
Theoretical Foundations of the UML

Lecture 5+6: Compositional Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

May 4, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML 1/29

0

Be

BEE

Outline

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 2/29

} two decision problem ,

Undecidable

decidable

B•

Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC

(= allow for incomplete message transfer)

Definition (Compositional MSC)
M = (P, E, C, l,m,�) is a compositional MSC (CMSC, for short)

where P, E, C and l are defined as before, and

m : E! ! E? is a partial, injective function such that (as before):

m(e) = e0 ^ l(e) = !(p, q, a) implies l(e0) = ?(q, p, a)

� =
�S

p2P <p [{(e,m(e)) | e 2 dom(m)| {z }
domain of m| {z }

“m(e) is defined”

}
�⇤

Note:
An MSC is a CMSC where m is total and bijective.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

.

-
-

egad

CMSC example

m(e2) = e3
e1 /2 dom(m)
e4 /2 rng(m)

Joost-Pieter Katoen Theoretical Foundations of the UML 7/29

÷i÷÷÷÷:÷÷÷
zydeco

Paths

Let G = (V,!, v0, F,�) be a CMSG.

Definition (Path in a CMSG)
A path ⇡ of G is a finite sequence

⇡ = u0 u1 . . . un with ui 2 V (0 i n) and ui ! ui+1 (0 i < n)

Definition (Accepting path of a CMSG)
Path ⇡ = u0 . . . un is accepting if: u0 = v0 and un 2 F .

Definition (CMSC of a path)
The CMSC of a path ⇡ = u0 . . . un is:

M(⇡) = (. . . (�(u0) • �(u1)) • �(u2) . . .) • �(un)

where CMSC concatenation is left associative.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29

X : V → EM

- -

- un - -

ft

The MSC language of a CMSG

Definition (Language of a CMSG)
The (MSC) language of CMSG G is defined by:

L(G) = { M(⇡) 2 M| {z }
only “real” MSCs

| ⇡ is an accepting path of G}.

Note: Accepting paths that give rise to an CMSC (which is not an MSC) are

not part of L(G).

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29Egg

I 2 r 2

a
CMSG

a
→

f- . → > b→ - D 8

Uo ✓ U
,

accepting a 2

path : IT -- You ,
MCT) →

C- IM →
thus Mct) E Lcg)

accepting
r 2

path
IT '= 4044 ,

MCIT ') a-

→¢ IM

⑦MCT '7¢LCg)
.

Yannakakis’ example as compositional MSG

This MSC cannot be modeled for n > 1 by:

M = M1 •M2 • . . . •Mn with Mi 2 M

Thus it cannot be modeled by a MSG.

But it can be modeled as compositional MSG:

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29Egos

CMS G

g :

Pi P2
Msc M

,
E LCG) -

t
• .

a

-

} Vo

In .

2

j .
.

2 safe

-

a

± In?Evey accepting path IT for G iMCT)isan_rise
→ Mcm) c- Llg)

C MSG g is called safe

Safe paths and CMSGs

Definition (Safe path)
Path ⇡ of CMSG G is safe whenever M(⇡) 2 M.

Definition (Safe CMSG)
CMSG G is safe if for every accepting path ⇡ of G, M(⇡) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched

sends and receipts, i.e., if any of its accepting paths is indeed an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

n•EBMiE"↳

Existence of a safe accepting path

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting

path?” is undecidable.

Proof.
By a reduction from Post’s Correspondence Problem (PCP).

. . . black board . . .

The complement decision problem “does CMSG G have no safe, accepting

path?” is undecidable too.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29

Universality of safe accepting paths

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting

path?” is undecidable.

Theorem: decidability of universality of safe paths
The decision problem “are all accepting paths of CMSG G safe?” is

decidable in PTIME.

Proof.
Polynomial reduction to reachability problem in (non-deterministic)

pushdown automata.

. . . see details on the next slides . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Universality of safe accepting paths

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting

path?” is undecidable.

Theorem: decidability of universality of safe paths
The decision problem “are all accepting paths of CMSG G safe?” is

decidable in PTIME.

Proof.
Polynomial reduction to reachability problem in (non-deterministic)

pushdown automata.

. . . see details on the next slides . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Universality of safe accepting paths

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting

path?” is undecidable.

