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Specification to implementation

@ Consider an MSGs as complete system specifications
¢ they describe a full set of possible system scenarios

L(G) = set of oM possiole scenaros
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Specification to implementation

@ Consider an MSGs as complete system specifications
¢ they describe a full set of possible system scenarios

@ Can we obtain ‘realisations” that exhibit precisely these scenarios?
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Specification to implementation

@ Consider an MSGs as complete system specifications
¢ they describe a full set of possible system scenarios

@ Can we obtain ‘realisations” that exhibit precisely these scenarios?

. . v “

@ Map MSGs, i.e., scenarios onto an executable model
¢ model each process by a finite-state automaton P—13
@ that communicate via unbounded directed FIFO channels
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Specification to implementation

@ Consider an MSGs as complete system specifications
¢ they describe a full set of possible system scenarios

@ Can we obtain ‘realisations” that exhibit precisely these scenarios?

@ Map MSGs, i.e., scenarios onto an executable model

¢ model each process by a finite-state automaton
@ that communicate via unbounded directed FIFO channels
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The need for synchronisation messages
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Preliminaries

Definition

Let
e P be a finite set of at least two (sequential) processes
o C be a finite set of message contents

Cee
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Preliminaries
Let

o P be a finite set of at least two (sequential) processes

o C be a finite set of message contents

v
Definition (communication actions, channels)

o Act,:={!(p,q,a) | g € P\ {p}, a €C}
the set of send actions by process p

4
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Preliminaries
Let

o P be a finite set of at least two (sequential) processes

o C be a finite set of message contents

v
Definition (communication actions, channels)

o Act,:={!(p,q,a) | g € P\ {p}, a €C}
the set of send actions by process p

o Act):={?(p,q,a) | g€ P\ {p}, a€C}
the set of receive actions by process p
° Act, := Act; U Act;j
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Preliminaries
Let

o P be a finite set of at least two (sequential) processes

o C be a finite set of message contents

v
Definition (communication actions, channels)

o Act,:={!(p,q,a) | g € P\ {p}, a €C}
the set of send actions by process p

o Act):={?(p,q,a) | g€ P\ {p}, acC}
the set of receive actions by process p

o Act, := Act; U Act;j

o Act :=J,p Actp
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Preliminaries
Let

o P be a finite set of at least two (sequential) processes

o C be a finite set of message contents

v
Definition (communication actions, channels)

o Act,:={!(p,q,a) | g € P\ {p}, a €C}
the set of send actions by process p

o Act):={?(p,q,a) | g€ P\ {p}, acC}
the set of receive actions by process p

! ?
o Acty := Act, U Act, N (pa)

o Act := UpeP Acty, /_ (ﬂ,(“)

© Ch:={(p,q) |p,q€P, p#q} ‘“channels*
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a

structure _— gkl sl\i\, o
Shetes
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Svap))pGP)]I_))) SinitvF) e.q .
- left,nqnk

o D is a nonempty finite set of synchronization messages (or data)

where

We often write s ﬂp s' instead of (s,0,m,s’) € A,
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Spv AP))pGP)D’ Sinit F)

where

o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:

@ S, is a non-empty finite set of local states (the S, are disjoint)
o Ay C S, x Act, x D x ) is a set of local transitions
—

) Mea.)S
(s,t6am), d,5") e B O=2%0
S

s’

= Qek‘,

We often write s ﬂp s’ instead of (s,0,m,s’) € A,
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Spv Ap))pép’ ]D)’ Sinit F)
where
o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:

@ S, is a non-empty finite set of local states (the S, are disjoint)
o Ay C S, x Act, x D x Sp is a set of local transitions

9 Sinit € S4 is the global initial state P9

o where Sq :=[[ ,cp Sp is the set of global states of A (
P, g, )

We often write s ﬂp s' instead of (s,0,m,s’) € A,
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Spv Ap))pép’ ]D)’ Sinit F)
where
o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:

@ S, is a non-empty finite set of local states (the S, are disjoint)
o Ay C S, x Act, x D x Sp is a set of local transitions

9 Sinit € S4 is the global initial state
o where Sq :=[[ ,cp Sp is the set of global states of A
@ I C Sy is the set of global final states

We often write s ﬂp s' instead of (s,0,m,s’) € A,
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Communicating finite-state machines

CFM A over P = {1,2}
and C = {req, ack}
o D= { ) Il I:I}
o Sl - {80781732}
o Sy = {to,t1,t2}

1(1,2, req) ﬁ@

(1, 2, )
1(1,2, req )
- @ Alt So ————1 50 ---
?(2,1, req )

— AQZ to —2 11 ...

