
Theoretical Foundations of the UML
Lecture 9: Bounded MSCs and CFMs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

May 12, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML 1/29

AS

Outline

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs
Bounded words
Bounded MSCs
Bounded CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 2/29

well - formed

#
language of words

i
✓

language of MS Cs

✓ bounded =

" bound the capacity of

✓ the communication channels

✓ of a CFM
"

Overview

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs
Bounded words
Bounded MSCs
Bounded CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 3/29

Communicating finite-state machines

A communicating finite-state machine (CFM) is a collection of
finite-state machines, one for each process
Communication between these machines takes place via (a priori)
unbounded reliable FIFO channels
The underlying system architecture is parametrised by the set P of
processes and the set C of messages
Action !(p, q,m) puts message m at the end of the channel (p, q)
Action ?(q, p,m) is enabled only if m is at head of buffer, and its
execution by process q removes m from the channel (p, q)
Synchronisation messages are used to avoid deadlocks

Joost-Pieter Katoen Theoretical Foundations of the UML 4/29

Example communicating finite-state machine

This CFM accepts if Ap and Aq are in some local state,
and (as usual) all channels are empty

Joost-Pieter Katoen Theoretical Foundations of the UML 5/29

CFM
"

implements
"

MSG

→ o

If⇒
o

→ a
I is

→

T
=

←
E 5

ib b

final
-

Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F)

where
for each p ∈ P:

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

-

local (global initial

automata
I

statesouls:data

(L
, R)

states

Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F)

where
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

-

r
:*:*:

(s
,

T
,

m
, s

') C- Ap S s
'

Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F)

where
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

D is a nonempty finite set of synchronization messages (or data)

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

L
,

R

Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F)

where
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

D is a nonempty finite set of synchronization messages (or data)
sinit ∈ SA is the global initial state

where SA :=
∏

p∈P Sp is the set of global states of A

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

- -

Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F)

where
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

D is a nonempty finite set of synchronization messages (or data)
sinit ∈ SA is the global initial state

where SA :=
∏

p∈P Sp is the set of global states of A
F ⊆ SA is the set of global final states

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

O
-

Formal semantics of CFMs

Definition (Configuration)
Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Joost-Pieter Katoen Theoretical Foundations of the UML 7/29

/ -

global
content of all

state channels

6.s)

Why aah Rack ,
L res

,
R read ,

L

-

2¢p, g-D= lack , R)
. (ache

,
L) (res ,

R) (see
,

L)

Formal semantics of CFMs

Definition (Configuration)
Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Definition (Transitions between configurations)
=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]
s[r] = s′[r] for all r ∈ P \ {p}

Joost-Pieter Katoen Theoretical Foundations of the UML 7/29

-

-

- - - -

y - (sin)

, ,Hires ,
D

÷K r
'

= I stir ')

Formal semantics of CFMs

Definition (Configuration)
Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Definition (Transitions between configurations)
=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]
s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], ?(p, q, a),m, s′[p]) ∈ ∆p

η((q, p)) = w · (a,m) &= ε and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}

Joost-Pieter Katoen Theoretical Foundations of the UML 7/29

Linearizations of a CFM

Definition ((Accepting) Runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

-

previous slide

Linearizations of a CFM

Definition ((Accepting) Runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

O

-
-

I
is a Anil global

stale

Linearizations of a CFM

Definition ((Accepting) Runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition (Linearizations)
The set of linearizations of CFM A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Example communicating finite-state machine

This CFM accepts if Ap and Aq are in some local state,
and (as usual) all channels are empty

Joost-Pieter Katoen Theoretical Foundations of the UML 5/29

2

1

3

B

A

C

✓
2 (C Pie))

initial configuration : ((n
,

A)
,

e
,
CT 2((EPD

I ! free
,

R)

((3. A)
, free, R)

,
E)

no

:* .

