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Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC

(= allow for incomplete message transfer)

Definition (Compositional MSC)
M = (P, E, C, l,m,�) is a compositional MSC (CMSC, for short)

where P, E, C and l are defined as before, and

m : E! ! E? is a partial, injective function such that (as before):

m(e) = e0 ^ l(e) = !(p, q, a) implies l(e0) = ?(q, p, a)

� =
�S

p2P <p [ {(e,m(e)) | e 2 dom(m)| {z }
domain of m| {z }

“m(e) is defined”

}
�⇤

Note:
An MSC is a CMSC where m is total and bijective.
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CMSC example

m(e2) = e3
e1 /2 dom(m)
e4 /2 rng(m)
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Paths

Let G = (V,!, v0, F,�) be a CMSG.

Definition (Path in a CMSG)
A path ⇡ of G is a finite sequence

⇡ = u0 u1 . . . un with ui 2 V (0  i  n) and ui ! ui+1 (0  i < n)

Definition (Accepting path of a CMSG)
Path ⇡ = u0 . . . un is accepting if: u0 = v0 and un 2 F .

Definition (CMSC of a path)
The CMSC of a path ⇡ = u0 . . . un is:

M(⇡) = (. . . (�(u0) • �(u1)) • �(u2) . . .) • �(un)

where CMSC concatenation is left associative.
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The MSC language of a CMSG

Definition (Language of a CMSG)
The (MSC) language of CMSG G is defined by:

L(G) = { M(⇡) 2 M| {z }
only “real” MSCs

| ⇡ is an accepting path of G}.

Note: Accepting paths that give rise to an CMSC (which is not an MSC) are

not part of L(G).
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Yannakakis’ example as compositional MSG

This MSC cannot be modeled for n > 1 by:

M = M1 •M2 • . . . •Mn with Mi 2 M

Thus it cannot be modeled by a MSG.

But it can be modeled as compositional MSG:
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Safe paths and CMSGs

Definition (Safe path)
Path ⇡ of CMSG G is safe whenever M(⇡) 2 M.

Definition (Safe CMSG)
CMSG G is safe if for every accepting path ⇡ of G, M(⇡) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched

sends and receipts, i.e., if any of its accepting paths is indeed an MSC.
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Existence of a safe accepting path

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting

path?” is undecidable.

Proof.
By a reduction from Post’s Correspondence Problem (PCP).

. . . black board . . .

The complement decision problem “does CMSG G have no safe, accepting

path?” is undecidable too.
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Universality of safe accepting paths

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting

path?” is undecidable.

Theorem: decidability of universality of safe paths
The decision problem “are all accepting paths of CMSG G safe?” is

decidable in PTIME.

Proof.
Polynomial reduction to reachability problem in (non-deterministic)

pushdown automata.

. . . see details on the next slides . . .
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Pushdown automata

Definition (Pushdown automaton)
A pushdown automaton (PDA, for short) K = (Q, q0,�,⌃,�) with

Q, a finite set of control states

q0 2 Q, the initial state

�, a finite stack alphabet

⌃, a finite input alphabet

� ✓ Q⇥ ⌃⇥ �⇥Q⇥ �⇤
, the transition relation.

Transition relation
(q, a, �, q0, pop) 2 � means: in state q, on reading input symbol a and

top of stack is symbol �, change to q0 and pop � from the stack.
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Reachability in pushdown automata

Definition
A configuration c is a triple (state q, stack content Z, rest input w).

Definition
Given a transition in �, a (direct) successor configuration c0 of c is

obtained: c ` c0.

Reachability problem
For configuration c, and initial configuration c0: c0 `⇤ c?

Theorem: [Esparza et al. 2000]

The reachability problem for PDA is decidable in PTIME.
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Checking whether a CMSG is safe is decidable

Consider any ordered pair (pi, pj) of processes in CMSG G

Proof idea: construct a PDA Ki,j = (Q, q0,�,⌃,�) such that

CMSG G is not safe wrt. (pi, pj) iff PDA Ki,j accepts

For accepting path u0 . . . uk in G, feed Ki,j with the word

⇢0 . . . ⇢k where ⇢i 2 Lin(�(ui))

such that unmatched sends (of some type) precede all unmatched

receipts (of the same type)

Possible violations that Ki,j may encounter:

1 nr. of unmatched !(pi, pj , ·) > nr. of unmatched ?(pj , pi, ·)
2 type of k-th unmatched send 6= type of k-th unmatched receive

3 non-FIFO communication
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-
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The nondeterministic PDA Ki,j

Let {a1, . . . , ak} be the message contents in CMSG G for (pi, pj).

Nondeterministic PDA Ki,j = (Q, q0,�,⌃,�) where:

Control states Q = {q0, qa1 , . . . , qak , qerr , qF }

Stack alphabet � = {1,#}

1 counts nr. of unmatched !(pi, pj , am), and # is bottom of stack

Input alphabet

⌃ =

8
<

:

unmatched action !(pi, pj , am)
unmatched action ?(pj , pi, am)
matched actions !?(pi, pj , am), ?!(pj , pi, am)

Transition function � is described on next slide
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Safeness of CMSGs (2)

Initial configuration is (q0,#, w)
w is linearization of actions at pi and pj on an accepting path of G

On reading !(pi, pj , am) in q0, push 1 on stack

nondeterministically move to state qam or stay in q0

On reading ?(pj , pi, am) in q0, proceed as follows:

if 1 is on stack, pop it

otherwise, i.e., if stack is empty, accept (i.e., move to qF )

On reading matched send !?(pi, pj , ak) in q0
stack empty (i.e., equal to #)? ignore input; otherwise, accept

Ignore the following inputs in state q0:
matched send events !?(pj , pi, ak), and

unmatched sends or receipts not related to pi and pj

Remaining input w empty? Accept, if stack non-empty; else reject
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stack empty (i.e., equal to #)? ignore input; otherwise, accept

Ignore the following inputs in state q0:
matched send events !?(pj , pi, ak), and

unmatched sends or receipts not related to pi and pj

Remaining input w empty? Accept, if stack non-empty; else reject
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Safeness of CMSGs (3)

The behaviour in state qam for 0 < m 6 k:

Ignore all actions except ?(pj , pi, a`) for all 0 < ` 6 k

On reading ?(pj , pi, a`) (for some 0 < ` 6 k) in state qam do:

if 1 is on top of stack, pop it

If stack is empty:

if last receive differs from am, accept

otherwise reject, while ignoring the rest (if any) of the input
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Safeness of CMSGs (4)

It follows: PDA Ki,j accepts iff CMSG G is not safe wrt. (pi, pj)

=) CMSG G is not safe wrt. (pi, pj) iff configuration (qF , ·, ·) is

reachable.

=) reachability of a configuration in a PDA is in PTIME, hence

checking safeness wrt. (pi, pj) is in PTIME.

Time complexity
The worst-case time complexity of checking whether CMSG G is safe is

in O(k2·N2
·L·|E|

2) where k = |P|, N = |V |, and L = |C|.

Proof.
Checking reachability in PDA Ki,j is in O(L·|E|

2). The number of

PDAs is k2, as we consider ordered pairs in P. The number of paths in

the CMSG G for each pair that need to be checked is in O(N2), as a

single traversal for each loop in G suffices.
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