A 2 @ sinit = (s0,%0)
o F = {(Sg,tg)}

v

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21




Communicating finite-state machines

v
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Communicating finite-state machines

CMsC

1(1,2,req) ©

1(1,2, req) ‘@

v
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Communicating finite-state machines

1(1,2,req) !(1,2,req)

v
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Communicating finite-state machines

Example
1(1,2,1eq) i—»@?(?,Lreq)
1(1,2,req)

1(1,2, req ) .@

1(1,2,req) !(1,2,req) ?(2,1,req)

v
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Communicating finite-state machines

1(1,2,1eq) ?(2. 1 re
1(2,1, ack)

1(1,2, req ) .@

1(1,2,req) !(1,2,req) ?(2,1,req) (2,1, ack)
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Communicating finite-state machines

1(1,2, req ) .@

1(1,2,req) 1(1,2,req) ?7(2,1,req) !(2,1,ack) ?(2,1,req
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Communicating finite-state machines

1(1,2, req ) .@

1(1,2,req) 1(1,2,req) ?7(2,1,req) !(2,1,ack) ?(2,1,req) (2,1, ack)
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Communicating finite-state machines

?(2,1,req)
©!(2,1,ack)

1(1,2, req ) .@

1(1,2,req) !(1,2,req) ?(2,1,req) !(2,1,ack) ?(2,1,req) !(2,1,ack) ?(1,2, ack)
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Communicating finite-state machines

Example

11,2, 2(2,1, r
11,2, 1e0) (o) e ey
1(1,2,req) ?(2,1,req)
?(1,2, ack) 1(2,1, ack)

?(1, 2, ack)
1(1,2, req)

1(1,2,req) !(1,2,req) ?7(2,1,req) !(2,1,ack) ?(2,1,req) (2, 1,ack) ?(1,2,ack) !(1,2,req)
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Communicating finite-state machines

Example

(1,2, ?(2,1,
0.2, ) (o) e (21
1(1,2,req) ?(2,1,req)
?(1,2,ack) (2,1, (2,1, ¢ (2,1, ack)
?(1, 2, ack)
1(1,2, req)
!(LZ,) ?(1,2,¢ ! s ?(1,2, ack)

1(1,2,req) 1(1,2,req) ?7(2,1,req) !(2,1,ack) ?(2,1,req) (2,1, ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack)

Joost-Pieter Katoen Theoretical Foundations of the U



Communicating finite-state machines

Example

11,2, 2(2,1, r
11,2, 1e0) (o) e ey
1(1,2,req) ?(2,1,req)
?(1,2, ack) 1(2,1, ack)

?(1, 2, ack)
1(1,2, req)
?(1,2, ack),
1(1,2,req)

1(1,2,req) 1(1,2,req) ?(2,1,req) !(2,1,ack) 7(2,1,req) (2,1, ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req)
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Communicating finite-state machines

Example

11,2, 2(2,1, r
11,2, 1e0) (o) e ey
1(1,2,req) ?(2,1,req)
2(1,2,ack) 1(2,1, ack)

?(1, 2, ack)

1(1,2, req) ?(2,1,req)
!(LQ,) ?(1,2, ack), -
1(1,2,req)

N

1(1,2,req) 1(1,2,req) ?(2,1,req) !(2,1,ack) 7(2,1,req) (2,1, ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req) %
=
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Communicating finite-state machines

Example

?(2,1,req)
1(2,1, ack)
?(2,1,req)
1(2,1, ack)

(1,2, req ) .@

1(1,2, req)
?(1, 2, ack)
1(1,2,1eq)

1(1,2,req) 1(1,2,req) ?(2,1,req) !(2,1,ack) 7(2,1,req) !(2,1,ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req) 2(2
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Communicating finite-state machines

1 2
req
1(1,2, req ) ‘@
req
?(1,2, ack) ack
ack
()
req
!(LZ,) ' ?(1,2,ack / req
| |
— ———
TTT] e
‘ ‘ ‘ ‘ ‘ M is a«efkd \9\3 s
M.
1(1,2,req) 1(1,2,req) ?7(2,1,req) !(2,1,ack) 7(2,1,req) !(2,1,ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req) 2(2

v
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Overview

© Semantics of Communicating Finite-State Machines
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Formal semantics of CFMs

Let A= (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (configurations)
Configurations of A: Conf 4 := Sa x {n|n: Ch— (C x D)*}
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(sbel t\tk cheanne\ s oF e
(= o SFele Sor "
= <Fo
vty s )
n( (pa)) = &

1 & = (e n (Ce2)) = (2, ),(k,)

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21



Formal semantics of CFMs

Let A= (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (configurations)
Configurations of A: Conf 4 := Sa x {n|n: Ch— (C x D)*}