- {
. "

Hii :* '

µ ! lacks L)

((3 B) ,
e

,
lack , LD

Overview

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs
Bounded words
Bounded MSCs
Bounded CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 9/29

Well-formedness (reminder)

Let Ch := {(p, q) | p != q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if
1 every receive in w is preceded by a corresponding send, i.e.:

∀(p, q) ∈ Ch and prefix u of w, we have:
∑

m∈C
|u|!(p,q,m)

︸ ︷︷ ︸
sends from p to q

!
∑

m∈C
|u|?(q,p,m)

︸ ︷︷ ︸
receipts by q from p

Joost-Pieter Katoen Theoretical Foundations of the UML 10/29

Well-formedness (reminder)

Let Ch := {(p, q) | p != q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if
1 every receive in w is preceded by a corresponding send, i.e.:

∀(p, q) ∈ Ch and prefix u of w, we have:
∑

m∈C
|u|!(p,q,m)

︸ ︷︷ ︸
sends from p to q

!
∑

m∈C
|u|?(q,p,m)

︸ ︷︷ ︸
receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 " i < j " n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):
∑

m∈C
|a1 . . . ai−1|!(p,q,m) =

∑

m∈C
|a1 . . . aj−1|?(q,p,m) implies m1 = m2

Joost-Pieter Katoen Theoretical Foundations of the UML 10/29

0

#s#as
FEES from p

-

Well-formedness (reminder)

Let Ch := {(p, q) | p != q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if
1 every receive in w is preceded by a corresponding send, i.e.:

∀(p, q) ∈ Ch and prefix u of w, we have:
∑

m∈C
|u|!(p,q,m)

︸ ︷︷ ︸
sends from p to q

!
∑

m∈C
|u|?(q,p,m)

︸ ︷︷ ︸
receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 " i < j " n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):
∑

m∈C
|a1 . . . ai−1|!(p,q,m) =

∑

m∈C
|a1 . . . aj−1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
∑

m∈C |w|!(p,q,m) =
∑

m∈C |w|?(q,p,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/29

- O
- -

Well-formedness and CFMs

Lemma
For any CFM A and w ∈ Lin(A), w is well-formed.

Recall that there is a strong correspondence between well-formed
linearizations and MSCs.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/29

(
I we act 'T th :" off

#

-

From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,$, !)

such that:

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

- -

L l : E → Act

From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,$, !)

such that:
E = {1, . . . , n} are the positions in w labelled with !(i) = ai

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

- -

From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,$, !)

such that:
E = {1, . . . , n} are the positions in w labelled with !(i) = ai

$=
(
≺msg ∪

⋃
p∈P ≺p

)∗
where

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

T

-

From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,$, !)

such that:
E = {1, . . . , n} are the positions in w labelled with !(i) = ai

$=
(
≺msg ∪

⋃
p∈P ≺p

)∗
where

i ≺p j if and only if i < j for any i, j ∈ Ep

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

=
-

a

From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,$, !)

such that:
E = {1, . . . , n} are the positions in w labelled with !(i) = ai

$=
(
≺msg ∪

⋃
p∈P ≺p

)∗
where

i ≺p j if and only if i < j for any i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

!(i) = !(p, q,m) and !(j) = ?(q, p,m) and
∑

m∈C
|a1 . . . ai−1|!(p,q,m) =

∑

m∈C
|a1 . . . aj−1|?(q,p,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

- F-
-

CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w ∈ Act∗, M(w) is an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 13/29

-

CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w ∈ Act∗, M(w) is an MSC.

Definition (MSC language of a CFM)
For CFM A, let L(A) = {M(w) | w ∈ Lin(A) }.

Joost-Pieter Katoen Theoretical Foundations of the UML 13/29

I
equivalent

(two views on a CFM

✓

HSCs
- CFM accepts finite words

(Lin Ca))

- CFM accepts MSCS

(LCAD

CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w ∈ Act∗, M(w) is an MSC.

Definition (MSC language of a CFM)
For CFM A, let L(A) = {M(w) | w ∈ Lin(A) }.

Relating well-formed words to CFMs
For any well-formed words u and v with M(u) is isomorphic to M(v):

for any CFM A : u ∈ L(A) iff v ∈ L(A).

