Theoretical Foundations of the UML

Lecture 546: Compositional Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

May S, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML

© A non-decomposable MSC
© Compositional Message Sequence Charts
© Compositional Message Sequence Graphs

@ Safe Compositional Message Sequence Graphs

@ Existence of Safe Paths Undeciddble

Yoo decison poblems

@ Universality of Safe Paths decidek)e

Joost-Pieter Katoen Theoretical Foundations of the UML 2

Compositional MSCs

[Gunter, Muscholl, Peled 2001]

Solution:

drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P,E,C,l,m,=) is a compositional MSC (CMSC, for short)
where P, F/,C and [are defined as before, and

e m : Ey — F» is a partial, injective function such that (as before):
m(e) =€ Al(e) = !(p,q,a) implies I(e') = ?(q,p,a)

o < = (UpeP < U {(e,m(e)) | e € dom(m) })*

S’
e~ —

domain of m

“m(e) is defined”

An MSC is a CMSC where m is total and bijective.

Joost-Pieter Katoen Theoretical Foundations of the UML

CMSC example

intended
recipient

message
¢ __—q
content ¢ q—>@ P2)

b

[P [P]

fé
plo— e,

—— —
N
~ —intended sender

Joost-Pieter Katoen

- mlez) =e3 v
- e ¢ dom(m) «—
- e ¢ rng(m)

E! o ie“eh

Er- Lae)

mle)) 18 ot
\/ échd

~Fe. wl)=Ry

Theoretical Foundations of the U

Let G = (V,—,vo, F, A) be a CMSG. AV —CM

Definition (Path in a CMSG)

A path 7 of G is a finite sequence

T=uy Uy ... Up Withu; €V (0<¢<n)and u; = uj+1 (0<i<n)

Definition (Accepting path of a CMSG)

Path m = ug ... u, is accepting if: ug = vy and u,, € F.

Definition (CMSC of a path)

The CMSC of a path m = ug ... u, is:

M(r) = (... (Muo) ® Mu1)) @ Muz) . ..) ® A(up)

v N S S

where CMSC concatenation is left associative.

Joost-Pieter Katoen Theoretical Foundations of the UML

The MSC language of a CMSG

Definition (Language of a CMSG)
The (MSC)

L(G)={ M(m) e M |~ is an accepting path of G}.
—_————

only “real” MSCs

language of CMSG G is defined by:

Note: Accepting paths that give rise to an CMSC (which is not an MSC) are
not part of L(G).

Joost-Pieter Katoen Theoretical Foundations of the UML

4 2 1 z
o
P- —
YV— F‘? > b
S
uo U U..‘
accep-kxb
Po\"\ N N = Vo \\1 1 ("\T)
e M
et WM () e L(%)
aC«F\-\‘
Pg\'\,:) W’: U‘o“q uq M(‘TI)

CHMSG

Yannakakis' example as compositional MSG

e 7]

e,lp) This MSC cannot be modeled for n > 1 by:

; "7 M=MeMye...0 M, with M, cM
- o Thus it cannot be modeled by a MSG.

e12 . o But it can be modeled as compositional MSG:

Joost-Pieter Katoen Theoretical Foundations of the UML

}
}
l
|

Buresy au&e’m\'g pts W e G : M) & en
MSC

— T”‘(‘\'\‘} Q—L(%)

CHsSG 8 s esMed scle

Safe paths and CMSGs

is an M3

Definition (Safe path)

Path m of CMSG G is safe whenever M (m) € M.

—Vve"¢

cHsc of W

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

By a reduction from Post’s Correspondence Problem (PCP).

... black board ...]

The complement decision problem “does CMSG G have no safe, accepting
path?” is undecidable too.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29

Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths
The decision problem “are all accepting paths of CMSG G safe?” is

decidable in PTIME.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths

The decision problem “are all accepting paths of CMSG G safe?” is
decidable in PTIME.

Proof.

