelled with !(i) = ai

$=
(
≺msg ∪

⋃
p∈P ≺p

)∗
where
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From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,$, !)

such that:
E = {1, . . . , n} are the positions in w labelled with !(i) = ai

$=
(
≺msg ∪

⋃
p∈P ≺p

)∗
where

i ≺p j if and only if i < j for any i, j ∈ Ep
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From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,$, !)

such that:
E = {1, . . . , n} are the positions in w labelled with !(i) = ai

$=
(
≺msg ∪

⋃
p∈P ≺p

)∗
where

i ≺p j if and only if i < j for any i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

!(i) = !(p, q,m) and !(j) = ?(q, p,m) and
∑

m∈C
|a1 . . . ai−1|!(p,q,m) =

∑

m∈C
|a1 . . . aj−1|?(q,p,m)
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CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w ∈ Act∗, M(w) is an MSC.
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CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w ∈ Act∗, M(w) is an MSC.

Definition (MSC language of a CFM)
For CFM A, let L(A) = {M(w) | w ∈ Lin(A) }.

Joost-Pieter Katoen Theoretical Foundations of the UML 13/29

I
equivalent

( two  views  on  a CFM

✓

HSCs
- CFM  accepts finite words

( Lin Ca))

- CFM  accepts MSCS

( LCAD



CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w ∈ Act∗, M(w) is an MSC.

Definition (MSC language of a CFM)
For CFM A, let L(A) = {M(w) | w ∈ Lin(A) }.

Relating well-formed words to CFMs
For any well-formed words u and v with M(u) is isomorphic to M(v):

for any CFM A : u ∈ L(A) iff v ∈ L(A).
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Overview

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs
Bounded words
Bounded MSCs
Bounded CFMs
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Emptiness problem is undecidable for CFMs

Theorem: [Brand & Zafiropulo 1983]
The following (emptiness) problem:
Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

is undecidable.
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Emptiness problem is undecidable for CFMs

Theorem: [Brand & Zafiropulo 1983]
The following (emptiness) problem:
Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

is undecidable. (Even if C is a singleton set).
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Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.
This is (very) unsatisfactory.
Main cause: presence of channels with unbounded capacity
Consider restricted versions of CFMs by bounding the channel
capacities.
Thus: we fix the channel capacities a priori.
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Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.
This is (very) unsatisfactory.
Main cause: presence of channels with unbounded capacity
Consider restricted versions of CFMs by bounding the channel
capacities.
Thus: we fix the channel capacities a priori.
This yields:

universally bounded CFMs: all runs need a finite buffer capacity
existentially bounded CFMs: some runs need a finite buffer capacity
possibly, some runs may still need unbounded buffers.

We define bounded CFMs, by first considering bounded words and
bounded MSCs. Bounded CFMs will then generate bounded MSCs.
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Bounded words

Definition (B-bounded words)
Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 "
∑

a∈C
|u|!(p,q,a) −

∑

a∈C
|u|?(q,p,a) " B

Joost-Pieter Katoen Theoretical Foundations of the UML 17/29
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Bounded words

Definition (B-bounded words)
Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 "
∑

a∈C
|u|!(p,q,a) −

∑

a∈C
|u|?(q,p,a) " B

Intuition
Word w is B-bounded if for any pair of processes (p, q), the number of sends
from p to q cannot be more than B ahead of the number of receipts by q from
p (for every message a).
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Bounded words

Definition (B-bounded words)
Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 "
∑

a∈C
|u|!(p,q,a) −

∑

a∈C
|u|?(q,p,a) " B

Intuition
Word w is B-bounded if for any pair of processes (p, q), the number of sends
from p to q cannot be more than B ahead of the number of receipts by q from
p (for every message a).

Example
!(1, 2, a) !(1, 2, b) ?(2, 1, a) ?(2, 1, b) is 2-bounded but not 1-bounded.
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Bounded MSCs

Definition (Universally bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.
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Bounded MSCs

Definition (Universally bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Intuition
MSC M is ∀B-bounded if all its linearizations are B-bounded.
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Bounded MSCs

Definition (Universally bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Intuition
MSC M is ∀B-bounded if all its linearizations are B-bounded.

So: if M is ∀B-bounded, then a buffer capacity B is sufficient for all
possible runs of MSC M .
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Bounded MSCs

Definition (Existentially bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called existentially
B-bounded (∃B-bounded, for short) if Lin(M) ∩ LinB(M) %= ∅.
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Bounded MSCs

Definition (Existentially bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called existentially
B-bounded (∃B-bounded, for short) if Lin(M) ∩ LinB(M) $= ∅.

