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© A non-decomposable MSC
© Compositional Message Sequence Charts
© Compositional Message Sequence Graphs

@ Safe Compositional Message Sequence Graphs

@ Existence of Safe Paths Undeciddble

Yoo decison poblems

@ Universality of Safe Paths decidek)e
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Compositional MSCs

[Gunter, Muscholl, Peled 2001]

Solution:

drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P,E,C,l,m,=) is a compositional MSC (CMSC, for short)
where P, F/,C and [ are defined as before, and

e m : Ey — F» is a partial, injective function such that (as before):
m(e) =€ Al(e) = !(p,q,a) implies I(e') = ?(q,p,a)

o < = (UpeP < U {(e,m(e)) | e € dom(m) })*

S’
e~ —

domain of m

“m(e) is defined”

An MSC is a CMSC where m is total and bijective.
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CMSC example
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Let G = (V,—,vo, F, A) be a CMSG. AV —CM

Definition (Path in a CMSG)

A path 7 of G is a finite sequence

T=uy Uy ... Up Withu; €V (0<¢<n)and u; = uj+1 (0<i<n)

Definition (Accepting path of a CMSG)

Path m = ug ... u, is accepting if: ug = vy and u,, € F.

Definition (CMSC of a path)

The CMSC of a path m = ug ... u, is:

M(r) = (... (Muo) ® Mu1)) @ Muz) . ..) ® A(up)

v N S S

where CMSC concatenation is left associative.
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The MSC language of a CMSG

Definition (Language of a CMSG)
The (MSC)

L(G)={ M(m) e M |~ is an accepting path of G}.
—_————

only “real” MSCs

language of CMSG G is defined by:

Note: Accepting paths that give rise to an CMSC (which is not an MSC) are
not part of L(G).
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Yannakakis' example as compositional MSG

e 7]

e,lp ) This MSC cannot be modeled for n > 1 by:

; "7 M=MeMye...0 M, with M, cM
- o Thus it cannot be modeled by a MSG.

e12 . o But it can be modeled as compositional MSG:
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Safe paths and CMSGs

is an M3

Definition (Safe path)

Path m of CMSG G is safe whenever M (m) € M.

—Vve"¢

cHsc of W
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Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

By a reduction from Post’s Correspondence Problem (PCP).

... black board ... ]

The complement decision problem “does CMSG G have no safe, accepting
path?” is undecidable too.
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Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.
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Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths
The decision problem “are all accepting paths of CMSG G safe?” is

decidable in PTIME.
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Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths

The decision problem “are all accepting paths of CMSG G safe?” is
decidable in PTIME.

Proof.

Polynomial reduction to reachability problem in (non-deterministic)
pushdown automata.

| A\

... see details on the next slides ... ]

v
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Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) K = (Q, qo, ', X, A) with
@ (@, a finite set of control states -

qo € @, the initial state whi e *JM\“\’ cen e gk

I', a finite stack alphabet o-ne aheck

Y}, a finite input alphabet — ab,c

ACQRxXxI'xQ x FZ the transition relation.
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Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) K = (Q, qo, ', X, A) with
@ (@, a finite set of control states

qo € @, the initial state

I', a finite stack alphabet

3}, a finite input alphabet

ACQ@xXxTI xQ %I'")the transition relation.

Transition relation

(¢,a,7,¢',pop) € A means: in state ¢, on reading input symbol a and

top of stack is symbol ~, change to ¢’ and pop v from the stack.
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Reachability in pushdown automata

Definition

A configuration c¢ is a triple (state g, stack content Z, rest input w).

[/

Co~MelL
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Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transitjon in A, a (direct) successor configuration ¢’ of ¢ is
obtaine(: ¢t ¢.
—
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Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transition in A, a (direct) successor configuration ¢’ of ¢ is
obtained: ¢ I ¢.

Reachability problem

For configuration ¢, and initial configuration co('co F* ¢?
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Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transition in A, a (direct) successor configuration ¢’ of ¢ is
obtained: ¢ I ¢.

Reachability problem

For configuration ¢, and initial configuration cy: co F* ¢?

