
Theoretical Foundations of the UML
Lecture 7: Communicating Finite-State Machines

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

May 11, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML 1/21

Outline

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 2/21

Overview

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21

Specification to implementation

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

• consider (c) MSGS as complete Specification . . s of a system

. MSG g ,
L (g) = set of Mscs ← set of possible scenarios

- -
finite countably infinite

(e.g .

CMSG for the

Hanna kakis

example)
Central question i can we obtain a system

"
realisation

"

-
- -

that exhibits all possible scenarios in L (g)

First question :
how do such system

" realisation ,

"
look like ?

- model the behavior of each process by a

finite automaton C blood
" automaton)

- processes can communicate via unbounded Fifo
channels

Specification to implementation

Consider an MSGs as complete system specifications
they describe a full set of possible system scenarios

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

L (G) = set of all possible scenarios

Specification to implementation

Consider an MSGs as complete system specifications
they describe a full set of possible system scenarios

Can we obtain “realisations“ that exhibit precisely these scenarios?

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

-

central question in the next 3-4 lectures

Specification to implementation

Consider an MSGs as complete system specifications
they describe a full set of possible system scenarios

Can we obtain “realisations“ that exhibit precisely these scenarios?

Map MSGs, i.e., scenarios onto an executable model
model each process by a finite-state automaton
that communicate via unbounded directed FIFO channels

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

k
"

p→q

- - -

(c) MSG 1-7 communicating finite-state

a ,b

machine (CFM)

p→ → a

Specification to implementation

Consider an MSGs as complete system specifications
they describe a full set of possible system scenarios

Can we obtain “realisations“ that exhibit precisely these scenarios?

Map MSGs, i.e., scenarios onto an executable model
model each process by a finite-state automaton
that communicate via unbounded directed FIFO channels

⇒ This yields Communicating Finite-state Machines

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

Brand &

Zafiropou lov

Intuition

Joost-Pieter Katoen Theoretical Foundations of the UML 5/21

process p
"

realisation
"

process I
Example a

-

→ ! Cpi e. a) →

AOD
?Cqp,a)

"

local
"

automaton of p
"

local
" automaton

of I

global initial stele = (n ,
A)

global final States = { (a A) } CMSC

p 9- CFM

possible behavior
- ← accepts if

of the CFM : a

→
① all channels

p -31 a
are empty-O e a

.

I
a -→② we are in

g- → p

- o -
not used M

state G. A)

Eixample process p process I

→

. I?a tb③②
global initial state = (n

,
A)

global Arial states
= { (2,13) }

p -07

p I
 -

.

ae.

LE . -

a
b

.

•
L 8.

-

a

c
> is

"

accepted
"

by
MSC the example CFM

(Yannakakis

example)

The need for synchronisation messages

Joost-Pieter Katoen Theoretical Foundations of the UML 6/21

Suppose we want to realise

:-p I p I

#µ find states

{ (2. B) (3. c))
I I

D A

Cfm :

Process p

y

apgcessqcE7ieh@oToatoE.o
Otto o

2 7 3 B
A C

⇐
p I p 9-

left n

→ ←

b b

Process p
informs process q whether to go

"
left

"

or
"

right
"

Automaton for process p : Fe { (0,0)
,

(0,0))

⇐ ⇐ do

oweFor process I

L

A deadlock like in the

previous example cannot

Occur

Overview

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 7/21

Preliminaries

Definition
Let

P be a finite set of at least two (sequential) processes

C be a finite set of message contents

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

(
a. b. a

Preliminaries

Definition
Let

P be a finite set of at least two (sequential) processes

C be a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of send actions by process p

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries

Definition
Let

P be a finite set of at least two (sequential) processes

C be a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of send actions by process p

Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of receive actions by process p

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries

Definition
Let

P be a finite set of at least two (sequential) processes

C be a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of send actions by process p

Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of receive actions by process p