Polynomial reduction to reachability problem in (non-deterministic)
pushdown automata.

| A\

... see details on the next slides ...]

v

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) K = (Q, qo, ', X, A) with
@ (@, a finite set of control states -

qo € @, the initial state whi e *JM\“\’ cen e gk

I', a finite stack alphabet o-ne aheck

Y}, a finite input alphabet — ab,c

ACQRxXxI'xQ x FZ the transition relation.

1 K "\\ et sile et Sl
GRS next gt (ak e ¥°(=>

S S
Baw\»\ ekt f_-y-\n\.
s %o be ad of e
Shreck

Joost-Pieter Katoen Theoretical Foundations of the UML

Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) K = (Q, qo, ', X, A) with
@ (@, a finite set of control states

qo € @, the initial state

I', a finite stack alphabet

3}, a finite input alphabet

ACQ@xXxTI xQ %I'")the transition relation.

Transition relation

(¢,a,7,¢',pop) € A means: in state ¢, on reading input symbol a and

top of stack is symbol ~, change to ¢’ and pop v from the stack.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/29

L = ﬁo“4h\n>os o1 ¢ L

coan & L
oan &L
oro ¢ L

Conddh~ck o (?‘DQ K S Ml K QC(Qp&J ke \o:suc:s(L

T~ on

* POPA K stk W el Gaadol Shede 9

—Q

- if “‘P‘“k o W =& o W vt L a ‘a’ - \-eécck

(4 L4

D“‘\qu\.:‘\ AQ) Scan a,\\. Qs cnd (aqé\-\ w&m A~ H\e S)'&Ck

4

on mo\énis tve Ft A" rove Yo el shele g &
Poe O foan e steclk

\~ q, ,0n re,o-éabu W, e e Q.OOI’QQM e Sreclke

R\ SN W e et iF & 0" ir wed Joc ¥ I s R
buk ke aheck 1€ ok

we. oF Os S A
° % Q, QC(:E\: §$ W\sk wod o-d

Khe sheck ore YoXh Q~Pba

0,40 ‘puno R

%MQ‘QS'\-“\C
’\ O, &
— %Q:D
N
4@? bt) *PO? Q“
O)'O,DO
L,,F '
Q igc ﬁ& ‘\'vuns%\:ns (go 1. O S‘)i> QA
e SLO”\ (39 ;) Do, Ob) c A
rN= o #
p) 5 (3‘)’\)073_.>£> Q\A
4% =

E%cN‘a\g CQ\A‘%:B orc-\h.b ol

(‘.’Lo,oo'\«,:H:>) (S”,\‘°> ?i E
— 2 <3

RS

C\'\e",j(og' c.a,.’;*Bu N o

(2., com, ¥) — (36,044,0) — (30)44)00> Y—

(8,1,0) —(g,,82)

\s (a,, ¢, t) reachosle
Bonn (o, 0%, %) 7

Reachability in pushdown automata

Definition

A configuration c¢ is a triple (state g, stack content Z, rest input w).

[/

Co~MelL

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transitjon in A, a (direct) successor configuration ¢’ of ¢ is
obtaine(: ¢t ¢.
—

Joost-Pieter Katoen Theoretical Foundations of the UML

Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transition in A, a (direct) successor configuration ¢’ of ¢ is
obtained: ¢ I ¢.

Reachability problem

For configuration ¢, and initial configuration co('co F* ¢?

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transition in A, a (direct) successor configuration ¢’ of ¢ is
obtained: ¢ I ¢.

Reachability problem

For configuration ¢, and initial configuration cy: co F* ¢?

[Esparza et al. 2000]
The reachability problem for PDA is decidable in PTIME.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

(Re.mea‘c p :Db Q,\c \ QAD\AQDQ

S J)' E) :l} souore bvecke

4

h
y) 4 <

FDD el \an\AQ:_-)Q \

&
{uez S a\\ ‘a«-a%x) og W oo o mr)rtlrjh
[y4
QA “c Y\M\AW Q'@

— k\/\cf\)

linecAr<bion 4 =4 b
E Qi\w&s X\.e Mo.\:rer QS (3

Thu}

E x2el5e Cendhmack o TOA ek C—\CQPYD’QS)‘\«(

’be\‘ \oﬁuoﬂe,

[2, , 00444)—H>> — (a., 6o, ©)
¢ L — (2., ©A1, o0)
— (a,,, oo0)