[Esparza et al. 2000]
The reachability problem for PDA is decidable in PTIME.
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Checking whether a CMSG is safe is decidable

o Consider any ordered pair (p;,p;) of processes in CMSG G
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Checking whether a CMSG is safe is decidable

e Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K, ; = (Q, qo,I', X, A) such that

CMSG G is not safe wrt. (p;,p;) iff PDA K, ; accepts

LR el

L

‘ 4 n
W Feck ok fe- c\oied

k(‘\‘) )8 30\‘*:3 ek

’tbf Pm‘\‘,\:\( V:Q\n\\‘w
. \’Lb sofe

=

Joost-Pieter Katoen Theoretical Foundations of the UML



(DCS-{n?\:\.\vn C lefl— closed CwSc >

A csSC s \QQE— \oded Wik dses ok orbtew

\M\mo.\-c\\;é recente ue,\rs 5 ocC c.lj Aer\d W*& \’\«e\:

cve vok bq\; ~otched  @nd  precede ofner wackched

St~ ese-tkos (QQ- e Scn~e )"DPQ)

Excf‘o\es
1 2 1 z 1 2 1 2
2\ =% o a
[~ |
b b o
o\
S — _—
7 c
L 1,ﬁ
is ok nok \efb- Vel VeSt—
left- closed c\osed <\)ed <\oved
(M:&*&) (M SO‘;;() (°“"d 809{) (nc;\‘- &9()
acceplt onacept

KE)(-:\C St



Checking whether a CMSG is safe is decidable

e Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K, ; = (Q, qo,I', X, A) such that

CMSG G is not \e wrt. (pi,p;) iff PDA K;; accepts

e For accepting path wug ... uy in G, feed K; ; with o\t words

po-..pr where p; € Lin(A(u;))

such that unmatched sends (of some type) precede all unmatched
receipts (of the same type)

l—; ek o reshhhon ) becaude Such

+ ostomr Mot
Lrealdsabons do o.b«oa exisk
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i~diccked Qﬁp\ﬁd% ¥? (P,i 0 “)

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29



Checking whether a CMSG is safe is decidable

e Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K, ; = (Q, qo,I', X, A) such that

CMSG G is not Le wrt. (pi,p;) iff PDA K;; accepts

e For accepting path ug...uy in G, feed K; ; with oll words
po-..pr where p; € Lin(A(u;))

such that unmatched sends (of some type) precede all unmatched
receipts (of the same type) o ™)

@ Possible violations that K; ; may ¢
@ ur. of unmatched !(p;, p;,-) nr. of unmatched ?( pj,p7,/ ’t\\a'-\,
@ type of k-th unmatched sedd # type of k-th unmatched réceiv
© non-FIFO communication
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The nondeterministic PDA ;.

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
N —

a\\ messoye »w CwsG 6-

sed Remn U d g
>

\’CC(\'\ltd o\C\‘) Ram\.
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The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo, T, £, A) where:
o Control states Q = {q07 Qays - -+ sY9ay>9err, QF}
e VT

Tnael \.g\')(c\_

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29



The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo, T, £, A) where:
o Control states Q = {q07 Qays - -+ sY9ay>9err, QF}

e Stack alphabet I' = {1, #}

1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack
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The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo, T, £, A) where:
o Control states Q = {q07 Qays - -+ sY9ay>9err, QF}

e Stack alphabet I' = {1, #}
1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack
Pe:s,\-;\: soﬁ\n.\; N W'Y Ynread sedons

@ Input alphabet
unmatched action !(p;, pj, am) VvV
¥ = ¢ unmatched action ?(pj, pi, am)
matched actions !?(p;, pj, am) v
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The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo, T, £, A) where:
o Control states Q = {q07 Qays - -+ sY9ay>9err, QF}

e Stack alphabet I' = {1, #}

1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack

@ Input alphabet
unmatched action !(p;, pj, am)
¥ = < unmatched action ?(pj, p;, am)
matched action !?(p;, pj, am)

@ Transition function A is described on next slide
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Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G
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Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G

e On reading !(p;, pj, am) in go, push 1 on stack
o nondeterministically move to stgte q,,, or stay in qo

”sgg,\ am Ormatthed se~d
. X 5 R\
‘bh\'ﬁhk Gh—v @
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Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G

e On reading !(p;, pj, am) in qo, push 1 on stack
e nondeterministically move to state ¢,,, or stay in gg
‘7&\6:\5 Crnmotthed se-d 29
e On reading ?(pj, pyam) in qo, proceed as follows:
o if 1 is on stack, pop it
e otherwise, i.e., if stack is empty, accept (i.e., move to gg)

)

ek \eg‘: -c\osSed
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Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G

e On reading !(p;, pj, am) in qo, push 1 on stack
e nondeterministically move to state ¢,,, or stay in gg

e On reading ?(pj, pi, am) in qo, proceed as follows:
e if 1 is on stack, pop it
e otherwise, i.e., if stack is empty, accept (i.e., move to gg)

@ On reading matched send !?(p;, p;, ar) in go
o stack empty (i.e., equal to #)? ignore input; otherwise, accept

|

oy YeShe-c\ased
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Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G