Actp := Act !p ∪ Act?p

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries

Definition
Let

P be a finite set of at least two (sequential) processes

C be a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of send actions by process p

Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of receive actions by process p

Actp := Act !p ∪ Act?p

Act :=
⋃

p∈P Actp

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries

Definition
Let

P be a finite set of at least two (sequential) processes

C be a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of send actions by process p

Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of receive actions by process p

Actp := Act !p ∪ Act?p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p #= q} “channels“

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

-
ordered

(P . I)

(a
, p)

Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F)

where

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Sef of

→ global Anil

steles

-

" local
" ↳ global initialautomaton

state

£719
" (

synchronisation
messages

(e.g .

left
, right)

Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F)

where

D is a nonempty finite set of synchronization messages (or data)

We often write s
σ,m
−→p s

′ instead of (s,σ,m, s′) ∈ ∆p

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

e- g .

-
left

, right

Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F)

where

D is a nonempty finite set of synchronization messages (or data)

for each p ∈ P:
Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

We often write s
σ,m
−→p s

′ instead of (s,σ,m, s′) ∈ ∆p

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

-

(s
,

'
.

Cp
. e. a)

,
d

,
s

') e Dp Og

-
E Aatp

-

Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F)

where

D is a nonempty finite set of synchronization messages (or data)

for each p ∈ P:
Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

sinit ∈ SA is the global initial state
where SA :=

∏

p∈P Sp is the set of global states of A

We often write s
σ,m
−→p s

′ instead of (s,σ,m, s′) ∈ ∆p

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

P , I
,

r

(p , I
,

r)

Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F)

where

D is a nonempty finite set of synchronization messages (or data)

for each p ∈ P:
Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

sinit ∈ SA is the global initial state
where SA :=

∏

p∈P Sp is the set of global states of A

F ⊆ SA is the set of global final states

We often write s
σ,m
−→p s

′ instead of (s,σ,m, s′) ∈ ∆p

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over P = {1, 2}

and C = {req, ack}

D = { , , }

S1 = {s0, s1, s2}

S2 = {t0, t1, t2}

∆1: s0
!(1,2, req)
−−−−−−→1 s0 ...

∆2: t0
?(2,1, req)
−−−−−−→2 t1 ...

sinit = (s0, t0)

F = {(s2, t2)}

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

e -

I

-

-
-

- - - - -
- -

-

-

1 2

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

. . .

. . .

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

1 2

← ←

1-32

2-21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req
. . .

. . .

!(1, 2, req)

!(1, 2, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

CMS C

C

O
linearis atsuis

O

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

reqreq
. . .

. . .

!(1, 2, req)

!(1, 2, req)

!(1, 2, req) !(1, 2, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

c'

:
.

O

←

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req
. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

sox

-

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req

ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

j
0

←

O

-

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

f O

X

-

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

ack ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(2, 1, ack)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

OoI

°

-

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(2, 1, ack)

?(1, 2, ack)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

j
•

←

O
→

-

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req

ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(2, 1, ack)

?(1, 2, ack)

!(1, 2, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

x

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req
. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(2, 1, ack)

?(1, 2, ack)

!(1, 2, req)

?(1, 2, ack)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

T

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

reqreq
. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(2, 1, ack)

?(1, 2, ack)

!(1, 2, req)

?(1, 2, ack)

!(1, 2, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack) !(1, 2, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req
. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(2, 1, ack)

?(1, 2, ack)

!(1, 2, req)

?(1, 2, ack)

!(1, 2, req)

?(2, 1, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack) !(1, 2, req) ?(2

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

±

x

=

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(2, 1, ack)

?(2, 1, req)

!(2, 1, ack)

?(1, 2, ack)

!(1, 2, req)

?(1, 2, ack)

!(1, 2, req)

?(2, 1, req)

?(2, 1, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack) !(1, 2, req) ?(2

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

-

a
.

