Theoretical Foundations of the UML

Lecture 7: Communicating Finite-State Machines

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

May 11, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML

@ Introduction
© Communicating Finite-State Machines
© Semantics of Communicating Finite-State Machines

@ Emptiness Problem for CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 2/21

Overview

@ Introduction

Joost-Pieter Katoen Theoretical Foundations of the U

Specification to implementation

¢ Cownsider (C)"'\SGS as M\e& -Spf-c;'t\‘cn\'\w\'.s ol « éaakm

« ™SG 8_ ” L(%): set of mMscs = ek of Possible scenados

/\
‘C\k?\:e Ca-wkﬁ\ob ‘nS\"c\‘.\:{
(ey CHMSG For tme
Monnakoks
eﬂQNP\{)

Ce~lvel q“es\\hn : can we obfain o .s:)a\-g,v\ "r&a\\‘sw\\\\m/’

ot exidloks ol\ pessible scenados in L(Q

First queshon : howd do sach sydhenn "yealWsaNons " ook \:kg?

— model dme behavior of ecch pacess o
ke aundo an oo ('”Qcc\‘ M'\VMGl‘OnB

— petestes can oo ot e W wnbounded =FO
Hhonnels

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

Specification to implementation

@ Consider an MSGs as complete system specifications
¢ they describe a full set of possible system scenarios

L(G) = set of oM possiole scenaros

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

Specification to implementation

@ Consider an MSGs as complete system specifications
¢ they describe a full set of possible system scenarios

@ Can we obtain ‘realisations” that exhibit precisely these scenarios?
N—
————

Ce~tvel quetbon = e wexkt 34 \echares

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

Specification to implementation

@ Consider an MSGs as complete system specifications
¢ they describe a full set of possible system scenarios

@ Can we obtain ‘realisations” that exhibit precisely these scenarios?

. . v “

@ Map MSGs, i.e., scenarios onto an executable model
¢ model each process by a finite-state automaton P—13
@ that communicate via unbounded directed FIFO channels

©mse \——> Cnmmsmtco'\sb Lons ke shete
o\ e (CFM)

b chaonell
o .
P —> H bl —— q

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

Specification to implementation

@ Consider an MSGs as complete system specifications
¢ they describe a full set of possible system scenarios

@ Can we obtain ‘realisations” that exhibit precisely these scenarios?

@ Map MSGs, i.e., scenarios onto an executable model

¢ model each process by a finite-state automaton
@ that communicate via unbounded directed FIFO channels

Bre~d &
ZO\S‘\\"W You

= This yields| Communicating Finite-state Machines

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

E \e 4 process P *reakisabion Pocess §
Xeop
—‘9@ '(.a,0) —@ D) (s4.)
“ocel’ amtoemetun of p e’ ombomebon
b* ﬂ.
globel eikel shete = (1.8)
gleloct Bwel stekes =) (4,a)'5 cmMsc
P 1 cFm
Posa.\g\t oehauer o S Q“SP‘\‘ ._c
°$ Tne CFRL o @ o)\ QWMQ\S
e] @
9—p
[TTULTTTow: vt el M ghete (4,0)

Joost-Pieter Katoen Theoretical Foundations of the UML 5/21

E xcane\
~ple 2
P«ocess P pProcess j

o
I . 7
®—=— >@———®
7\ la 7c 'b
globel el shkeke — (4,0)
3\»\0:& fwel shetes - § (Z,B)‘S
P 1 e
\
Q->p
T Y[

S “o.ccq:\to\h \::)
MSC e erorple CFMA

(| Oc\r\O\Ccf\(:s
QXQN\‘?\&)

The need for synchronisation messages

Soppose \we wort ' molise

\
P Q
o b S-:\..o\. steles
3 (2.8, (2.9)
A

process P

F&
\ v o
T

2 1 3 B

Joost-Pieter Katoen Theoretical Foundations of the UML

v * P q
e
\eflk N s S
o
- <— b

P‘OCQSS P \\W%N\—\S P-Ce 8S ol e e ‘\“o 30 4\e9rl'h

Or "NS\\E”