Theorem: decidability of universality of safe paths
The decision problem “are all accepting paths of CMSG G safe?” is

decidable in PTIME.

Proof.
Polynomial reduction to reachability problem in (non-deterministic)

pushdown automata.

. . . see details on the next slides . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Pushdown automata

Definition (Pushdown automaton)
A pushdown automaton (PDA, for short) K = (Q, q0,�,⌃,�) with

Q, a finite set of control states

q0 2 Q, the initial state

�, a finite stack alphabet

⌃, a finite input alphabet

� ✓ Q⇥ ⌃⇥ �⇥Q⇥ �⇤
, the transition relation.

Transition relation
(q, a, �, q0, pop) 2 � means: in state q, on reading input symbol a and

top of stack is symbol �, change to q0 and pop � from the stack.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/29

#
which symbols can be put

on the stack

- a
,

b
,

C

I
next stackI I

next stole
contentt

.
c- ret

I
next ip.ee (at the top)

stele

symbol that symbol
is to be read of the

steak

Pushdown automata

Definition (Pushdown automaton)
A pushdown automaton (PDA, for short) K = (Q, q0,�,⌃,�) with

Q, a finite set of control states

q0 2 Q, the initial state

�, a finite stack alphabet

⌃, a finite input alphabet

� ✓ Q⇥ ⌃⇥ �⇥Q⇥ �⇤
, the transition relation.

Transition relation
(q, a, �, q0, pop) 2 � means: in state q, on reading input symbol a and

top of stack is symbol �, change to q0 and pop � from the stack.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/29

O

L = { oh
"

In > o } on EL

Oona C- L

on Cfl
010 of L

Construct a PDA K such that K accepts the language L

Intuition
-

• PDA K starts in initial control state Io

• if input word we E or if w start with a
"

s
"

i reject

• otherwise
,

"

scan

"

all Os and push them on the stack

•

on reading the first "a "

,
move to control stele I ,

t

pop O from the stack

6 6
• in 9

, ,
on reading a 9 "

a
we pop a O from the stack

• in I
,

i reject if a

"

O
"

is read
,

or if input word is d
-

but the stack is not
-

hr .

of Os > Is
• in S

, ;

accept
if input word and

the stack are both empty .

0
, #

,
O

"

push o
" evokes

#

f) " bottom of stack
"

→ 0 OF.ae①
a (

"

pop O
" "

pop O
"

O
,

O
,

00
-

("

push O
"

Q= { so
,

I
,) transitions : Ceo

,
7

,
O

,
a

, ,
E) C- D

-

Z= { on)
(So ,

0,0 , so
,

00) EA

r = I o
,

)
(oh ,

1
,

O
, oh

, ,
E) ← A

go = 9- o

(So 10 , #
, So

,
o) C- A

Example configurations :

⇐' II '¥ . c a
. ¥

4k¥

Change of configuration

(a-
 o , gon,

) t (a-
 o ,

on
,

0) I - Cao
, 11,00) 1-

Can
,

r
,

o) 1- (oh , e. e)
Is (oh

,
E

,
E) reachable

from (so
,

ooh
,

) ?

Reachability in pushdown automata

Definition
A configuration c is a triple (state q, stack content Z, rest input w).

Definition
Given a transition in �, a (direct) successor configuration c0 of c is

obtained: c ` c0.

Reachability problem
For configuration c, and initial configuration c0: c0 `⇤ c?

Theorem: [Esparza et al. 2000]

The reachability problem for PDA is decidable in PTIME.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

'

f
Control

Reachability in pushdown automata

Definition
A configuration c is a triple (state q, stack content Z, rest input w).

Definition
Given a transition in �, a (direct) successor configuration c0 of c is

obtained: c ` c0.

Reachability problem
For configuration c, and initial configuration c0: c0 `⇤ c?

Theorem: [Esparza et al. 2000]

The reachability problem for PDA is decidable in PTIME.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

0

Reachability in pushdown automata

Definition
A configuration c is a triple (state q, stack content Z, rest input w).

Definition
Given a transition in �, a (direct) successor configuration c0 of c is

obtained: c ` c0.

Reachability problem
For configuration c, and initial configuration c0: c0 `⇤ c?

Theorem: [Esparza et al. 2000]

The reachability problem for PDA is decidable in PTIME.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

0

Reachability in pushdown automata

Definition
A configuration c is a triple (state q, stack content Z, rest input w).