— (a,, 1, ©0)

— (3\) g, o) /’Y‘ec')cc\'”

Soame Bne § bﬂdtc&‘h W v deled Q;\G\Tc\s\'\a‘ \3 a

Sﬁfam-\-g oo\l Srele 3'0(\’ 3 S\Yv\(\\er\J l’o\cc%\-" % a

corksl Sl g

Tr our exacple i weons ek Ve o Aensibgas:
(2,45 %, 2 %)
(a,,0,%, 32«,#)

(gl)o) O\ aw, #)

etcelemn.

Checking whether a CMSG is safe is decidable

o Consider any ordered pair (p;,p;) of processes in CMSG G

'\Se.rcs o«z‘r\ﬂb el o8 G 8°§f€?

4

o
™
w

(1,?.) (43) (aw)

(32) &)
(23 (3

@Gu) (a1 (&)

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

Checking whether a CMSG is safe is decidable

e Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K, ; = (Q, qo,I', X, A) such that

CMSG G is not safe wrt. (p;,p;) iff PDA K, ; accepts

LR el

L

‘ 4 n
W Feck ok fe- c\oied

k(‘\‘))8 30\‘*:3 ek

’tbf Pm‘\‘,\:\(V:Q\n\\‘w
. \’Lb sofe

=

Joost-Pieter Katoen Theoretical Foundations of the UML

(DCS-{n?\:\.\vn C lefl— closed CwSc >

A csSC s \QQE— \oded Wik dses ok orbtew

\M\mo.\-c\\;é recente ue,\rs 5 ocC c.lj Aer\d W*& \’\«e\:

cve vok bq\; ~otched @nd precede ofner wackched

St~ ese-tkos (QQ- e Scn~e)"DPQ)

Excf‘o\es
1 2 1 z 1 2 1 2
2\ =% o a
[~ |
b b o
o\
S — _—
7 c
L 1,ﬁ
is ok nok \efb- Vel VeSt—
left- closed c\osed <\)ed <\oved
(M:&*&) (M SO‘;;() (°“"d 809{) (nc;\‘- &9()
acceplt onacept

KE)(-:\C St

Checking whether a CMSG is safe is decidable

e Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K, ; = (Q, qo,I', X, A) such that

CMSG G is not \e wrt. (pi,p;) iff PDA K;; accepts

e For accepting path wug ... uy in G, feed K; ; with o\t words

po-..pr where p; € Lin(A(u;))

such that unmatched sends (of some type) precede all unmatched
receipts (of the same type)

l—; ek o reshhhon) becaude Such

+ ostomr Mot
Lrealdsabons do o.b«oa exisk

NAohehed @ntts Gy \
i~diccked Qﬁp\ﬁd% ¥? (P,i 0 “)

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

Checking whether a CMSG is safe is decidable

e Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K, ; = (Q, qo,I', X, A) such that

CMSG G is not Le wrt. (pi,p;) iff PDA K;; accepts

e For accepting path ug...uy in G, feed K; ; with oll words
po-..pr where p; € Lin(A(u;))

such that unmatched sends (of some type) precede all unmatched
receipts (of the same type) o ™)

@ Possible violations that K; ; may ¢
@ ur. of unmatched !(p;, p;,-) nr. of unmatched ?(pj,p7,/ ’t\\a'-\,
@ type of k-th unmatched sedd # type of k-th unmatched réceiv
© non-FIFO communication

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

The nondeterministic PDA ;.

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
N —

a\\ messoye »w CwsG 6-

sed Remn U d g
>

\’CC(\'\ltd o\C\‘) Ram\.