Adoroton e potet o : F= .>. (O»0>> (O»DBS

A deadlock ke I~ twe

PRUOUS ex Cnple CanrasT

OCcLuwL(

Overview

© Communicating Finite-State Machines

Joost-Pieter Katoen Theoretical Foundations of the UML

Preliminaries

Definition

Let
e P be a finite set of at least two (sequential) processes
o C be a finite set of message contents

Cee

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries
Let

o P be a finite set of at least two (sequential) processes

o C be a finite set of message contents

v
Definition (communication actions, channels)

o Act,:={!(p,q,a) | g € P\ {p}, a €C}
the set of send actions by process p

4

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries
Let

o P be a finite set of at least two (sequential) processes

o C be a finite set of message contents

v
Definition (communication actions, channels)

o Act,:={!(p,q,a) | g € P\ {p}, a €C}
the set of send actions by process p

o Act):={?(p,q,a) | g€ P\ {p}, a€C}
the set of receive actions by process p

4

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries
Let

o P be a finite set of at least two (sequential) processes

o C be a finite set of message contents

v
Definition (communication actions, channels)

o Act,:={!(p,q,a) | g € P\ {p}, a €C}
the set of send actions by process p

o Act):={?(p,q,a) | g€ P\ {p}, a€C}
the set of receive actions by process p
° Act, := Act; U Act;j

4

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries
Let

o P be a finite set of at least two (sequential) processes

o C be a finite set of message contents

v
Definition (communication actions, channels)

o Act,:={!(p,q,a) | g € P\ {p}, a €C}
the set of send actions by process p

o Act):={?(p,q,a) | g€ P\ {p}, acC}
the set of receive actions by process p

o Act, := Act; U Act;j

o Act :=J,p Actp

pEP

4

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries
Let

o P be a finite set of at least two (sequential) processes

o C be a finite set of message contents

v
Definition (communication actions, channels)

o Act,:={!(p,q,a) | g € P\ {p}, a €C}
the set of send actions by process p

o Act):={?(p,q,a) | g€ P\ {p}, acC}
the set of receive actions by process p

! ?
o Acty := Act, U Act, N (pa)

o Act := UpeP Acty, /_ (ﬂ,(“)

© Ch:={(p,q) |p,q€P, p#q} ‘“channels*

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a

structure _— gkl sl\i\, o
Shetes
A= (((Spv Ap))pép’]D)’ Sinit F)

k} :\Q\aa\. Wik el

sre\e

where

Synchon 3 ohon
wesd b X

(e.b, \e‘}\, ﬁs\n\)

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Svap))pGP)]I_))) SinitvF) e.q .
- left,nqnk

o D is a nonempty finite set of synchronization messages (or data)

where

We often write s ﬂp s' instead of (s,0,m,s’) € A,

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Spv AP))pGP)D’ Sinit F)

where

o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:

@ S, is a non-empty finite set of local states (the S, are disjoint)
o Ay C S, x Act, x D x) is a set of local transitions
—

) Mea.)S
(s,t6am), d,5") e B O=2%0
S

s’

= Qek‘,

We often write s ﬂp s’ instead of (s,0,m,s’) € A,

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Spv Ap))pép’]D)’ Sinit F)
where
o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:

@ S, is a non-empty finite set of local states (the S, are disjoint)
o Ay C S, x Act, x D x Sp is a set of local transitions

9 Sinit € S4 is the global initial state P9

o where Sq :=[[,cp Sp is the set of global states of A (
P, g,)

We often write s ﬂp s' instead of (s,0,m,s’) € A,

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Spv Ap))pép’]D)’ Sinit F)
where
o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:

@ S, is a non-empty finite set of local states (the S, are disjoint)
o Ay C S, x Act, x D x Sp is a set of local transitions

9 Sinit € S4 is the global initial state
o where Sq :=[[,cp Sp is the set of global states of A
@ I C Sy is the set of global final states

We often write s ﬂp s' instead of (s,0,m,s’) € A,

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Communicating finite-state machines

CFM A over P = {1,2}
and C = {req, ack}
o D= {) Il I:I}
o Sl - {80781732}
o Sy = {to,t1,t2}

1(1,2, req) ﬁ@

(1, 2,)
1(1,2, req)
- @ Alt So ————1 50 ---
?(2,1, req)

— AQZ to —2 11 ...