Definition
Given a transition in �, a (direct) successor configuration c0 of c is

obtained: c ` c0.

Reachability problem
For configuration c, and initial configuration c0: c0 `⇤ c?

Theorem: [Esparza et al. 2000]

The reachability problem for PDA is decidable in PTIME.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

. Reek : Dyck language

E = { E
,

]) square brackets

"
receive

"

Dyck language

y
"

send
"

y
{ we 2*1 all prefixes of u contain no more

"
I

"

- than
"

E
"

,
and the number of

linearization "
E

"

egads the member of " T
"

in u }
=

Exercise construct a PDA that accepts the
-

Dyck language .

Ceo
,

00in
,

) 1- Ceo
,

ooh
,

o)
-

¥ L 1- (So
,

on
,

00)

1- (so ,
an

,
ooo)

1- (a
, ,

r
,

00)

1- Ce
, ,

E
,

o)
"

reject
"

Sometimes
"

reject
"

is modeled explicitly by a

separate control stele I
err ; similarly

"
accept "

by a

control state If

In our example this means that there are transitions :

(a-
o ,

1
, #

, 9-
err ,

)

(a
, ,

0
, #

,
9-

err ,
)

(at ,
O

,
O

, 9- em ,
)

etcetera .

Checking whether a CMSG is safe is decidable

Consider any ordered pair (pi, pj) of processes in CMSG G

Proof idea: construct a PDA Ki,j = (Q, q0,�,⌃,�) such that

CMSG G is not safe wrt. (pi, pj) iff PDA Ki,j accepts

For accepting path u0 . . . uk in G, feed Ki,j with the word

⇢0 . . . ⇢k where ⇢i 2 Lin(�(ui))

such that unmatched sends (of some type) precede all unmatched

receipts (of the same type)

Possible violations that Ki,j may encounter:

1 nr. of unmatched !(pi, pj , ·) > nr. of unmatched ?(pj , pi, ·)
2 type of k-th unmatched send 6= type of k-th unmatched receive

3 non-FIFO communication

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

-(
is every accepting path of G safe ?

I 2 3 4
- - - - (m2) (as) (ah)

(za) (3,1) C 4. D

(2,3) (3,2) (3G)
- - -

 - ⇐h) (a. 2) I 4. d)

Checking whether a CMSG is safe is decidable

Consider any ordered pair (pi, pj) of processes in CMSG G

Proof idea: construct a PDA Ki,j = (Q, q0,�,⌃,�) such that

CMSG G is not safe wrt. (pi, pj) iff PDA Ki,j accepts

For accepting path u0 . . . uk in G, feed Ki,j with the word

⇢0 . . . ⇢k where ⇢i 2 Lin(�(ui))

such that unmatched sends (of some type) precede all unmatched

receipts (of the same type)

Possible violations that Ki,j may encounter:

1 nr. of unmatched !(pi, pj , ·) > nr. of unmatched ?(pj , pi, ·)
2 type of k-th unmatched send 6= type of k-th unmatched receive

3 non-FIFO communication

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

-

(
in fact

"

not closed
"

kij is going check

for possible violations

ofbeingsafe

Definition C left - closed CMSC)
-

A CMSC is left - closed if it does not contain
-

unmatched receive events
,

or any send events that

are rot yet matched and precede other matched

send events (of the same type) .

Exaptes
7 2 7 2 7 2 I 2

a a a a

→ → →

→ It . # H
→

is not not left - left - left -

left - closed closed closed closed

(unsafe) (unsafe ,
(and safe) (not - safe)

accept accept reject reject

Checking whether a CMSG is safe is decidable

Consider any ordered pair (pi, pj) of processes in CMSG G

Proof idea: construct a PDA Ki,j = (Q, q0,�,⌃,�) such that

CMSG G is not safe wrt. (pi, pj) iff PDA Ki,j accepts

For accepting path u0 . . . uk in G, feed Ki,j with the word

⇢0 . . . ⇢k where ⇢i 2 Lin(�(ui))

such that unmatched sends (of some type) precede all unmatched

receipts (of the same type)

Possible violations that Ki,j may encounter:

1 nr. of unmatched !(pi, pj , ·) > nr. of unmatched ?(pj , pi, ·)
2 type of k-th unmatched send 6= type of k-th unmatched receive

3 non-FIFO communication

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

rake
=

BE s

-
-

- -

+ assume that
↳ not a restriction

,
because such

matched events are
linearis atoms do away s exist

indicated explicitly
! ? l p , I ,

a)

Checking whether a CMSG is safe is decidable

Consider any ordered pair (pi, pj) of processes in CMSG G

Proof idea: construct a PDA Ki,j = (Q, q0,�,⌃,�) such that

CMSG G is not safe wrt. (pi, pj) iff PDA Ki,j accepts

For accepting path u0 . . . uk in G, feed Ki,j with the word

⇢0 . . . ⇢k where ⇢i 2 Lin(�(ui))

such that unmatched sends (of some type) precede all unmatched

receipts (of the same type)

Possible violations that Ki,j may encounter:

1 nr. of unmatched !(pi, pj , ·) > nr. of unmatched ?(pj , pi, ·)
2 type of k-th unmatched send 6= type of k-th unmatched receive

3 non-FIFO communication

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

Bea

Beat s

✓
← I → J

b at j

✓ from i

The nondeterministic PDA Ki,j

Let {a1, . . . , ak} be the message contents in CMSG G for (pi, pj).

Nondeterministic PDA Ki,j = (Q, q0,�,⌃,�) where:

Control states Q = {q0, qa1 , . . . , qak , qerr , qF }

Stack alphabet � = {1,#}

1 counts nr. of unmatched !(pi, pj , am), and # is bottom of stack

Input alphabet

⌃ =

8
<

:

unmatched action !(pi, pj , am)
unmatched action ?(pj , pi, am)
matched actions !?(pi, pj , am), ?!(pj , pi, am)

Transition function � is described on next slide

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

O

-

all message in CMSG g
send from i to j ,

or

received at j from i
.

The nondeterministic PDA Ki,j

Let {a1, . . . , ak} be the message contents in CMSG G for (pi, pj).

Nondeterministic PDA Ki,j = (Q, q0,�,⌃,�) where:

Control states Q = {q0, qa1 , . . . , qak , qerr , qF }

Stack alphabet � = {1,#}

1 counts nr. of unmatched !(pi, pj , am), and # is bottom of stack

Input alphabet

⌃ =

8
<

:

unmatched action !(pi, pj , am)
unmatched action ?(pj , pi, am)
matched actions !?(pi, pj , am), ?!(pj , pi, am)

Transition function � is described on next slide

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

/
-

I \
initial reject

accept

The nondeterministic PDA Ki,j

Let {a1, . . . , ak} be the message contents in CMSG G for (pi, pj).

Nondeterministic PDA Ki,j = (Q, q0,�,⌃,�) where:

Control states Q = {q0, qa1 , . . . , qak , qerr , qF }

Stack alphabet � = {1,#}

1 counts nr. of unmatched !(pi, pj , am), and # is bottom of stack

Input alphabet

⌃ =

8
<

:

unmatched action !(pi, pj , am)
unmatched action ?(pj , pi, am)
matched actions !?(pi, pj , am), ?!(pj , pi, am)

Transition function � is described on next slide

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

-

The nondeterministic PDA Ki,j

Let {a1, . . . , ak} be the message contents in CMSG G for (pi, pj).

Nondeterministic PDA Ki,j = (Q, q0,�,⌃,�) where:

Control states Q = {q0, qa1 , . . . , qak , qerr , qF }

Stack alphabet � = {1,#}

1 counts nr. of unmatched !(pi, pj , am), and # is bottom of stack

Input alphabet

⌃ =

8
<

:

unmatched action !(pi, pj , am)
unmatched action ?(pj , pi, am)
matched actions !?(pi, pj , am), ?!(pj , pi, am)

Transition function � is described on next slide

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

- possible symbols inthe linearis atoms

BEEBE

The nondeterministic PDA Ki,j

Let {a1, . . . , ak} be the message contents in CMSG G for (pi, pj).