Joost-Pieter Katoen Theoretical Foundations of the UML 13/29

-
- -

hmmMlu) ELCA) iffME) ELCA)

Overview

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs
Bounded words
Bounded MSCs
Bounded CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29

0

Emptiness problem is undecidable for CFMs

Theorem: [Brand & Zafiropulo 1983]
The following (emptiness) problem:
Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

is undecidable.

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29

Emptiness problem is undecidable for CFMs

Theorem: [Brand & Zafiropulo 1983]
The following (emptiness) problem:
Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

is undecidable. (Even if C is a singleton set).

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29

Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.
This is (very) unsatisfactory.
Main cause: presence of channels with unbounded capacity
Consider restricted versions of CFMs by bounding the channel
capacities.
Thus: we fix the channel capacities a priori.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

(size)

Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.
This is (very) unsatisfactory.
Main cause: presence of channels with unbounded capacity
Consider restricted versions of CFMs by bounding the channel
capacities.
Thus: we fix the channel capacities a priori.
This yields:

universally bounded CFMs: all runs need a finite buffer capacity
existentially bounded CFMs: some runs need a finite buffer capacity
possibly, some runs may still need unbounded buffers.

We define bounded CFMs, by first considering bounded words and
bounded MSCs. Bounded CFMs will then generate bounded MSCs.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

-

aka : accept

Bounded words

Definition (B-bounded words)
Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 "
∑

a∈C
|u|!(p,q,a) −

∑

a∈C
|u|?(q,p,a) " B

Joost-Pieter Katoen Theoretical Foundations of the UML 17/29

- -

-

O
. - - i

Fifo # sends # receives

from p → s
at of from p thee are

in prefix u in prefix u
at most B

pending sends

sends from p→g in u
from p tog

that have not been

in prefix a

received yet in u

Bounded words

Definition (B-bounded words)
Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 "
∑

a∈C
|u|!(p,q,a) −

∑

a∈C
|u|?(q,p,a) " B

Intuition
Word w is B-bounded if for any pair of processes (p, q), the number of sends
from p to q cannot be more than B ahead of the number of receipts by q from
p (for every message a).

Joost-Pieter Katoen Theoretical Foundations of the UML 17/29

Bounded words

Definition (B-bounded words)
Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 "
∑

a∈C
|u|!(p,q,a) −

∑

a∈C
|u|?(q,p,a) " B

Intuition
Word w is B-bounded if for any pair of processes (p, q), the number of sends
from p to q cannot be more than B ahead of the number of receipts by q from
p (for every message a).

Example
!(1, 2, a) !(1, 2, b) ?(2, 1, a) ?(2, 1, b) is 2-bounded but not 1-bounded.

Joost-Pieter Katoen Theoretical Foundations of the UML 17/29

HI

I
this prefix violates Ct) for 13=7

- - =

-7TT

Exanpte .

- 2- -

W = ! (p , g. a) ! Cp , e. a) ? Camp,
a) ! (p , ga) ! I a ,p , b) ? (e ,p ,

a)
- -

2 .
Cp, s) I Epis)

2 7 (e
, p) 2 (Gp)

Claim w is 33 bounded 13=3
-

:

-

prefix u

- e= ✓

- ! (pig ,
a) = 7

-
! (p . I , a) Icp , I. e) = 2

-
I

. Crs
,

a) ! Cp , a. a) ? Ce
,

P ,
a) = 1

Claim w is 2 - bounded

Proposition if w is B - banded

then w is (Btn) - bonded

Typically ,
we . are interested in determining the minimal

B for which w is B - bonded
.

Bounded MSCs

Definition (Universally bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

AI
linearization s of

MSC M are

B- bounded

Bounded MSCs

Definition (Universally bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Intuition
MSC M is ∀B-bounded if all its linearizations are B-bounded.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

p I
-

-

I Z Claim MSC M is

4×3
V-3-bomdedmso.co

M µ7 I 2- bonded

To \ g
F 3- bounded

- -

#
2- bounded

Lin C M) = { 1234658 frog ,

1426.8351079 >

z - bonded

(pts) 0 1 r O a r n

③
y r 0

1 2 3 4 b 5 8 7 no g

(gp) O O n 7 a
O I I a O O

C PiS) O a z z 2

③
2 2 2 I 0

I 4 2 6 8 3 5 no 7 g

(an

DO
O O I O O O 7 O o O

Bounded MSCs

Definition (Universally bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Intuition
MSC M is ∀B-bounded if all its linearizations are B-bounded.