A 2 @ sinit = (s0,%0)
o F = {(Sg,tg)}

v

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

v

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

CMsC

1(1,2,req) ©

1(1,2, req) ‘@

v

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

1(1,2,req) !(1,2,req)

v

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example
1(1,2,1eq) i—»@?(?,Lreq)
1(1,2,req)

1(1,2, req) .@

1(1,2,req) !(1,2,req) ?(2,1,req)

v

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

1(1,2,1eq) ?(2. 1 re
1(2,1, ack)

1(1,2, req) .@

1(1,2,req) !(1,2,req) ?(2,1,req) (2,1, ack)

Joost-Pieter Katoen Theoretical Foundations of the U

Communicating finite-state machines

1(1,2, req) .@

1(1,2,req) 1(1,2,req) ?7(2,1,req) !(2,1,ack) ?(2,1,req

Joost-Pieter Katoen Theoretical Foundations of the U

Communicating finite-state machines

1(1,2, req) .@

1(1,2,req) 1(1,2,req) ?7(2,1,req) !(2,1,ack) ?(2,1,req) (2,1, ack)

Joost-Pieter Katoen Theoretical Foundations of the U

Communicating finite-state machines

?(2,1,req)
©!(2,1,ack)

1(1,2, req) .@

1(1,2,req) !(1,2,req) ?(2,1,req) !(2,1,ack) ?(2,1,req) !(2,1,ack) ?(1,2, ack)

Joost-Pieter Katoen Theoretical Foundations of the UML

Communicating finite-state machines

Example

11,2, 2(2,1, r
11,2, 1e0) (o) e ey
1(1,2,req) ?(2,1,req)
?(1,2, ack) 1(2,1, ack)

?(1, 2, ack)
1(1,2, req)

1(1,2,req) !(1,2,req) ?7(2,1,req) !(2,1,ack) ?(2,1,req) (2, 1,ack) ?(1,2,ack) !(1,2,req)

Joost-Pieter Katoen Theoretical Foundations of the UML

Communicating finite-state machines

Example

(1,2, ?(2,1,
0.2,) (o) e (21
1(1,2,req) ?(2,1,req)
?(1,2,ack) (2,1, (2,1, ¢ (2,1, ack)
?(1, 2, ack)
1(1,2, req)
!(LZ,) ?(1,2,¢ ! s ?(1,2, ack)

1(1,2,req) 1(1,2,req) ?7(2,1,req) !(2,1,ack) ?(2,1,req) (2,1, ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack)

Joost-Pieter Katoen Theoretical Foundations of the U

Communicating finite-state machines

Example

11,2, 2(2,1, r
11,2, 1e0) (o) e ey
1(1,2,req) ?(2,1,req)
?(1,2, ack) 1(2,1, ack)

?(1, 2, ack)
1(1,2, req)
?(1,2, ack),
1(1,2,req)

1(1,2,req) 1(1,2,req) ?(2,1,req) !(2,1,ack) 7(2,1,req) (2,1, ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req)

v

Joost-Pieter Katoen Theoretical Foundations of the U 10/21

Communicating finite-state machines

Example

11,2, 2(2,1, r
11,2, 1e0) (o) e ey
1(1,2,req) ?(2,1,req)
2(1,2,ack) 1(2,1, ack)

?(1, 2, ack)

1(1,2, req) ?(2,1,req)
!(LQ,) ?(1,2, ack), -
1(1,2,req)

N

1(1,2,req) 1(1,2,req) ?(2,1,req) !(2,1,ack) 7(2,1,req) (2,1, ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req) %
=

Joost-Pieter Katoen Theoretical Foundations of the U 10/21

Communicating finite-state machines

Example

?(2,1,req)
1(2,1, ack)
?(2,1,req)
1(2,1, ack)

(1,2, req) .@

1(1,2, req)
?(1, 2, ack)
1(1,2,1eq)