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo, T, £, A) where:
o Control states Q = {q07 Qays - -+ sY9ay>9err, QF}
e VT

Tnael \.g\')(c_

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo, T, £, A) where:
o Control states Q = {q07 Qays - -+ sY9ay>9err, QF}

e Stack alphabet I' = {1, #}

1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo, T, £, A) where:
o Control states Q = {q07 Qays - -+ sY9ay>9err, QF}

e Stack alphabet I' = {1, #}
1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack
Pe:s,\-;\: soﬁ\n.\; N W'Y Ynread sedons

@ Input alphabet
unmatched action !(p;, pj, am) VvV
¥ = ¢ unmatched action ?(pj, pi, am)
matched actions !?(p;, pj, am) v

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo, T, £, A) where:
o Control states Q = {q07 Qays - -+ sY9ay>9err, QF}

e Stack alphabet I' = {1, #}

1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack

@ Input alphabet
unmatched action !(p;, pj, am)
¥ = < unmatched action ?(pj, p;, am)
matched action !?(p;, pj, am)

@ Transition function A is described on next slide

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G

e On reading !(p;, pj, am) in go, push 1 on stack
o nondeterministically move to stgte q,,, or stay in qo

”sgg,\ am Ormatthed se~d
. X 5 R\
‘bh\'ﬁhk Gh—v @

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G

e On reading !(p;, pj, am) in qo, push 1 on stack
e nondeterministically move to state ¢,,, or stay in gg
‘7&\6:\5 Crnmotthed se-d 29
e On reading ?(pj, pyam) in qo, proceed as follows:
o if 1 is on stack, pop it
e otherwise, i.e., if stack is empty, accept (i.e., move to gg)

)

ek \eg‘: -c\osSed

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G

e On reading !(p;, pj, am) in qo, push 1 on stack
e nondeterministically move to state ¢,,, or stay in gg

e On reading ?(pj, pi, am) in qo, proceed as follows:
e if 1 is on stack, pop it
e otherwise, i.e., if stack is empty, accept (i.e., move to gg)

@ On reading matched send !?(p;, p;, ar) in go
o stack empty (i.e., equal to #)? ignore input; otherwise, accept

|

oy YeShe-c\ased

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G

On reading !(pi, pj, am) in qo, push 1 on stack
e nondeterministically move to state ¢,,, or stay in gg

On reading ?(pj, pi, am) in qo, proceed as follows:
e if 1 is on stack, pop it
e otherwise, i.e., if stack is empty, accept (i.e., move to gg)

On reading matched send !?(p;, p;, ax) in qo
o stack empty (i.e., equal to #)? ignore input; otherwise, accept

Ignore the following inputs in state gq:
o matched send events !7(p;, p;, ax), and
e unmatched sends or receipts not related to p; and p;

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (2)

e Initial configuration is (go, #, w)
e w is linearization of actions at p; and p; on an accepting path of G

e On readin@i,pj, Ap,) 118 push 1 on stack
e nondeterministically move to stat¢ or stay in qq

e On reading ?(pj, pi, am) in qo, proceed as follows:
e if 1 is on stack, pop it
e otherwise, i.e., if stack is empty, accept (i.e., move to gg) (eft-

Soved.

)< e On reading matched send !?(p;, pj, ar) in qo
o stack empty (i.e., equal to #)? ignore input; otherwise, accept

@ Ignore the following inputs in state qq:
o matched send events !7(p;, p;, ax), and s\ pc-dnb

o unmatched sends or receipts not related to p; apd p; 333/
Qe ¢

@ Remaining input w empty? Accept, if stack non-empty; else reject

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (3)

The behaviour in State for 0 <m < k:

e Ignore all actions except ?(pj, pi,ar) for all 0 < £ < k

—_— —

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Safeness of CMSGs (3)

The behaviour in state g,,, for 0 < m < k:

e Ignore all actions except ?(pj, pi,ar) for all 0 < £ < k

e On reading ?(pj, pi, a¢) (for some 0 < £ < k) in state ¢, do:
e if 1 is on top of stack, pop it

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Safeness of CMSGs (3)

The behaviour in state g,,, for 0 < m < k:

e Ignore all actions except ?(pj, pi,ar) for all 0 < £ < k

e On reading ?(pj, pi, ar) (for some 0 < £ < k) in state ¢q,, do:
e if 1 is on top of stack, pop it
st Yo ft- c\oted
—2 o If stack is empty:

e if last receive differs from a,,, accept
e otherwise reject, while ignoring the rest (if any) of the input