X

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

. . .

. . .

1 2
req

req

ack

ack

req

req

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack) !(1, 2, req) ?(2

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

-

MSC M

M is accepted by this

CFM .

Overview

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 11/21

Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Definition (configurations)

Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

=["
the content of all

global state channels of the
Local

(= a state for
Cfm

"

every process p)

2 : Ch → (c × D)
* 2 (Crs)) = E

r (Cp , s)) = (a
, 7. (b

,)

Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Definition (configurations)

Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)

=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

(Tpp
the

-

(Csi ,
. she) , e) (Cs

,
-

s !-I ,
ri)

(
ch → C Cx D)

£
? Csi

, sj ,
a) ,

m

Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Definition (configurations)

Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)

=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]

s[r] = s′[r] for all r ∈ P \ {p}

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

1PI=k

✓
-

=L
✓ [] (5=6 , ,

.sk) , r)

::i÷:÷÷l⇐÷÷÷ii:

Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Definition (configurations)

Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)

=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]

s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], ?(p, q, a),m, s′[p]) ∈ ∆p

η((q, p)) = w · (a,m) #= ε and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

¥¢ , n) anent configuration

| ? Cp . e. a)
,

m

w

I
((k)

, hi)
rice ,pD=w

for all other channels C

⑧
n' Cd . red

Example

Joost-Pieter Katoen Theoretical Foundations of the UML 13/21

E
-

e-

←

shiny ones - ton : (cnn.s.ca#ta99-D--
e

= to I
, p)) = E

[/enpty((r
,

c)
,

le
,

b)) = t ,

I empty

C. lad ,
(a.

b)) = tz

II -

I Vcrs D= a a

2 I (Ep)) -
b

. . . . (I 2,4
,

(age)) ⇐ I C s
,

c)
,

Caa
,

b)) =L ,

÷

Linearizations of a CFM

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Definition (accepting runs)

A run ρ of CFM A on word w = σ1 . . . σn ∈ Act∗ is an alternating
sequence ρ = γ0 m1 γ1 . . . γn−1mn γn such that

1 γ0 = (sinit , ηε) with ηε mapping any channel to ε

2 γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21

y
! C Pie , a)

,
? Ce

, p ,
b)

(empty contest)

-

Linearizations of a CFM

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Definition (accepting runs)

A run ρ of CFM A on word w = σ1 . . . σn ∈ Act∗ is an alternating
sequence ρ = γ0 m1 γ1 . . . γn−1mn γn such that

1 γ0 = (sinit , ηε) with ηε mapping any channel to ε

2 γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}

The run ρ is accepting if γn ∈ F × {ηε}.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21

0

fn
= global final starlet

all channels are

- - -

empty .

Linearizations of a CFM

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Definition (accepting runs)

A run ρ of CFM A on word w = σ1 . . . σn ∈ Act∗ is an alternating
sequence ρ = γ0 m1 γ1 . . . γn−1mn γn such that

1 γ0 = (sinit , ηε) with ηε mapping any channel to ε

2 γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}

The run ρ is accepting if γn ∈ F × {ηε}.

Definition (linearization of a CFM)

The (word) language of CFM A is defined by:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21

Linearizations of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21

EI Jux

Linearizations of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

Lin(A) =
{

w ∈ Act∗ | there is n ! 1 such that:

w "1 = !(1, 2, req))n (?(1, 2, ack) !(1, 2, req))n

w "2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))n

for any u ∈ Pref (w) and (p, q) ∈ Ch:
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) ! 0
}

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21

n

h

WM = the sequence of

actions in w that
n 7

occur at process 1

n
w T2 = - . .

for process 2
. .

Cta)

- - -
Csar)

C tart)

Linearizations of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

!(1, 2, req) and !(2, 1, ack) are always independent.

!(1, 2, req) and ?(1, 2, ack) are always dependent.