1(1,2,req) 1(1,2,req) ?(2,1,req) !(2,1,ack) 7(2,1,req) !(2,1,ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req) 2(2

v

Joost-Pieter Katoen Theoretical Foundations of the U 10/21

Communicating finite-state machines

1 2
req
1(1,2, req) ‘@
req
?(1,2, ack) ack
ack
()
req
!(LZ,) ' ?(1,2,ack / req
| |
— ———
TTT] e
‘ ‘ ‘ ‘ ‘ M is a«efkd \9\3 s
M.
1(1,2,req) 1(1,2,req) ?7(2,1,req) !(2,1,ack) 7(2,1,req) !(2,1,ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req) 2(2

v

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Overview

© Semantics of Communicating Finite-State Machines

Joost-Pieter Katoen Theoretical Foundations of the

Formal semantics of CFMs

Let A= (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (configurations)
Configurations of A: Conf 4 := Sa x {n|n: Ch— (C x D)*}

—_
‘Wne onYek oF o
(sbel t\tk cheanne\ s oF e
(= o SFele Sor "
= <Fo
vty s)
n((pa)) = &

1 & = (e n (Ce2)) = (2,),(k,)

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

Formal semantics of CFMs

Let A= (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (configurations)
Configurations of A: Conf 4 := Sa x {n|n: Ch— (C x D)*}

Definition (global step)

=4 C Conf 4 x Act x D x Conf 4 is defined as follows:

/ "T———_\ |Pl=\

((SU 51.' ,S);)) 2) ("s\) (5” ’SO‘ “Q 'Z.)
<> h—> (C.:(‘D)')s 7(3‘) ‘S)o))m

Joost-Pieter Katoen Theoretical Foundations of the UML

Formal semantics of CFMs

Let A= (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (configurations)
Configurations of A: Conf 4 := Sa x {n|n: Ch— (C x D)*}

Definition (global step)

=4 C Conf 4 x Act x D x Conf 4 is defined as follows: |P) =k

@ sending a message: ((3,7),!(p,q,a), m,(@,1)) € =>4 if
Ve (5l !(p,q,) m,s'[p]) €5, ‘_ =
Ve 1 —n[p, = (@ym) - 1((r, 9))] < 5=(s,, % ,3) ,Q>
\/os forallreP\{p}, l\()

-\pags),m™m

3Te] = s local shede ok pmacass p
[PJ P .9

/
XX "" (3'=(’)
5 S = sn-»‘P,--?sk)’VL
" —
V.
Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

Formal semantics of CFMs

Let A= (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (configurations)

Configurations of A: Conf 4 := Sa x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Conf 4 x Act x D x Conf 4 is defined as follows:

o sending a message: ((3,7),!(p,q,a),m, (5,1)) € =4 if

o (3[p),!(p,q,a), m,3'[p]) € A
o 0 =nl(p,q) = (a m) - n((p, q))]
e 5[r] =9[r] for allr € P\ {p}
=90 receipt of a message: ((5,1), 2(p,q,a),m, (5',1)) € =4 if
o (3[p], 2p,g,a),m,5'[p]) € A,
° 1((¢,p)) = w+(a,m) # e and 1’ = n[(q,p) := w]

o 3[r]=3r] for all r € P\ {p} |

receipt of a message: ((5,7),7(p,q,a), m,(s",n)) € =4 if
Ve (5[pl, 7(p,g,a), m,3'[p]) € A

Vo n((g,p)) = w - (a,m) # € and 7' = n[(q,p) := w]

Vo 3[r] =9[r] for all r € P\ {p}

((5.7 ,@ S "L> Corvent eaRiguralion

—————

?(p.a0), VR

4/ —~ ~—

OWS" = w.,\’fw "f) o (1) =

&(O\\ Q“\'\’\Qf C»\cﬂne_' (-

‘(o= ()
?(e,q,o\,m n (=< nle

Example

ieter Katoen

Exonple 2 process P
7
\@ !Gs 5 k_' > (A Hio .)
7% @?[o. ?O_g 'b
6_.
6\0\":\. Ws el stk = (4,3) 3
gwbel [eel oshebes - § (2,8) Q((P&\}:s_
= n(31e) =2
stedory co~Ryston: <(1,H)) (e,a)> bo
Jems
((47 C')) (67 b)) T
e

(f2 (4D - (e a) =

ﬂ/ - / (3.\0))——\’

—— <(2.C3 o&ﬁS) &= (3Q> (CA&\J)) -—5_3
“ by

Linearizations of a CFM

Weia,8) , P(apb)
Let A= (((Sp, Ap))per, D, Sinit, F') be a CEM over P and C.