\efb- c\oted

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

CMsSG %, = P
A= T S
Ao U]
(a4, 'o7a%) (a4, 7%a%0)
- Dabrel COA’?‘:SMAh‘ow \—
T (3'0\7—-H=) 70‘)
(2., 4, 7a?0) rSyect

v

(9-0 i ? °‘> Ocxee’

Thas Hue POA k“\,?. OnCCephs e

\\A?\Jc Lo =) %\ }s ot
\Qi}&, c\osed)

1 2 a (= SG‘(;(,

AV I > A

L@©)- \E’)}L
b

(a4, 'a'b?a?b) +— (ag 4, \b2a?b)

[« &
—3
-
—s

Ak, .,

1 T
(2,1, t6%a%0) (aa, 4, 2a?b)
7N T
(2o, 4 ,2b)
(80,1, 7a%) (a, aq,7a?%)
T r S
(90,7#> < €T
(50,1,7%) (a.4.7) Tt
T T

(3-6)#, E-) (%,#72)
r:;.jtc\f BSQ-\C

PDP& k,\,z Wesd o C'ACCQP)f\b Y OnN \Q\L’?Q?\o

end Taas CW™Ms G %2_ S \QQ\"Qﬁ}QA‘

—_—

CRMS @
2
1 R 1 2 g
o2 o
v—‘ b d — —N
o Y
Poo ki,
(90, 4, Yo V70 7a) | — [a_, 4, 17670)
T &ccepE
(ga,) \‘7\7 70\) — ubleban of
Y R0 popedy.
(2, A, T o)
T Yo \(hz_ Aok
CRE'ED = Cmse 4, s nek
\'E)Cc% \<S\'k" Q\Q&J)

=) s vt 80"‘2'(,

Safeness of CMSGs (4)

It follows: PDA K ; accepts iff CMSG G is not Le wrt. (p;,p;)

— CMSG G is not \e wrt. (pi, p;) iff configuration (gp,-,-) is

reachable. —
o.ccepk

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Safeness of CMSGs (4)

It follows: PDA K ; accepts iff CMSG G is not Le wrt. (pi, pj)
—> CMSG G is not Le wrt. (p;,p;) iff configuration (¢p, -,) is

reachable.
= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME. N

Ea\equ—q {¥ GL.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Safeness of CMSGs (4)

It follows: PDA K; ; accepts iff CMSG G is not Le wrt. (p;, p;)

—> CMSG G is not e wrt. (p;,p;) iff configuration (qp,-,-) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k* N2.L:|E|?) where k = |P|, N = |V|, and L = |C|. /

o~ — L — /

Le

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Safeness of CMSGs (4)

It follows: PDA K ; accepts iff CMSG G is not safe wrt. (p;, p;)

—> CMSG G is not safe wrt. (p;, p;) iff configuration (¢p, -,) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k?-N2.L-|E|?) where k = |P|, N = |V|, and L = |C|. ' /

Lc

Checking reachability in PDA K; ; is in O(L-|E|?).

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Safeness of CMSGs (4)

It follows: PDA K ; accepts iff CMSG G is not safe wrt. (p;, p;)

—> CMSG G is not safe wrt. (p;, p;) iff configuration (¢p, -,) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k?-N2.L-|E|?) where k = |P|, N = |V|, and L = |C|. e

Checking reachability in PDA K; ; is in O(L-|E|?). The number of
PDAs is k2, as we consider ordered pairs in P.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Safeness of CMSGs (4)

It follows: PDA K ; accepts iff CMSG G is not safe wrt. (p;, p;)

—> CMSG G is not safe wrt. (p;, p;) iff configuration (¢p, -,) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is

in O(k2-N2-L-|E|?) where k = |P|, N = V|, and L = |C|. =

Checking reachability in PDA K; ; is in O(L-|E|?). The number of
PDAs is k2, as we consider ordered pairs in P. The number of paths in
the CMSG G for each pair that need to be checked is in O(N?), as a

single traversal for each loop in G suffices. O

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

