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Specification to implementation
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•  consider (c) MSGS  as  complete Specification .  . s  of  a  system

. MSG g ,
L ( g) =  set  of  Mscs  ←  set  of possible  scenarios

- -
finite countably infinite

( e.g .

CMSG for the

Hanna kakis

example )
Central question i  can  we  obtain  a  system

"
realisation

"

-
- -

that  exhibits  all possible  scenarios  in L (g)

First question :
how  do  such system

" realisation ,

"
look like ?

-  model the behavior  of  each process by a

finite  automaton C blood
" automaton )

- processes can  communicate via  unbounded Fifo
channels



Specification to implementation

Consider an MSGs as complete system specifications
they describe a full set of possible system scenarios
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L ( G ) =  set  of  all possible  scenarios



Specification to implementation

Consider an MSGs as complete system specifications
they describe a full set of possible system scenarios

Can we obtain “realisations“ that exhibit precisely these scenarios?
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-

central question  in the  next 3-4 lectures



Specification to implementation

Consider an MSGs as complete system specifications
they describe a full set of possible system scenarios

Can we obtain “realisations“ that exhibit precisely these scenarios?

Map MSGs, i.e., scenarios onto an executable model
model each process by a finite-state automaton
that communicate via unbounded directed FIFO channels
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k
"

p→q

- - -

(c) MSG 1-7 communicating finite-state

a ,b

machine ( CFM )

p→ → a



Specification to implementation

Consider an MSGs as complete system specifications
they describe a full set of possible system scenarios

Can we obtain “realisations“ that exhibit precisely these scenarios?

Map MSGs, i.e., scenarios onto an executable model
model each process by a finite-state automaton
that communicate via unbounded directed FIFO channels

⇒ This yields Communicating Finite-state Machines
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Intuition
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process p
"

realisation
"

process I
Example  a

-

→ ! Cpi e. a ) →

AOD
?Cqp,a )

"

local
"

automaton  of p
"

local
" automaton

of I

global initial stele  = ( n ,
A )

global final States  = { ( a A ) } CMSC

p 9- CFM

possible behavior
- ← accepts  if

of the CFM : a

→
① all channels

p -31 a
are  empty-O  e  a

.

I
a -→② we  are  in

g-  → p

-  o -
not  used M

state G. A )



Eixample process p process I

→

. I?a tb③②
global initial state = ( n

,
A )

global Arial states
= { ( 2,13 ) }

p -07

p I
 -

.

ae.

LE . -

a
b

.

•
L 8.

-

a

c
> is

"

accepted
"

by
MSC the example CFM

( Yannakakis

example )



The need for synchronisation messages
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Suppose we want to  realise

:-p I p I

#µ find states

{ ( 2. B) ( 3. c ))
I I

D A

Cfm :

Process p

y

apgcessqcE7ieh@oToatoE.o
Otto o

2 7 3 B
A C



⇐
p I p 9-

left n

→ ←

b b

Process p
informs process q whether to go

"
left

"

or
"

right
"

Automaton for process p : Fe { ( 0,0 )
,

( 0,0 ) )

⇐ ⇐ do

oweFor process I

L

A deadlock like in the

previous example cannot

Occur
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Preliminaries

Definition
Let

P be a finite set of at least two (sequential) processes

C be a finite set of message contents

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

(
a. b. a



Preliminaries

Definition
Let

P be a finite set of at least two (sequential) processes

C be a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of send actions by process p
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Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of send actions by process p
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the set of receive actions by process p
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Preliminaries

Definition
Let

P be a finite set of at least two (sequential) processes

C be a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of send actions by process p

Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of receive actions by process p

Actp := Act !p ∪ Act?p
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Preliminaries

Definition
Let

P be a finite set of at least two (sequential) processes

C be a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of send actions by process p

Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of receive actions by process p

Actp := Act !p ∪ Act?p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p #= q} “channels“
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F )

where
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F )

where

D is a nonempty finite set of synchronization messages (or data)

We often write s
σ,m
−→p s

′ instead of (s,σ,m, s′) ∈ ∆p
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F )

where

D is a nonempty finite set of synchronization messages (or data)

for each p ∈ P:
Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

We often write s
σ,m
−→p s

′ instead of (s,σ,m, s′) ∈ ∆p
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F )

where

D is a nonempty finite set of synchronization messages (or data)

for each p ∈ P:
Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

sinit ∈ SA is the global initial state
where SA :=

∏

p∈P Sp is the set of global states of A

We often write s
σ,m
−→p s

′ instead of (s,σ,m, s′) ∈ ∆p
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F )

where

D is a nonempty finite set of synchronization messages (or data)

for each p ∈ P:
Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

sinit ∈ SA is the global initial state
where SA :=

∏

p∈P Sp is the set of global states of A

F ⊆ SA is the set of global final states

We often write s
σ,m
−→p s

′ instead of (s,σ,m, s′) ∈ ∆p
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over P = {1, 2}

and C = {req, ack}

D = { , , }

S1 = {s0, s1, s2}

S2 = {t0, t1, t2}

∆1: s0
!(1,2, req )
−−−−−−→1 s0 ...

∆2: t0
?(2,1, req )
−−−−−−→2 t1 ...

sinit = (s0, t0)

F = {(s2, t2)}
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

. . .

. . .
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

req
. . .

. . .

!(1, 2, req)

!(1, 2, req)
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

reqreq
. . .

. . .

!(1, 2, req)

!(1, 2, req)

!(1, 2, req) !(1, 2, req)
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)
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. . .