Definition (accepting runs)

A run p of CFM A on word w = 01 ...0, € Act® is an alternating
sequence p = Yo M1 Y1 - - - Yn—1 Mn Y Such that
Q " = (Sinit, M=) With 1. mapping any channel to & (Q/\’Pb c»‘rca‘c)
Q ’yi—l%A v; for any ¢ € {1,...,n}

N

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21

Linearizations of a CFM

Let A = (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (accepting runs)

A run p of CFM A on word w = 01 ...0, € Act* is an alternating
sequence p = Yo M1 Y1 - - - Yn—1 m@such that
O " = (Sinit, M) With 1. mapping any channel to &

0,y .
Q vioi———=yviforanyie {1,...,n} poe gleead ol shele s
The run p is accepting if v, € F x {ne}. e\l choanels ove

2Ty

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21

Linearizations of a CFM

Let A = (((Sp, Ap))per, D, Sinit, F') be a CEFM over P and C.

Definition (accepting runs

A run p of CFM A on word w = 01 ...0, € Act* is an alternating
sequence p = Yo M1 Y1 - - - Yn—1 Mn Yn Such that

Q Y0 = (Sinit, me) with . mapping any channel to ¢

Q ’)’i—l%A v; for any ¢ € {1,...,n}

The run p is accepting if v, € F x {ne}.

Definition (linearization of a CFM)
The (word) language of CFM A is defined by:

Lin(A) := {w € Act™ | there is an accepting run of A on w}

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21

Linearizations of an example CFM

e CFM A over
1(1,2, req)
G D {1,2} and {req, ack}
?(1,2,ack) 7(2,1, req) ' 1(2,1, ack) 10 %
2T i}
L2, | | 7012, ack) (2,1, ack)

GO

4

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21

Linearizations of an example CFM

FM A over
(1,2, req) @ o C A ov
n {1,2} and {req, ack}
?(1,2,ack) 7(2,1, req) ' 1(2,1, ack)

WM = e sequante o

T g achons W ek

n . 1

L2 B | |7(1,2,ack) (2,1, ack) OCeur et poteds

W2 = - Sor paces 2,

GO

Lin(A) = {w € Act™ | there is n > 1 such that:
w[l =1(1,2,req))" (?(1,2,ack) !(1,2,req))")

—

wl2=(7(2,1,req) !(2,1,ack))” (?(2,1,req))" (_,,,)

(k(i-)

for any u € Pref(w) and (p,q) € Ch:

Z |ulip,g,a) = Z |ulo(g,p.a) > 0}

acC acC

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21

4

Linearizations of an example CFM

CFM A over
{1,2} and {req, ack}

’ 22, 1, B

o !(1,2,req) and !(2,1, ack) are always independent.

@ !(1,2,req) and ?(1,2, ack) are always dependent.

@ !(1,2,req) and ?(2,1,req) are sometimes independent.

~» non-regular (word) languages —s wore epe 38N Man

‘g\w\\'(— shale o.;,«\oma"\'&)

4

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21

Linearizations and MSCs of an example CFM

CFM A over
{1,2} and {req, ack}

’ 22, 1, B

Lin(A) = {w € Act™ | there is n > 1 such that:
wll=(1(1,2,req))" (?(1,2,ack) !(1,2,req))"
wl2=(7(2,1,req) !(2,1,ack))" (?(2,1,req))"
for any u € Pref(w) and (p,q) € Ch:

Z |ulip,g,a) = Z |ulo(g,p.a) > 0}

acC acC y

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21

Linearizations and MSCs of an example CFM

CFM A over
{1,2} and {req, ack}

So
. S s,
€ M | there is n > 1 such 4tat: U B
/_\
M1 =(Y(1,2,req))" (?(1,2,ack) !(1,2,req))"