On reading !(pi, pj, am) in qo, push 1 on stack
e nondeterministically move to state ¢,,, or stay in gg

On reading ?(pj, pi, am) in qo, proceed as follows:
e if 1 is on stack, pop it
e otherwise, i.e., if stack is empty, accept (i.e., move to gg)

On reading matched send !?(p;, p;, ax) in qo
o stack empty (i.e., equal to #)? ignore input; otherwise, accept

Ignore the following inputs in state gq:
o matched send events !7(p;, p;, ax), and
e unmatched sends or receipts not related to p; and p;
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Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G

e On readin@i,pj, Ap,) 118 push 1 on stack
e nondeterministically move to stat¢ or stay in qq

e On reading ?(pj, pi, am) in qo, proceed as follows:
e if 1 is on stack, pop it
e otherwise, i.e., if stack is empty, accept (i.e., move to gg) (eft-

Soved.

)< e On reading matched send !?(p;, pj, ar) in qo
o stack empty (i.e., equal to #)? ignore input; otherwise, accept

@ Ignore the following inputs in state qq:
o matched send events !7(p;, p;, ax), and s\ pc-dnb

o unmatched sends or receipts not related to p; apd p; 333/
Qe ¢

@ Remaining input w empty? Accept, if stack non-empty; else reject
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Safeness of CMSGs (3)

The behaviour in State for 0 <m < k:

e Ignore all actions except ?(pj, pi,ar) for all 0 < £ < k

—_— —
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Safeness of CMSGs (3)

The behaviour in state g,,, for 0 < m < k:

e Ignore all actions except ?(pj, pi,ar) for all 0 < £ < k

e On reading ?(pj, pi, a¢) (for some 0 < £ < k) in state ¢, do:
e if 1 is on top of stack, pop it
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Safeness of CMSGs (3)

The behaviour in state g,,, for 0 < m < k:

e Ignore all actions except ?(pj, pi,ar) for all 0 < £ < k

e On reading ?(pj, pi, ar) (for some 0 < £ < k) in state ¢q,, do:
e if 1 is on top of stack, pop it
st Yo ft- c\oted
—2 o If stack is empty:

e if last receive differs from a,,, accept
e otherwise reject, while ignoring the rest (if any) of the input

\efb- c\oted
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Safeness of CMSGs (4)

It follows: PDA K ; accepts iff CMSG G is not Le wrt. (p;,p;)

— CMSG G is not \e wrt. (pi, p;) iff configuration (gp,-,-) is

reachable. —
o.ccepk
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Safeness of CMSGs (4)

It follows: PDA K ; accepts iff CMSG G is not Le wrt. (pi, pj)
—> CMSG G is not Le wrt. (p;,p;) iff configuration (¢p, -, ) is

reachable.
= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME. N

Ea\equ—q {¥ GL.
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Safeness of CMSGs (4)

It follows: PDA K; ; accepts iff CMSG G is not Le wrt. (p;, p;)

—> CMSG G is not e wrt. (p;,p;) iff configuration (qp,-,-) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k* N2.L:|E|?) where k = |P|, N = |V|, and L = |C|. /

o~ — L — /

Le
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Safeness of CMSGs (4)

It follows: PDA K ; accepts iff CMSG G is not safe wrt. (p;, p;)

—> CMSG G is not safe wrt. (p;, p;) iff configuration (¢p, -, ) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k?-N2.L-|E|?) where k = |P|, N = |V|, and L = |C|. ' /

Lc

Checking reachability in PDA K; ; is in O(L-|E|?).
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Safeness of CMSGs (4)

It follows: PDA K ; accepts iff CMSG G is not safe wrt. (p;, p;)

—> CMSG G is not safe wrt. (p;, p;) iff configuration (¢p, -, ) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k?-N2.L-|E|?) where k = |P|, N = |V|, and L = |C|. e

Checking reachability in PDA K; ; is in O(L-|E|?). The number of
PDAs is k2, as we consider ordered pairs in P.
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Safeness of CMSGs (4)

It follows: PDA K ; accepts iff CMSG G is not safe wrt. (p;, p;)

—> CMSG G is not safe wrt. (p;, p;) iff configuration (¢p, -, ) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is

in O(k2-N2-L-|E|?) where k = |P|, N = V|, and L = |C|. =

Checking reachability in PDA K; ; is in O(L-|E|?). The number of
PDAs is k2, as we consider ordered pairs in P. The number of paths in
the CMSG G for each pair that need to be checked is in O(N?), as a

single traversal for each loop in G suffices. O
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