. . .
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

req

ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack)
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

ack ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(2, 1, ack)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack)
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(2, 1, ack)

?(1, 2, ack)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

j
•

←

O
→

-



Communicating finite-state machines

Example
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

reqreq
. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(2, 1, ack)

?(1, 2, ack)

!(1, 2, req)

?(1, 2, ack)

!(1, 2, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack) !(1, 2, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21



Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

req
. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(2, 1, ack)

?(1, 2, ack)

!(1, 2, req)

?(1, 2, ack)

!(1, 2, req)

?(2, 1, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack) !(1, 2, req) ?(2

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

±

x

=



Communicating finite-state machines

Example
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Communicating finite-state machines

Example
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s1
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t0
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. . .

. . .

1 2
req

req

ack
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req
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Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.

Definition (configurations)

Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}
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Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.

Definition (configurations)

Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)

=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:
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Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.

Definition (configurations)

Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)

=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]

s[r] = s′[r] for all r ∈ P \ {p}
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Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.

Definition (configurations)

Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)

=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]

s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], ?(p, q, a),m, s′[p]) ∈ ∆p

η((q, p)) = w · (a,m) #= ε and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}
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Example
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Linearizations of a CFM

Let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.

Definition (accepting runs)

A run ρ of CFM A on word w = σ1 . . . σn ∈ Act∗ is an alternating
sequence ρ = γ0 m1 γ1 . . . γn−1mn γn such that

1 γ0 = (sinit , ηε) with ηε mapping any channel to ε

2 γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}
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Linearizations of a CFM

Let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.

Definition (accepting runs)

A run ρ of CFM A on word w = σ1 . . . σn ∈ Act∗ is an alternating
sequence ρ = γ0 m1 γ1 . . . γn−1mn γn such that

1 γ0 = (sinit , ηε) with ηε mapping any channel to ε

2 γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}

The run ρ is accepting if γn ∈ F × {ηε}.
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Linearizations of a CFM

Let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.

Definition (accepting runs)

A run ρ of CFM A on word w = σ1 . . . σn ∈ Act∗ is an alternating
sequence ρ = γ0 m1 γ1 . . . γn−1mn γn such that

1 γ0 = (sinit , ηε) with ηε mapping any channel to ε

2 γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}

The run ρ is accepting if γn ∈ F × {ηε}.

Definition (linearization of a CFM)

The (word) language of CFM A is defined by:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21



Linearizations of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}
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Linearizations of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

Lin(A) =
{

w ∈ Act∗ | there is n ! 1 such that:

w "1 = !(1, 2, req))n (?(1, 2, ack) !(1, 2, req))n

w "2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))n

for any u ∈ Pref (w) and (p, q) ∈ Ch:
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) ! 0
}
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Linearizations of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

!(1, 2, req) and !(2, 1, ack) are always independent.

!(1, 2, req) and ?(1, 2, ack) are always dependent.

!(1, 2, req) and ?(2, 1, req) are sometimes independent.
# non-regular (word) languages
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Linearizations and MSCs of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

Lin(A) =
{

w ∈ Act∗ | there is n ! 1 such that:

w "1 = (!(1, 2, req))n (?(1, 2, ack) !(1, 2, req))n

w "2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))n

for any u ∈ Pref (w) and (p, q) ∈ Ch:
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) ! 0
}
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Linearizations and MSCs of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

L(A) =
{

M ∈M | there is n ≥ 1 such that:

M "1 = (!(1, 2, req))n (?(1, 2, ack) !(1, 2, req))n

M "2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))n
}
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Overview

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs
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Elementary questions are undecidable for CFMs

Emptiness of CFMs is undecidable [Brand & Zafiropulo 1983]

The following problem is undecidable (even if C is a singleton):

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?
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Elementary questions are undecidable for CFMs

Emptiness of CFMs is undecidable [Brand & Zafiropulo 1983]

The following problem is undecidable (even if C is a singleton):

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

Proof (sketch)

Reduction from the halting problem for Turing machine
TM = (Q,Σ,∆,$, q0, qf ) to emptiness for a CFM with two processes.
Build CFM A = ((A1,A2),D, sinit , F ) over {1, 2} and some singleton
set C such that L(A) &= ∅ iff TM can reach qf , i.e., TM accepts.

Process 1 sends current configurations to process 2

Process 2 chooses successor configurations and sends them to 1

D =
(

(Σ ∪ {$}) × (Q ∪ {_})
)

∪ {#}
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A CFM simulating a Turing machine

Proof (contd.)

$

q0

a $

q1

a

q2

b

$

q3

a′ b

.

.

.

(TM

(TM

(TM

γ0

{

γ1
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γ3

$← q0

#

$← q1

a

#

b

a← q2

#

b

a′

$← q3

#

$← q1

a

#

b

a← q2

#

b

a′

$← q3

#
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A CFM simulating a Turing machine

Proof (contd.)

Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (q2, a, a′, L, q3) is applied so
that process 2

sends b unchanged back to process 1
detects (receives) a← q2
sends a′ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with q3
receives # so that the symbol $← q3 has to be inserted before
returning #
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A CFM simulating a Turing machine

Proof (contd.)

Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (q2, a, a′, L, q3) is applied so
that process 2

sends b unchanged back to process 1
detects (receives) a← q2
sends a′ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with q3
receives # so that the symbol $← q3 has to be inserted before
returning #

Right transition: Process 2 has to guess what the position right
before the head is. For example, provided process 2 decided in
favor of (q2, a, a′, R, q3) while reading b, it would have to

send b← q3 instead of just b, entering some state t(a← q2)
receive a← q2 (no other symbol can be received in state t(a← q2))
send a′ back to process 1
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A CFM simulating a Turing machine

Proof (contd.)

Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf )} and A is locally
accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel
(1, 2) as soon as it receives a letter c← qf for some c.

As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. !
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