M2 = (?7(2,1,req) (2,1,ack))™ (?(2,1.req))"
sek of MSCs _L (7(2,1,req) I(ack))™ (7(req)) }

occep¥ed by CFm A ok, €,

4

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21

CFMy o’ more S/ErtdSNT
@ Emptiness Problem for CFMs ron Snle- skehe asdoomeke

L

dses oo CFM o\cqge\ ot \easkt
Mmne Wadh ? wndeeidcble @

Joost-Pieter Katoen Theoretical Foundations of the UML 17/21

Elementary questions are undecidable for CFMs

Emptiness of CFMs is undecidable [Brand & Zafiropulo 1983]

The following problem is undecidable (even if C is a singleton):

INPUT: CFM .A over processes P and message contents C
7
QUESTION: Is £(A) empty e.q. C= {4

[L bhe sek of MISCs caephed b cF O

‘CL(ek b"i\‘ \émcdse‘»\gns °~C€<(.a\<é b
Lw—(ﬁ) (ﬁ"’\ B)

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21

Elementary questions are undecidable for CFMs
Emptiness of CFMs is undecidable [Brand & Zafiropulo 1983]

The following problem is undecidable (even if C is a singleton):

INPUT: CFM A over processes P and message contents C
QUESTION: Is £(A) empty?

Proof (sketch)

Reduction from the halting problem for Turing machine
TM = (Q,%, A, 0, qo,qf) to emptiness for a CFM with two processes.
Build CFM A = ((A;.A49).D. 8. F') over {1.2} and some singleton
set C such that|L(A) # @ iff TM can reach gy, i.e., TM accepts.

@ Process 1 sends current configurations to process 2 v

@ Process 2 chooses successor configurations and sends them to 1 \/

o D= ((CU{D) x QU{_D) Uiy Lofie™

V.
Joost-Pieter Katoen Theoretical Foundations of the UML 18/21

A CFM simulating a Turing machine

Proof (contd.)
Tun\r:) rachne

@ imbiel conf.

q

Fru e, -
e~d of

1

& :
Joost-Pieter Katoen Theoretical Foundations of the UML 19/21

A CFM simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (go,a,a’, L, q3) is applied so
that process 2

o sends b unchanged back to process 1

s detects (receives) a < qo

@ sends a’ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with g3

@ receives # so that the symbol [J < g3 has to be inserted before
returning #

4

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21

A CFM simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (go,a,a’, L, q3) is applied so
that process 2

o sends b unchanged back to process 1

s detects (receives) a < qo

@ sends a’ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with g3

@ receives # so that the symbol [J < g3 has to be inserted before
returning #

@ Right transition: Process 2 has to guess what the position right
before the head is. For example, provided process 2 decided in
favor of (g2, a,d’, R, q3) while reading b, it would have to

o send b < g3 instead of just b, entering some state t(a < g2)
s receive a < g2 (no other symbol can be received in state t(a + ¢2))
s send a’ back to process 1

4

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21

Comnanen ce’\\b Prne - afele Meachmes

4 realis a’\'\w‘ o@ Sab\fm

q?ere\\b-naL rodel of an
\\’VF\ CMQA";‘Q’\"U/\
(C\> MS G = /(reut(‘n:mfe.-\\:sh

o)\l Sceacnod o sda\-em

0\'\\»\6 Q'ﬁ\r\\\\)‘\\:

A CFM simulating a Turing machine

Proof (contd.)
@ Introduce local final states sy and s, one for process 1 and one for
process 2, respectively (i.e., F' = {(sf,ts)} and A is locally
accepting).

@ At any time, process 1 may switch into sy, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

@ Process 2 is allowed to move into ¢y and to empty the channel
(1,2) as soon as it receives a letter ¢ <— ¢y for some c.

@ As process 2 modifies a configuration of T'M locally, finitely many
states are sufficient in A. O

v

Joost-Pieter Katoen Theoretical Foundations of the UML 21/21

