Theoretical Foundations of the UML Lecture 7: Communicating Finite-State Machines

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

May 11, 2020

< ロ > < 同 > < 回 > < 回 >

э



3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

э



3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

▲ 同 ▶ ▲ 国 ▶ ▲ 国

# Specification to implementation

• Consider an MSGs as complete system specifications

• they describe a full set of possible system scenarios

L(G) = set of all possible scenarios

P

( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

• Consider an MSGs as complete system specifications

• they describe a full set of possible system scenarios

• Can we obtain "realisations" that exhibit precisely these scenarios?

central question in the next 3-4 lectures

- Consider an MSGs as complete system specifications
  - they describe a full set of possible system scenarios
- Can we obtain "realisations" that exhibit precisely these scenarios?
- Map MSGs, i.e., scenarios onto an executable model
  - model each process by a finite-state automaton
  - that communicate via unbounded directed FIFO channels



- Consider an MSGs as complete system specifications
  - they describe a full set of possible system scenarios
- Can we obtain "realisations" that exhibit precisely these scenarios?
- Map MSGs, i.e., scenarios onto an executable model
  - model each process by a finite-state automaton
  - that communicate via unbounded directed FIFO channels

 $\Rightarrow$  This yields Communicating Finite-state Machines

Brand &

# Intuition

| Example 1             | process     | P                      | realisatio | κ.  | pocess    | 9                         |
|-----------------------|-------------|------------------------|------------|-----|-----------|---------------------------|
|                       | →Or         | ) ! ( <sub>P</sub> , 9 | (م         |     | →Ar       | )?(9'b'a)                 |
|                       | "locel" aut | ometer of              | )<br>P     | ″la |           | tomoton                   |
| gbbol initicl.        | stole= (1   | , A)                   |            |     | 0,        | fg                        |
| globel final s        | tetes =     | ζ (1, A)}              | CMS        | ٩   |           | <b>F M</b>                |
|                       | behavior    |                        | a          |     |           | FM<br>Lecepts if          |
| of the                |             |                        | _a         |     |           | all channels<br>are empty |
| • • • • • • • • • •   | <b>£</b> ←9 |                        |            |     |           | re are in                 |
| <b>و</b><br>  \ [ ] ] |             | nat used               | M          | 1   |           | ste (1,A)                 |
|                       |             |                        | < D )      |     | ≣ ► < ≣ > | <u>।</u><br>ह<br>१९९२     |



### The need for synchronisation messages



Joost-Pieter Katoen Theoretical Foundations of the UML





#### 3 Semantics of Communicating Finite-State Machines

#### 4 Emptiness Problem for CFMs

э

< 同 > < 回 > < 回 >

## Preliminaries



< 17 ►

< ∃ >

æ

# Definition Let • $\mathcal{P}$ be a finite set of at least two (sequential) processes • $\mathcal{C}$ be a finite set of message contents

#### Definition (communication actions, channels)

• 
$$Act_p^! := \{ !(p,q,a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C} \}$$
  
the set of send actions by process  $p$ 

# Definition Let • $\mathcal{P}$ be a finite set of at least two (sequential) processes

•  $\mathcal{C}$  be a finite set of message contents

#### Definition (communication actions, channels)

• 
$$Act_p^! := \{!(p,q,a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$$
  
the set of send actions by process  $p$ 

 Act<sup>?</sup><sub>p</sub> := {?(p,q,a) | q ∈ P \ {p}, a ∈ C} the set of receive actions by process p

Let

- $\mathcal{P}$  be a finite set of at least two (sequential) processes
- $\mathcal{C}$  be a finite set of message contents

#### Definition (communication actions, channels)

• 
$$Act_p^! := \{!(p,q,a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$$
  
the set of send actions by process  $p$ 

 Act<sup>?</sup><sub>p</sub> := {?(p,q,a) | q ∈ P \ {p}, a ∈ C} the set of receive actions by process p

• 
$$Act_p := Act_p^! \cup Act_p^?$$

Let

| • P | be a finite set of at least two (sequential) pr | ocesses |
|-----|-------------------------------------------------|---------|
|-----|-------------------------------------------------|---------|

•  $\mathcal{C}$  be a finite set of message contents

#### Definition (communication actions, channels)

• 
$$Act_p^! := \{!(p,q,a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$$
  
the set of send actions by process  $p$ 

• 
$$Act_p := Act_p^! \cup Act_p^?$$

•  $Act := \bigcup_{p \in \mathcal{P}} Act_p$ 

#### Definition Let be a finite set of at least two (sequential) processes $\circ \mathcal{P}$ • C be a finite set of message contents Definition (communication actions, channels) • $Act_p^! := \{!(p,q,a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$ the set of send actions by process p• $Act_p^? := \{?(p,q,a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$ the set of receive actions by process p• $Act_p := Act_p^! \cup Act_p^?$ (P.9) ordered (9, 0) • $Act := \bigcup_{p \in \mathcal{P}} Act_p$ • $Ch := \{(p,q) \mid p,q \in \mathcal{P}, p \neq q\}$ "channels"