Intuition
MSC M is ∃B-bounded if at least one linearization of M is B-bounded.

Consequence
The event of an ∃B-bounded MSC M can be “scheduled” in such a way
that no channel ever contains more than B messages.
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Bounded MSCs

An ∃2-bounded MSC with a corresponding justification
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Bounded MSCs

Example
1 2
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Bounded MSCs

Example
1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

1 2
req

req

req

req

req
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Bounded MSCs

Example
1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

∀3-bounded
∃1-bounded

1 2
req

req

req

req

req

∀5-bounded
∃1-bounded
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Bounded CFMs

Definition (Universally bounded CFM)
1 Let B ∈ N and B > 0. CFM A is universally B-bounded if each

MSC in L(A) is ∀B-bounded.
2 CFM A is universally bounded if it is ∀B-bounded for some B ∈ N

and B > 0.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29
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Bounded CFMs

Definition (Universally bounded CFM)
1 Let B ∈ N and B > 0. CFM A is universally B-bounded if each

MSC in L(A) is ∀B-bounded.
2 CFM A is universally bounded if it is ∀B-bounded for some B ∈ N

and B > 0.

Definition (Existentially bounded CFM)
1 Let B ∈ N and B > 0. CFM A is existentially B-bounded if each

MSC in L(A) is ∃B-bounded.
2 CFM A is existentially bounded if it is ∃B-bounded for some B ∈ N

and B > 0.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29



Example (1)

!(p, q, req) ?(q, p, req)

process p: process q:

p q
req

req

req

req

req

∃1-bounded, but not ∀B-bounded for any B
so, not ∀-bounded.
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Example (2)

!(p, q, req)

?(q, p, req)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

process p: process q:

p q

req

req

req

ack

ack

∃1-bounded, and ∀3-bounded
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Example (3)

!(p, q, req )

?(q, p, req )

?(p, q, ack)

!(q, p, ack)!(p, q, req ) ?(p, q, ack)

?(q, p, req ) !(q, p, ack)

∃$n2 %-bounded, but not ∀B-bounded for any B
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Justification

Phase 1: process p sends n messages to q
messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Phase 2: each ack is directly answered by p by another message
messages of phase 2 are tagged with data req

So, p sends 2n reqs to q and q sends n acks
existentially $n

2 %-bounded
q starts to send acks after $n

2 % requests have been sent by p
after n sends, process p receives the first ack; then phase 2 starts
in phase 2, process p and q keep sending and receiving messages “in
sync”

Note: the CFM is also non-deterministic, and may deadlock.
Joost-Pieter Katoen Theoretical Foundations of the UML 26/29
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Justification

Phase 1: process p sends n messages to q
messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Phase 2: each ack is directly answered by p by another message
messages of phase 2 are tagged with data req

So, p sends 2n reqs to q and q sends n acks
existentially $n

2 %-bounded
q starts to send acks after $n

2 % requests have been sent by p
after n sends, process p receives the first ack; then phase 2 starts
in phase 2, process p and q keep sending and receiving messages “in
sync”

Note: the CFM is also non-deterministic, and may deadlock. Why?
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Emptiness is decidable for ∃-bounded CFMs

Theorem: [Genest et. al, 2006]

For any ∃-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete).
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Emptiness is decidable for ∃-bounded CFMs

Theorem: [Genest et. al, 2006]

For any ∃-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete).

Note:
This decision problem is undecidable for arbitrary CFMs, and is obviously
decidable for ∀-bounded CFMs, as ∀-bounded CFMs have finitely many
configurations, and thus one can check whether a configuration (s, ηε) with
s ∈ F is reachable by a simple graph analysis.
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Some (un)decidability results

Undecidable
The following problems on CFM A are all undecidable:

1 For B ∈ N and B > 0, is CFM A ∀B-bounded?
2 Is CFM A universally bounded?
3 For B ∈ N and B > 0, is CFM A ∃B-bounded?
4 Is CFM A existentially bounded?

the proofs of all these facts are left as an exercise
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Deadlocks

Deadlock-free CFMs
(s, η) ∈ ConfA is a deadlock configuration of CFM A if there is no
“accepting” configuration (s′, η′) ∈ F × {ηε} with (s, η) ⇒ ∗

A (s′, η′).

CFM A is deadlock-free whenever it has no reachable deadlock
configuration.

Checking deadlock-freeness is undecidable
The decision problem: Is CFM A deadlock free? is undecidable.

Checking B-boundedness for deadlock-free CFMs is decidable
The decision problem: for deadlock-free CFM A and B ∈ N with B > 0,
is A ∀B-bounded? is decidable.
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