Definition (global step)

=4 C Conf 4 x Act x D x Conf 4 is defined as follows:

/ "T———\\_\ |Pl=\

( (SU 51.' ,S);)) 2) ( "s\) (5” ’SO‘ “Q 'Z.)
<> h—> (C.:(‘D)')s 7(3‘) ‘S)o))m
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Formal semantics of CFMs

Let A= (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (configurations)
Configurations of A: Conf 4 := Sa x {n|n: Ch— (C x D)*}

Definition (global step)

=4 C Conf 4 x Act x D x Conf 4 is defined as follows: |P) =k

@ sending a message: ((3,7),!(p,q,a), m,(@,1)) € =>4 if
Ve (5l !(p,q, ) m,s'[p]) €5, ‘_ =
Ve 1 —n[p, = (@ym) - 1((r, 9))] < 5=(s,, % ,3) ,Q>
\/os forallreP\{p}, l\( )

-\pags),m™m

3Te] = s local shede ok pmacass p
[PJ P .9

/
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Formal semantics of CFMs

Let A= (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (configurations)

Configurations of A: Conf 4 := Sa x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Conf 4 x Act x D x Conf 4 is defined as follows:

o sending a message: ((3,7),!(p,q,a),m, (5,1)) € =4 if

o (3[p),!(p,q,a), m,3'[p]) € A
o 0 =nl(p,q) = (a m) - n((p, q))]
e 5[r] =9[r] for allr € P\ {p}
=90 receipt of a message: ((5,1), 2(p,q,a),m, (5',1)) € =4 if
o (3[p], 2p,g,a),m,5'[p]) € A,
° 1((¢,p)) = w+(a,m) # e and 1’ = n[(q,p) := w]

o 3[r]=3r] for all r € P\ {p} |




receipt of a message: ((5,7),7(p,q,a), m,(s",n)) € =4 if
Ve (5[pl, 7(p,g,a), m,3'[p]) € A

Vo n((g,p)) = w - (a,m) # € and 7' = n[(q,p) := w]

Vo 3[r] =9[r] for all r € P\ {p}

((5.7 ,@ S "L> Corvent eaRiguralion

—————

?(p.a0), VR

4/ —~ ~—
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Linearizations of a CFM

Weia,8) , P(apb)
Let A= (((Sp, Ap))per, D, Sinit, F') be a CEM over P and C.

Definition (accepting runs)

A run p of CFM A on word w = 01 ...0, € Act® is an alternating
sequence p = Yo M1 Y1 - - - Yn—1 Mn Y Such that
Q " = (Sinit, M=) With 1. mapping any channel to & (Q/\’Pb c»‘rca‘c)
Q ’yi—l%A v; for any ¢ € {1,...,n}

N
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Linearizations of a CFM

Let A = (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (accepting runs)

A run p of CFM A on word w = 01 ...0, € Act* is an alternating
sequence p = Yo M1 Y1 - - - Yn—1 m@such that
O " = (Sinit, M) With 1. mapping any channel to &

0,y .
Q vioi———=yviforanyie {1,...,n} poe gleead ol shele s
The run p is accepting if v, € F x {ne}. e\l choanels ove

2Ty
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Linearizations of a CFM

Let A = (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (accepting runs

A run p of CFM A on word w = 01 ...0, € Act* is an alternating
sequence p = Yo M1 Y1 - - - Yn—1 Mn Yn Such that

Q Y0 = (Sinit, me) with . mapping any channel to ¢

Q ’)’i—l%A v; for any ¢ € {1,...,n}

The run p is accepting if v, € F x {ne}.

Definition (linearization of a CFM)
The (word) language of CFM A is defined by:

Lin(A) := {w € Act™ | there is an accepting run of A on w}

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21



Linearizations of an example CFM

e CFM A over
1(1,2, req )
G D {1,2} and {req, ack}
?(1,2,ack) 7(2,1, req) ' 1(2,1, ack) 10 %
2T i}
L2, | | 7012, ack) (2,1, ack)

GO

4
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Linearizations of an example CFM

FM A over
(1,2, req) @ o C A ov
n {1,2} and {req, ack}
?(1,2,ack) 7(2,1, req) ' 1(2,1, ack)

WM = e sequante o

T g achons W ek

n . 1

L2 B | |7(1,2,ack) (2,1, ack) OCeur et poteds

W2 = - Sor paces 2,

GO

Lin(A) = {w € Act™ | there is n > 1 such that:
w[l =1(1,2,req))" (?(1,2,ack) !(1,2,req))" )

—

wl2=(7(2,1,req) !(2,1,ack))” (?(2,1,req))" (_,,,)

(k(i-)

for any u € Pref(w) and (p,q) € Ch:

Z |ulip,g,a) = Z |ulo(g,p.a) > 0}

acC acC
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Linearizations of an example CFM

CFM A over
{1,2} and {req, ack}

’ 22, 1, B

o !(1,2,req) and !(2,1, ack) are always independent.