#### Definition



P

(4回) (4回) (日)

A communicating finite-state machine (CFM) over  $\mathcal P$  and  $\mathcal C$  is a structure

$$\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$$

where

• D is a nonempty finite set of synchronization messages (or data)

We often write 
$$s \xrightarrow{\sigma,m}_p s'$$
 instead of  $(s, \sigma, m, s') \in \Delta_p$ 

left, night

A communicating finite-state machine (CFM) over  $\mathcal P$  and  $\mathcal C$  is a structure

$$\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$$

where

- D is a nonempty finite set of synchronization messages (or data)
  o for each p ∈ P:
  - S<sub>p</sub> is a non-empty finite set of local states (the S<sub>p</sub> are disjoint)
     Δ<sub>p</sub> ⊆ S<sub>p</sub> × Act<sub>p</sub> × D × S<sub>p</sub> is a set of local transitions
     (s, !(p,q,a), d, s') ∈ Δ<sub>p</sub>
     (c,q,q), d

We often write  $s \xrightarrow{\sigma,m} p s'$  instead of  $(s, \sigma, m, s') \in \Delta_p$ 

e Acto

A communicating finite-state machine (CFM) over  $\mathcal P$  and  $\mathcal C$  is a structure

$$\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$$

where

D is a nonempty finite set of synchronization messages (or data)
for each p ∈ P:

•  $S_p$  is a non-empty finite set of local states (the  $S_p$  are disjoint)

•  $\Delta_p \subseteq S_p \times Act_p \times \mathbb{D} \times S_p$  is a set of local transitions

•  $s_{init} \in S_{\mathcal{A}}$  is the global initial state • where  $S_{\mathcal{A}} := \prod_{p \in \mathcal{P}} S_p$  is the set of global states of  $\mathcal{A}$  (p, g, r)

We often write  $s \xrightarrow{\sigma,m}_p s'$  instead of  $(s, \sigma, m, s') \in \Delta_p$ 

э

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

A communicating finite-state machine (CFM) over  $\mathcal P$  and  $\mathcal C$  is a structure

$$\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$$

where

- D is a nonempty finite set of synchronization messages (or data)
  for each p ∈ P:
  - $S_p$  is a non-empty finite set of local states (the  $S_p$  are disjoint)
  - $\Delta_p \subseteq S_p \times Act_p \times \mathbb{D} \times S_p$  is a set of local transitions
- $s_{init} \in S_{\mathcal{A}}$  is the <u>global</u> initial state
  - where  $S_{\mathcal{A}} := \prod_{p \in \mathcal{P}} S_p$  is the set of global states of  $\mathcal{A}$
- $F \subseteq S_{\mathcal{A}}$  is the set of <u>global</u> final states

We often write  $s \xrightarrow{\sigma,m}_p s'$  instead of  $(s, \sigma, m, s') \in \Delta_p$ 

#### Example



Joost-Pieter Katoen Theoretical Foundations of the UML







Joost-Pieter Katoen Theoretical Foundations of the UML





















#### Example



Joost-Pieter Katoen Theoretical Foundations of the UML

# Communicating finite-state machines

### Example



# Communicating finite-state machines

### Example



# Communicating finite-state machines







2 Communicating Finite-State Machines

### Semantics of Communicating Finite-State Machines



Joost-Pieter Katoen Theoretical Foundations of the UML

э

< 同 > < 回 > < 回 >

Let  $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$  be a CFM over  $\mathcal{P}$  and  $\mathcal{C}$ . Definition (configurations) Configurations of  $\mathcal{A}$ : Conf<sub>A</sub> :=  $S_{\mathcal{A}} \times \{\eta \mid \eta : Ch \to (\mathcal{C} \times \mathbb{D})^*\}$ "the content of all channels of the global state (= a state for every pocess p) CEM " 2 ( (P9)) = E  $\eta : \mathrm{Ch} \to (\mathrm{C} \times \mathrm{D})^*$  $\eta((p,q)) = (a, -), (b, -)$ 

Let  $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$  be a CFM over  $\mathcal{P}$  and  $\mathcal{C}$ .

Definition (configurations)

Configurations of  $\mathcal{A}$ :  $Conf_{\mathcal{A}} := S_{\mathcal{A}} \times \{\eta \mid \eta : Ch \to (\mathcal{C} \times \mathbb{D})^*\}$ 

### Definition (global step)



Let  $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$  be a CFM over  $\mathcal{P}$  and  $\mathcal{C}$ .