So: if M is ∀B-bounded, then a buffer capacity B is sufficient for all
possible runs of MSC M .

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Bounded MSCs

Definition (Existentially bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called existentially
B-bounded (∃B-bounded, for short) if Lin(M) ∩ LinB(M) %= ∅.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/29

-

B - bounded

line on
'

 satins

Proposition if MSC M is FB - bonded
,

-

then it is F (Bts) - bonded
.

Similarly for FB - bounded MSCS

Bounded MSCs

Definition (Existentially bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called existentially
B-bounded (∃B-bounded, for short) if Lin(M) ∩ LinB(M) $= ∅.

Intuition
MSC M is ∃B-bounded if at least one linearization of M is B-bounded.

Consequence
The event of an ∃B-bounded MSC M can be “scheduled” in such a way
that no channel ever contains more than B messages.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/29

S

Bounded MSCs

An ∃2-bounded MSC with a corresponding justification

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29

#
msgs
in transit

p→E

1 10 • • 2

OF
msgs

• 4 11 intense
3 1,0 • • 5 0,1 q → p

or 8 2,2
6 11 • • 20 1,7

• 2,7 FB - banded

7 2,1 o co 7 I

9 2,7 a • 1,2 i

minims
17 2,1 o • 0,2 sit . MSC

12 2,0 •

Mis
27 2,2 o • 1,0
18 2,2 o FB - bonded

19 2,2 a . GO
20 2,0 o

Find a

23 2,0 o . 0,0
" schedule

"

in which

messages are

received as soon as

possible .

-

Bounded MSCs

Example
1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

1 2

req

req

req

ack

ack

1 2
req

req

req

req

req

Joost-Pieter Katoen Theoretical Foundations of the UML 21/29

C t)

what is the minimal B s .t
.

M is FB - bounded ?

13=7

(no) •
1 2

. (an)

• 3 (on)
4

(an) •
b •

fan)

tho) 5 • • 7 Can)
•

8
(rn) ro (o.o)

go

tho)

"

Scheduling
"

strategy of the events is :

- receive messages as soon as possible

- postpone sending messages as long as possible

what is the minimal B s
.

t
.

M is

FB
- bounded ?

=

B =3

p 2G. o) • . Cnn)
• 6 Cao)

3(za) .

too
Can)

(2. o)
9 . • g (no)

@

(3,0) 5

-
•

yo (o , o)

(soy
8 .

•

Scheduling
"

strategy ,

- defer receiving messages as long
as possible

-
send messages as soon as possible

⇒ in order to find the maximal

capacity needed for all possible

linear . saloons

Bounded MSCs

Example
1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

1 2
req

req

req

req

req

Joost-Pieter Katoen Theoretical Foundations of the UML 21/29

o O

⑧

:

:
O

G. o) 1 2 (o ,
o)

↳ o Can)

4.o)
°

o s (on)

6
7 •

th 2)
G.n) 8

10.21
F z -

eh
.

bounded .

Bounded MSCs

Example
1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

∀3-bounded
∃1-bounded

1 2
req

req

req

req

req

∀5-bounded
∃1-bounded

Joost-Pieter Katoen Theoretical Foundations of the UML 21/29

I .
2

I o 4

:
✓

-

Bounded CFMs

Definition (Universally bounded CFM)
1 Let B ∈ N and B > 0. CFM A is universally B-bounded if each

MSC in L(A) is ∀B-bounded.
2 CFM A is universally bounded if it is ∀B-bounded for some B ∈ N

and B > 0.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Proposition every
FB - banded CFM . has finitely

may Configurations .