@ !(1,2,req) and ?(1,2, ack) are always dependent.

@ !(1,2,req) and ?(2,1,req) are sometimes independent.

~» non-regular (word) languages —s wore epe 38N Man

‘g\w\\'(— shale o.;,«\oma"\'& )

4
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Linearizations and MSCs of an example CFM

CFM A over
{1,2} and {req, ack}

’ 22, 1, B

Lin(A) = {w € Act™ | there is n > 1 such that:
wll=(1(1,2,req))" (?(1,2,ack) !(1,2,req))"
wl2=(7(2,1,req) !(2,1,ack))" (?(2,1,req))"
for any u € Pref(w) and (p,q) € Ch:

Z |ulip,g,a) = Z |ulo(g,p.a) > 0}

acC acC y
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Linearizations and MSCs of an example CFM

CFM A over
{1,2} and {req, ack}

So
. S s,
€ M | there is n > 1 such 4tat: U B
/_\
M1 =(Y(1,2,req))" (?(1,2,ack) !(1,2,req))"

M2 = (?7(2,1,req) (2,1,ack))™ (?(2,1.req))"
sek of MSCs _L (7(2,1,req) I( ack))™ (7( req)) }

occep¥ed by CFm A ok, €,

4
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CFMy o’ more  S/ErtdSNT
@ Emptiness Problem for CFMs ron  Snle- skehe asdoomeke

L

dses oo CFM o\cqge\ ot \easkt
Mmne Wadh ? wndeeidcble @
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Elementary questions are undecidable for CFMs

Emptiness of CFMs is undecidable [Brand & Zafiropulo 1983]

The following problem is undecidable (even if C is a singleton):

INPUT: CFM .A over processes P and message contents C
7
QUESTION: Is £(A) empty e.q. C= {4

[L bhe sek of MISCs  caephed b cF O

‘CL( ek b"i\‘ \émcdse‘»\gns °~C€<(.a\<é b
Lw—(ﬁ) (ﬁ"’\ B )
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Elementary questions are undecidable for CFMs
Emptiness of CFMs is undecidable [Brand & Zafiropulo 1983]

The following problem is undecidable (even if C is a singleton):

INPUT: CFM A over processes P and message contents C
QUESTION: Is £(A) empty?

Proof (sketch)

Reduction from the halting problem for Turing machine
TM = (Q,%, A, 0, qo,qf) to emptiness for a CFM with two processes.
Build CFM A = ((A;.A49).D. 8. F') over {1.2} and some singleton
set C such that|L(A) # @ iff TM can reach gy, i.e., TM accepts.

@ Process 1 sends current configurations to process 2 v

@ Process 2 chooses successor configurations and sends them to 1 \/

o D= ((CU{D) x QU{_D) Uiy Lofie™

V.
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A CFM simulating a Turing machine

Proof (contd.)
Tun\r:) rachne

@ imbiel conf.

q

Fru e, -
e~d of

1

& :
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A CFM simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (go,a,a’, L, q3) is applied so
that process 2

o sends b unchanged back to process 1

s detects (receives) a < qo

@ sends a’ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with g3

@ receives # so that the symbol [J < g3 has to be inserted before
returning #

4
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A CFM simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (go,a,a’, L, q3) is applied so
that process 2

o sends b unchanged back to process 1

s detects (receives) a < qo

@ sends a’ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with g3

@ receives # so that the symbol [J < g3 has to be inserted before
returning #

@ Right transition: Process 2 has to guess what the position right
before the head is. For example, provided process 2 decided in
favor of (g2, a,d’, R, q3) while reading b, it would have to

o send b < g3 instead of just b, entering some state t(a < g2)
s receive a < g2 (no other symbol can be received in state t(a + ¢2))
s send a’ back to process 1

4
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A CFM simulating a Turing machine

Proof (contd.)
@ Introduce local final states sy and s, one for process 1 and one for
process 2, respectively (i.e., F' = {(sf,ts)} and A is locally
accepting).

@ At any time, process 1 may switch into sy, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

@ Process 2 is allowed to move into ¢y and to empty the channel
(1,2) as soon as it receives a letter ¢ <— ¢y for some c.

@ As process 2 modifies a configuration of T'M locally, finitely many
states are sufficient in A. O

v
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