Definition (configurations)

Configurations of  $\mathcal{A}$ :  $Conf_{\mathcal{A}} := S_{\mathcal{A}} \times \{\eta \mid \eta : Ch \to (\mathcal{C} \times \mathbb{D})^*\}$ 

### Definition (global step)

 $\Longrightarrow_{\mathcal{A}} \subseteq Conf_{\mathcal{A}} \times Act \times \mathbb{D} \times Conf_{\mathcal{A}}$  is defined as follows:

• sending a message: 
$$(\overline{(\overline{s},\eta)}, !(p,q,a), m, (\overline{s'},\eta')) \in \Longrightarrow_{\mathcal{A}}$$
 if  
 $\sqrt{\bullet} (\overline{s}[p], !(p,q,a), m, \overline{s'}[p]) \in \Delta_p$   
 $\sqrt{\bullet} \eta' = \eta[\underline{(p,q)} := (a,m) \cdot \eta((p,q))]$   
 $\sqrt{\bullet} \overline{s}[r] = \overline{s'}[r]$  for all  $r \in \mathcal{P} \setminus \{p\}$   
 $\overline{s}[p] = s_p$  local state at posess p  
 $(p, g, g)$   
 $\overline{s_p} \cdot \underline{(p, g, g)}, \overline{s'_p} \cdot \underline{(q, g)}, \overline{s'_p} \cdot \underline{(q, g)}, \overline{s'_p} \cdot \underline{(q, g)}, \eta'$ 

|P|=k

Let  $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$  be a CFM over  $\mathcal{P}$  and  $\mathcal{C}$ .

Definition (configurations)

Configurations of  $\mathcal{A}$ :  $Conf_{\mathcal{A}} := S_{\mathcal{A}} \times \{\eta \mid \eta : Ch \to (\mathcal{C} \times \mathbb{D})^*\}$ 

### Definition (global step)

 $\Longrightarrow_{\mathcal{A}} \subseteq Conf_{\mathcal{A}} \times Act \times \mathbb{D} \times Conf_{\mathcal{A}}$  is defined as follows:

• sending a message:  $((\overline{s}, \eta), !(p, q, a), m, (\overline{s}', \eta')) \in \Longrightarrow_{\mathcal{A}}$  if •  $(\overline{s}[p], !(p, q, a), m, \overline{s}'[p]) \in \Delta_p$ 

• 
$$\eta' = \eta[(p,q) := (a,m) \cdot \eta((p,q))]$$

•  $\overline{s}[r] = \overline{s}'[r]$  for all  $r \in \mathcal{P} \setminus \{p\}$ 

 $\xrightarrow{\text{ecceipt of a message: } ((\overline{s}, \eta), ?(p, q, a), m, (\overline{s}', \eta')) \in \implies_{\mathcal{A}} \text{if} } \\ \xrightarrow{\bullet} (\overline{s}[\underline{p}], ?(p, q, a), m, \overline{s}'[\underline{p}]) \in \Delta_{\underline{p}}$ 

•  $\eta((q, p)) = w \cdot (a, m) \neq \epsilon$  and  $\eta' = \eta[(q, p) := w]$ 

• 
$$\overline{s}[r] = \overline{s}'[r]$$
 for all  $r \in \mathcal{P} \setminus \{p\}$ 





$$\eta'(c) = \eta(c)$$



# Example

Joost-Pieter Katoen Theoretical Foundations of the UML

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三祖



# Linearizations of a CFM

Let  $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$  be a CEM over  $\mathcal{P}$  and  $\mathcal{C}$ .

### Definition (accepting runs)

A run  $\rho$  of CFM  $\mathcal{A}$  on word  $w = \sigma'_1 \dots \sigma_n \in Act^*$  is an alternating sequence  $\rho = \gamma_0 m_1 \gamma_1 \dots \gamma_{n-1} m_n \gamma_n$  such that

$$\begin{array}{l} \bullet \quad \underline{\gamma_0} = (\underbrace{s_{init}, \eta_{\varepsilon}}_{\sigma_i, m_i}) \text{ with } \underline{\eta_{\varepsilon}} \text{ mapping any channel to } \varepsilon \quad (exply content) \\ \bullet \quad \underline{\gamma_{i-1}} \xrightarrow{\sigma_i, m_i} \underline{\lambda_i} \quad \gamma_i \text{ for any } i \in \{1, \dots, n\} \end{array}$$

!(p,g,c) ?(g,p,b)

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

## Linearizations of a CFM

Let  $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$  be a CFM over  $\mathcal{P}$  and  $\mathcal{C}$ .

### Definition (accepting runs)

## Linearizations of a CFM

Let  $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$  be a CFM over  $\mathcal{P}$  and  $\mathcal{C}$ .