Nondeterministic PDA Ki,j = (Q, q0,�,⌃,�) where:

Control states Q = {q0, qa1 , . . . , qak , qerr , qF }

Stack alphabet � = {1,#}

1 counts nr. of unmatched !(pi, pj , am), and # is bottom of stack

Input alphabet

⌃ =

8
<

:

unmatched action !(pi, pj , am)
unmatched action ?(pj , pi, am)
matched actions !?(pi, pj , am), ?!(pj , pi, am)

Transition function � is described on next slide

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

Safeness of CMSGs (2)

Initial configuration is (q0,#, w)
w is linearization of actions at pi and pj on an accepting path of G

On reading !(pi, pj , am) in q0, push 1 on stack

nondeterministically move to state qam or stay in q0

On reading ?(pj , pi, am) in q0, proceed as follows:

if 1 is on stack, pop it

otherwise, i.e., if stack is empty, accept (i.e., move to qF)

On reading matched send !?(pi, pj , ak) in q0
stack empty (i.e., equal to #)? ignore input; otherwise, accept

Ignore the following inputs in state q0:
matched send events !?(pj , pi, ak), and

unmatched sends or receipts not related to pi and pj

Remaining input w empty? Accept, if stack non-empty; else reject

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (2)

Initial configuration is (q0,#, w)
w is linearization of actions at pi and pj on an accepting path of G

On reading !(pi, pj , am) in q0, push 1 on stack

nondeterministically move to state qam or stay in q0

On reading ?(pj , pi, am) in q0, proceed as follows:

if 1 is on stack, pop it

otherwise, i.e., if stack is empty, accept (i.e., move to qF)

On reading matched send !?(pi, pj , ak) in q0
stack empty (i.e., equal to #)? ignore input; otherwise, accept

Ignore the following inputs in state q0:
matched send events !?(pj , pi, ak), and

unmatched sends or receipts not related to pi and pj

Remaining input w empty? Accept, if stack non-empty; else reject

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

- - -

- -(
"

sees an unmatched send

from pi to pj with

content am
"

Safeness of CMSGs (2)

Initial configuration is (q0,#, w)
w is linearization of actions at pi and pj on an accepting path of G

On reading !(pi, pj , am) in q0, push 1 on stack

nondeterministically move to state qam or stay in q0

On reading ?(pj , pi, am) in q0, proceed as follows:

if 1 is on stack, pop it

otherwise, i.e., if stack is empty, accept (i.e., move to qF)

On reading matched send !?(pi, pj , ak) in q0
stack empty (i.e., equal to #)? ignore input; otherwise, accept

Ignore the following inputs in state q0:
matched send events !?(pj , pi, ak), and

unmatched sends or receipts not related to pi and pj

Remaining input w empty? Accept, if stack non-empty; else reject

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

I
pending unmatched send p ; → pj

-

I
✓

not left - closed

Safeness of CMSGs (2)

Initial configuration is (q0,#, w)
w is linearization of actions at pi and pj on an accepting path of G

On reading !(pi, pj , am) in q0, push 1 on stack

nondeterministically move to state qam or stay in q0

On reading ?(pj , pi, am) in q0, proceed as follows:

if 1 is on stack, pop it

otherwise, i.e., if stack is empty, accept (i.e., move to qF)

On reading matched send !?(pi, pj , ak) in q0
stack empty (i.e., equal to #)? ignore input; otherwise, accept

Ignore the following inputs in state q0:
matched send events !?(pj , pi, ak), and

unmatched sends or receipts not related to pi and pj

Remaining input w empty? Accept, if stack non-empty; else reject

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

-

-

- - -

t
not left - closed

Safeness of CMSGs (2)

Initial configuration is (q0,#, w)
w is linearization of actions at pi and pj on an accepting path of G

On reading !(pi, pj , am) in q0, push 1 on stack

nondeterministically move to state qam or stay in q0

On reading ?(pj , pi, am) in q0, proceed as follows:

if 1 is on stack, pop it

otherwise, i.e., if stack is empty, accept (i.e., move to qF)

On reading matched send !?(pi, pj , ak) in q0
stack empty (i.e., equal to #)? ignore input; otherwise, accept

Ignore the following inputs in state q0:
matched send events !?(pj , pi, ak), and

unmatched sends or receipts not related to pi and pj

Remaining input w empty? Accept, if stack non-empty; else reject

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

-

Safeness of CMSGs (2)

Initial configuration is (q0,#, w)
w is linearization of actions at pi and pj on an accepting path of G

On reading !(pi, pj , am) in q0, push 1 on stack

nondeterministically move to state qam or stay in q0

On reading ?(pj , pi, am) in q0, proceed as follows:

if 1 is on stack, pop it

otherwise, i.e., if stack is empty, accept (i.e., move to qF)

On reading matched send !?(pi, pj , ak) in q0
stack empty (i.e., equal to #)? ignore input; otherwise, accept

Ignore the following inputs in state q0:
matched send events !?(pj , pi, ak), and

unmatched sends or receipts not related to pi and pj

Remaining input w empty? Accept, if stack non-empty; else reject

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

0 O
O -

left -

closed
.