!(1, 2, req) and ?(2, 1, req) are sometimes independent.
non-regular (word) languages

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21

→ more expressive than

finite - state automata !

Linearizations and MSCs of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

Lin(A) =
{

w ∈ Act∗ | there is n ! 1 such that:

w "1 = (!(1, 2, req))n (?(1, 2, ack) !(1, 2, req))n

w "2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))n

for any u ∈ Pref (w) and (p, q) ∈ Ch:
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) ! 0
}

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21

Linearizations and MSCs of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

L(A) =
{

M ∈M | there is n ≥ 1 such that:

M "1 = (!(1, 2, req))n (?(1, 2, ack) !(1, 2, req))n

M "2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))n
}

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21

r
t

-

- - -

set of MS Cs -

I
accepted by CFM A

.

Overview

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 17/21

#
CFMS are more expressive

than finite -
state automata

Idoes a CFM accept at least

one word ? undecidable

Elementary questions are undecidable for CFMs

Emptiness of CFMs is undecidable [Brand & Zafiropulo 1983]

The following problem is undecidable (even if C is a singleton):

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21

- -

(
e.g .

c- { a)

↳ the set of Mscs accepted by CFM A

€a
,

the set of linton's atoms accepted by
Crm A

.

Elementary questions are undecidable for CFMs

Emptiness of CFMs is undecidable [Brand & Zafiropulo 1983]

The following problem is undecidable (even if C is a singleton):

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

Proof (sketch)

Reduction from the halting problem for Turing machine
TM = (Q,Σ,∆,$, q0, qf) to emptiness for a CFM with two processes.
Build CFM A = ((A1,A2),D, sinit , F) over {1, 2} and some singleton
set C such that L(A) &= ∅ iff TM can reach qf , i.e., TM accepts.

Process 1 sends current configurations to process 2

Process 2 chooses successor configurations and sends them to 1

D =
(

(Σ ∪ {$}) × (Q ∪ {_})
)

∪ {#}

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21

✓

✓
I of the TM

A CFM simulating a Turing machine

Proof (contd.)

$

q0

a $

q1

a

q2

b

$

q3

a′ b

.

.

.

(TM

(TM

(TM

γ0

{

γ1

γ2

γ3

.

.

.

γ1

γ2

γ3

$← q0

#

$← q1

a

#

b

a← q2

#

b

a′

$← q3

#

$← q1

a

#

b

a← q2

#

b

a′

$← q3

#

Joost-Pieter Katoen Theoretical Foundations of the UML 19/21

Turing machine 1CFM#
initial conf

.

-
-

marks -

÷:: #-
-

-

A CFM simulating a Turing machine

Proof (contd.)

Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (q2, a, a′, L, q3) is applied so
that process 2

sends b unchanged back to process 1
detects (receives) a← q2
sends a′ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with q3
receives # so that the symbol $← q3 has to be inserted before
returning #

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21

A CFM simulating a Turing machine

Proof (contd.)

Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (q2, a, a′, L, q3) is applied so
that process 2

sends b unchanged back to process 1
detects (receives) a← q2
sends a′ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with q3
receives # so that the symbol $← q3 has to be inserted before
returning #

Right transition: Process 2 has to guess what the position right
before the head is. For example, provided process 2 decided in
favor of (q2, a, a′, R, q3) while reading b, it would have to

send b← q3 instead of just b, entering some state t(a← q2)
receive a← q2 (no other symbol can be received in state t(a← q2))
send a′ back to process 1

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21

Communicating Finite - state Machines
- - -

a

• realisation
"

of system

forming
:::::I "

(c) MSG =

"

requirements
"

all scenarios a system

should exhibit

A CFM simulating a Turing machine

Proof (contd.)

Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf)} and A is locally
accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel
(1, 2) as soon as it receives a letter c← qf for some c.

As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. !

Joost-Pieter Katoen Theoretical Foundations of the UML 21/21