(emptiness problem for HB - bonded CFMS

is - obviously -
decidable)

Bounded CFMs

Definition (Universally bounded CFM)
1 Let B ∈ N and B > 0. CFM A is universally B-bounded if each

MSC in L(A) is ∀B-bounded.
2 CFM A is universally bounded if it is ∀B-bounded for some B ∈ N

and B > 0.

Definition (Existentially bounded CFM)
1 Let B ∈ N and B > 0. CFM A is existentially B-bounded if each

MSC in L(A) is ∃B-bounded.
2 CFM A is existentially bounded if it is ∃B-bounded for some B ∈ N

and B > 0.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Example (1)

!(p, q, req) ?(q, p, req)

process p: process q:

p q
req

req

req

req

req

∃1-bounded, but not ∀B-bounded for any B
so, not ∀-bounded.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/29

CFM
1 2

3 4

s 6

7- 8

5 70

FT - bonded

Hs - banded

-

Example (2)

!(p, q, req)

?(q, p, req)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

process p: process q:

p q

req

req

req

ack

ack

∃1-bounded, and ∀3-bounded

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

CFM A

Yanina kakis

M

Fr - bounded

tf 3 -
bounded

ME LCA)

Example (3)

!(p, q, req)

?(q, p, req)

?(p, q, ack)

!(q, p, ack)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

∃$n2 %-bounded, but not ∀B-bounded for any B

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

A A
P I

e

f- - -

-

y
h = # yellow messages

- p can send arbitrarily may messages
to at

Justification

Phase 1: process p sends n messages to q
messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Phase 2: each ack is directly answered by p by another message
messages of phase 2 are tagged with data req

So, p sends 2n reqs to q and q sends n acks
existentially $n

2 %-bounded
q starts to send acks after $n

2 % requests have been sent by p
after n sends, process p receives the first ack; then phase 2 starts
in phase 2, process p and q keep sending and receiving messages “in
sync”

Note: the CFM is also non-deterministic, and may deadlock.
Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

-0- O

. -

Justification

Phase 1: process p sends n messages to q
messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Phase 2: each ack is directly answered by p by another message
messages of phase 2 are tagged with data req

So, p sends 2n reqs to q and q sends n acks
existentially $n

2 %-bounded
q starts to send acks after $n

2 % requests have been sent by p
after n sends, process p receives the first ack; then phase 2 starts
in phase 2, process p and q keep sending and receiving messages “in
sync”

Note: the CFM is also non-deterministic, and may deadlock. Why?
Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

Emptiness is decidable for ∃-bounded CFMs

Theorem: [Genest et. al, 2006]

For any ∃-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete).

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

-(
cease 0 ?

Emptiness is decidable for ∃-bounded CFMs

Theorem: [Genest et. al, 2006]

For any ∃-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete).

Note:
This decision problem is undecidable for arbitrary CFMs, and is obviously
decidable for ∀-bounded CFMs, as ∀-bounded CFMs have finitely many
configurations, and thus one can check whether a configuration (s, ηε) with
s ∈ F is reachable by a simple graph analysis.

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Some (un)decidability results

Undecidable
The following problems on CFM A are all undecidable:

1 For B ∈ N and B > 0, is CFM A ∀B-bounded?
2 Is CFM A universally bounded?
3 For B ∈ N and B > 0, is CFM A ∃B-bounded?
4 Is CFM A existentially bounded?

the proofs of all these facts are left as an exercise

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Deadlocks

Deadlock-free CFMs
(s, η) ∈ ConfA is a deadlock configuration of CFM A if there is no
“accepting” configuration (s′, η′) ∈ F × {ηε} with (s, η) ⇒ ∗

A (s′, η′).

CFM A is deadlock-free whenever it has no reachable deadlock
configuration.

Checking deadlock-freeness is undecidable
The decision problem: Is CFM A deadlock free? is undecidable.

Checking B-boundedness for deadlock-free CFMs is decidable
The decision problem: for deadlock-free CFM A and B ∈ N with B > 0,
is A ∀B-bounded? is decidable.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

- -