×

Safeness of CMSGs (3)

The behaviour in state qam for 0 < m 6 k:

Ignore all actions except ?(pj , pi, a`) for all 0 < ` 6 k

On reading ?(pj , pi, a`) (for some 0 < ` 6 k) in state qam do:

if 1 is on top of stack, pop it

If stack is empty:

if last receive differs from am, accept

otherwise reject, while ignoring the rest (if any) of the input

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

E-
 -

Safeness of CMSGs (3)

The behaviour in state qam for 0 < m 6 k:

Ignore all actions except ?(pj , pi, a`) for all 0 < ` 6 k

On reading ?(pj , pi, a`) (for some 0 < ` 6 k) in state qam do:

if 1 is on top of stack, pop it

If stack is empty:

if last receive differs from am, accept

otherwise reject, while ignoring the rest (if any) of the input

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

-

Safeness of CMSGs (3)

The behaviour in state qam for 0 < m 6 k:

Ignore all actions except ?(pj , pi, a`) for all 0 < ` 6 k

On reading ?(pj , pi, a`) (for some 0 < ` 6 k) in state qam do:

if 1 is on top of stack, pop it

If stack is empty:

if last receive differs from am, accept

otherwise reject, while ignoring the rest (if any) of the input

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

#
not left - closed

→

(left - closed

Example I
.

C MSG G , y z n 2

>

a

D- . . →

Uo Up

Ceo
,

#
,

!a?a?a) 1- (Ea ,
a

,
?a?a)

-

initial configuration T

T (Ea
,

#
,

?a)

Ceo
,

r ,
?a?a) reject

T

(so ,
#

, Ia) accept

Thus the PDA Ky ,z
accepts the

input word ⇒ g ,
is not

left - closed

Eionplez CMSG gz :

2 2 n 2 safe
.

a
a

→ →

D- be ,

→
± ts

7 2

Hot
PDA kn ,z

b

(so ,
#

,
! a !b?a?b) 1- (aah ,

t.to?a?b)

T T

(so
,

n
,

lb ?a?b) (a-
a ,

r
,

? a ?b)

T T t

(a- a
,

If
,

?b)
Ceo ,

rn
,

?a?b) (ab ,n ,

?a?b)
p

T T

(8,1 ,
?b) Cab

,
,

,
?b)

(a-
as #

,
E)rejectT T

(so ,
#

,
e) Cats

,
se)

reject reject
-

-

PDA kn ,z
has no accepting run on t.cn?b?a?b

and thus CMSG Gz is left - closed
-

Example
-

Crisco g ,

7 2 7 2

→ a

D- →
→ - A

Uo U
>

PDA Kaz

Ceo
, # ,

t.at?b?a
) 1- leo

,
n

,
! ?b?a)

T accept

I ea
,

n
,

! ?b?a) → violation of

T Fro property .

(Ea
,

a
,

? a)
ppa K

, ,z accepts
T

(Ea
,

#
,

e) ⇒ CMSG g ,
is not

reject
left - closed

⇒ is not safe
.

Safeness of CMSGs (4)

It follows: PDA Ki,j accepts iff CMSG G is not safe wrt. (pi, pj)

=) CMSG G is not safe wrt. (pi, pj) iff configuration (qF , ·, ·) is

reachable.

=) reachability of a configuration in a PDA is in PTIME, hence

checking safeness wrt. (pi, pj) is in PTIME.

Time complexity
The worst-case time complexity of checking whether CMSG G is safe is

in O(k2·N2
·L·|E|

2) where k = |P|, N = |V |, and L = |C|.