### Definition (accepting runs)

A run  $\rho$  of CFM  $\mathcal{A}$  on word  $w = \sigma_1 \dots \sigma_n \in Act^*$  is an alternating sequence  $\rho = \gamma_0 m_1 \gamma_1 \dots \gamma_{n-1} m_n \gamma_n$  such that

The run  $\rho$  is accepting if  $\gamma_n \in F \times \{\eta_{\varepsilon}\}$ .

### Definition (linearization of a CFM)

The (word) language of CFM  $\mathcal{A}$  is defined by:

 $Lin(\mathcal{A}) := \{ w \in Act^* \mid \text{there is an accepting run of } \mathcal{A} \text{ on } w \}$ 

・ロト ・雪 ・ ・ ヨ ・

# Linearizations of an example CFM

### Example



# Linearizations of an example CFM

### Example



# Linearizations of an example CFM

### Example



• !(1, 2, req) and !(2, 1, ack) are always independent.

- !(1, 2, req) and ?(1, 2, ack) are always dependent.
- !(1, 2, req) and ?(2, 1, req) are sometimes independent.

CFM  $\mathcal{A}$  over

 $\{1,2\}$  and  $\{req, ack\}$ 

# Linearizations and MSCs of an example CFM

### Example



# Linearizations and MSCs of an example CFM

### Example





## Elementary questions are undecidable for CFMs



P

# Elementary questions are undecidable for CFMs

### Emptiness of CFMs is undecidable

[Brand & Zafiropulo 1983]

The following problem is undecidable (even if  $\underline{C}$  is a singleton):

INPUT: CFM  $\mathcal{A}$  over processes  $\mathcal{P}$  and message contents  $\mathcal{C}$ QUESTION: Is  $\mathcal{L}(\mathcal{A})$  empty?

### Proof (sketch)

Reduction from the halting problem for Turing machine  $TM = (Q, \Sigma, \Delta, \Box, q_0, q_f)$  to emptiness for a CFM with two processes. Build CFM  $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), \mathbb{D}, s_{init}, F)$  over  $\{1, 2\}$  and some singleton set  $\mathcal{C}$  such that  $\mathcal{L}(\mathcal{A}) \neq \emptyset$  iff TM can reach  $q_f$ , i.e., TM accepts.

- Process 1 sends current configurations to process 2
- Process 2 chooses successor configurations and sends them to 1 ✓
  D = ((Σ ∪ {□}) × (Q ∪ {\_})) ∪ {#}

# A CFM simulating a Turing machine



# A CFM simulating a Turing machine

### Proof (contd.)

- Left or standstill transition: Process 2 may just wait for a symbol containing a state of TM and to alter it correspondingly. In the example, the left-moving transition  $(q_2, a, a', L, q_3)$  is applied so that process 2
  - sends b unchanged back to process 1
  - detects (receives)  $a \leftarrow q_2$
  - sends a' to process 1 entering a state indicating that the symbol to be sent next has to be equipped with  $q_3$
  - receives # so that the symbol  $\Box \leftarrow q_3$  has to be inserted before returning #

# A CFM simulating a Turing machine

## Proof (contd.)

- Left or standstill transition: Process 2 may just wait for a symbol containing a state of TM and to alter it correspondingly. In the example, the left-moving transition  $(q_2, a, a', L, q_3)$  is applied so that process 2
  - $\bullet\,$  sends b unchanged back to process 1
  - detects (receives)  $a \leftarrow q_2$
  - sends a' to process 1 entering a state indicating that the symbol to be sent next has to be equipped with  $q_3$
  - receives # so that the symbol  $\Box \leftarrow q_3$  has to be inserted before returning #
- Right transition: Process 2 has to guess what the position right before the head is. For example, provided process 2 decided in favor of  $(q_2, a, a', R, q_3)$  while reading b, it would have to
  - send  $b \leftarrow q_3$  instead of just b, entering some state  $t(a \leftarrow q_2)$
  - receive  $a \leftarrow q_2$  (no other symbol can be received in state  $t(a \leftarrow q_2)$ )
  - send a' back to process 1

Commicating Finite-state Machines realisation of system operational model of an implained in implementation (c)MSG = "requirements" all scenarios a system should exhibit

### Proof (contd.)

- Introduce local final states  $s_f$  and  $t_f$ , one for process 1 and one for process 2, respectively (i.e.,  $F = \{(s_f, t_f)\}$  and  $\mathcal{A}$  is locally accepting).
- At any time, process 1 may switch into  $s_f$ , in which arbitrary and arbitrarily many messages can be received to empty channel (2, 1).
- Process 2 is allowed to move into  $t_f$  and to empty the channel (1,2) as soon as it receives a letter  $c \leftarrow q_f$  for some c.
- As process 2 modifies a configuration of TM locally, finitely many states are sufficient in  $\mathcal{A}$ .

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э