Proof.
Checking reachability in PDA Ki,j is in O(L·|E|

2). The number of

PDAs is k2, as we consider ordered pairs in P. The number of paths in

the CMSG G for each pair that need to be checked is in O(N2), as a

single traversal for each loop in G suffices.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

delleALI
-

accept

Safeness of CMSGs (4)

It follows: PDA Ki,j accepts iff CMSG G is not safe wrt. (pi, pj)

=) CMSG G is not safe wrt. (pi, pj) iff configuration (qF , ·, ·) is

reachable.

=) reachability of a configuration in a PDA is in PTIME, hence

checking safeness wrt. (pi, pj) is in PTIME.

Time complexity
The worst-case time complexity of checking whether CMSG G is safe is

in O(k2·N2
·L·|E|

2) where k = |P|, N = |V |, and L = |C|.

Proof.
Checking reachability in PDA Ki,j is in O(L·|E|

2). The number of

PDAs is k2, as we consider ordered pairs in P. The number of paths in

the CMSG G for each pair that need to be checked is in O(N2), as a

single traversal for each loop in G suffices.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

GoBa

\
Esparza et at

.

Safeness of CMSGs (4)

It follows: PDA Ki,j accepts iff CMSG G is not safe wrt. (pi, pj)

=) CMSG G is not safe wrt. (pi, pj) iff configuration (qF , ·, ·) is

reachable.

=) reachability of a configuration in a PDA is in PTIME, hence

checking safeness wrt. (pi, pj) is in PTIME.

Time complexity
The worst-case time complexity of checking whether CMSG G is safe is

in O(k2·N2
·L·|E|

2) where k = |P|, N = |V |, and L = |C|.

Proof.
Checking reachability in PDA Ki,j is in O(L·|E|

2). The number of

PDAs is k2, as we consider ordered pairs in P. The number of paths in

the CMSG G for each pair that need to be checked is in O(N2), as a

single traversal for each loop in G suffices.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

BEEBE

- - - - I
la

Safeness of CMSGs (4)

It follows: PDA Ki,j accepts iff CMSG G is not safe wrt. (pi, pj)

=) CMSG G is not safe wrt. (pi, pj) iff configuration (qF , ·, ·) is

reachable.

=) reachability of a configuration in a PDA is in PTIME, hence

checking safeness wrt. (pi, pj) is in PTIME.

Time complexity
The worst-case time complexity of checking whether CMSG G is safe is

in O(k2·N2
·L·|E|

2) where k = |P|, N = |V |, and L = |C|.

Proof.
Checking reachability in PDA Ki,j is in O(L·|E|

2).

The number of

PDAs is k2, as we consider ordered pairs in P. The number of paths in

the CMSG G for each pair that need to be checked is in O(N2), as a

single traversal for each loop in G suffices.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

I

Safeness of CMSGs (4)

It follows: PDA Ki,j accepts iff CMSG G is not safe wrt. (pi, pj)

=) CMSG G is not safe wrt. (pi, pj) iff configuration (qF , ·, ·) is

reachable.

=) reachability of a configuration in a PDA is in PTIME, hence

checking safeness wrt. (pi, pj) is in PTIME.

Time complexity
The worst-case time complexity of checking whether CMSG G is safe is

in O(k2·N2
·L·|E|

2) where k = |P|, N = |V |, and L = |C|.

Proof.
Checking reachability in PDA Ki,j is in O(L·|E|

2). The number of

PDAs is k2, as we consider ordered pairs in P.

The number of paths in

the CMSG G for each pair that need to be checked is in O(N2), as a

single traversal for each loop in G suffices.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

I

Safeness of CMSGs (4)

It follows: PDA Ki,j accepts iff CMSG G is not safe wrt. (pi, pj)

=) CMSG G is not safe wrt. (pi, pj) iff configuration (qF , ·, ·) is

reachable.

=) reachability of a configuration in a PDA is in PTIME, hence

checking safeness wrt. (pi, pj) is in PTIME.

Time complexity
The worst-case time complexity of checking whether CMSG G is safe is

in O(k2·N2
·L·|E|

2) where k = |P|, N = |V |, and L = |C|.

Proof.
Checking reachability in PDA Ki,j is in O(L·|E|

2). The number of

PDAs is k2, as we consider ordered pairs in P. The number of paths in

the CMSG G for each pair that need to be checked is in O(N2), as a

single traversal for each loop in G suffices.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

-

Lo

-

