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An MSC that cannot be decomposed [Yannakakis 1999]

This MSC cannot be decomposed as

M1 •M2 • . . . •Mn for n > 1

This can be seen as follows:

e1 and e2 = m(e1) must both belong to M1

e3 � e2 and e1 � e4 thus

e3, e4 /2 Mj , for j < 1 and j > 1
=) e3, e4 must belong to M1

by similar reasoning: e5, e6 2 M1 etc.

Problem:
Compulsory matching between send and receive events in the same

MSG vertex (i.e., send e and receive m(e) must belong to the same

MSC).
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Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC

(= allow for incomplete message transfer)

Definition (Compositional MSC)
M = (P, E, C, l,m,�) is a compositional MSC (CMSC, for short)

where P, E, C and l are defined as before, and

m : E! ! E? is a partial, injective function such that (as before):

m(e) = e0 ^ l(e) = !(p, q, a) implies l(e0) = ?(q, p, a)

� =
�S

p2P <p [ {(e,m(e)) | e 2 dom(m)| {z }
domain of m| {z }

“m(e) is defined”

}
�⇤

Note:
An MSC is a CMSC where m is total and bijective.
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CMSC example

m(e2) = e3
e1 /2 dom(m)
e4 /2 rng(m)
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Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E, C1 [ C2, l,m,�) with:

E = E1 [ E2

l(e) = l1(e) if e 2 E1 , l2(e) otherwise

m(e) = E! ! E? satisfies:

1 m extends m1 and m2, i.e., e 2 dom(mi) implies m(e) = mi(e)
2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process

(matching from top to bottom)

the k-th unmatched send in M1 is matched with

the k-th unmatched receive in M2 (of the same “type”)

3 M1 •M2 is FIFO (when restricted to matched events)
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Concatenation of CMSCs (2)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E1 [ E2, C1 [ C2, l,m,�) with:

l and m are defined as on the previous slide

� is the reflexive and transitive closure of:
⇣S

p2P <p,1 [ <p,2

⌘
[ {(e, e0) | e 2 E1 \ Ep , e0 2 E2 \ Ep}

[ {(e,m(e) | e 2 dom(m)}

Joost-Pieter Katoen Theoretical Foundations of the UML 9/29



Concatenation of CMSCs (2)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E1 [ E2, C1 [ C2, l,m,�) with:

l and m are defined as on the previous slide

� is the reflexive and transitive closure of:
⇣S

p2P <p,1 [ <p,2

⌘
[ {(e, e0) | e 2 E1 \ Ep , e0 2 E2 \ Ep}

[ {(e,m(e) | e 2 dom(m)}

Joost-Pieter Katoen Theoretical Foundations of the UML 9/29

{
÷÷ . →

Process  wise i  all events

at process p  in Mz hoppers
after  all event  at p in M

,
.



Examples
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Associativity

Note:
Concatenation of CMSCs is not associative.
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Compositional MSG

Let CM be the set of all CMSCs.

Definition (Compositional MSG)
A compositional MSG (CMSG) G = (V,!, v0, F,�) with

� : V ! CM, where V,!, v0, and F as for MSGs.

The difference with an MSG is that the vertices in a CMSG are labeled

with compositional MSCs (rather than “real” MSCs).
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Paths

Let G = (V,!, v0, F,�) be a CMSG.

Definition (Path in a CMSG)
A path ⇡ of G is a finite sequence

⇡ = u0 u1 . . . un with ui 2 V (0  i  n) and ui ! ui+1 (0  i < n)

Definition (Accepting path of a CMSG)
Path ⇡ = u0 . . . un is accepting if: u0 = v0 and un 2 F .

Definition (CMSC of a path)
The CMSC of a path ⇡ = u0 . . . un is:

M(⇡) = (. . . (�(u0) • �(u1)) • �(u2) . . .) • �(un)

where CMSC concatenation is left associative.
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The MSC language of a CMSG

Definition (Language of a CMSG)
The (MSC) language of CMSG G is defined by:

L(G) = { M(⇡) 2 M| {z }
only “real” MSCs

| ⇡ is an accepting path of G}.

Note: Accepting paths that give rise to an CMSC (which is not an MSC) are

not part of L(G).

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29
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Yannakakis’ example as compositional MSG

This MSC cannot be modeled for n > 1 by:

M = M1 •M2 • . . . •Mn with Mi 2 M

Thus it cannot be modeled by a MSG.

But it can be modeled as compositional MSG:
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Safe paths and CMSGs

Definition (Safe path)
Path ⇡ of CMSG G is safe whenever M(⇡) 2 M.

Definition (Safe CMSG)
CMSG G is safe if for every accepting path ⇡ of G, M(⇡) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched

sends and receipts, i.e., if any of its accepting paths is indeed an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29



Safe paths and CMSGs

Definition (Safe path)
Path ⇡ of CMSG G is safe whenever M(⇡) 2 M.

Definition (Safe CMSG)
CMSG G is safe if for every accepting path ⇡ of G, M(⇡) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched

sends and receipts, i.e., if any of its accepting paths is indeed an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

/
Msc

-

in the CMSC of IT



Safe paths and CMSGs

Definition (Safe path)
Path ⇡ of CMSG G is safe whenever M(⇡) 2 M.

Definition (Safe CMSG)
CMSG G is safe if for every accepting path ⇡ of G, M(⇡) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched

sends and receipts, i.e., if any of its accepting paths is indeed an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

-



Safe paths and CMSGs

Definition (Safe path)
Path ⇡ of CMSG G is safe whenever M(⇡) 2 M.

Definition (Safe CMSG)
CMSG G is safe if for every accepting path ⇡ of G, M(⇡) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched

sends and receipts, i.e., if any of its accepting paths is indeed an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

-



Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 19/29



Existence of a safe accepting path

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting

path?” is undecidable.

Proof.
By a reduction from Post’s Correspondence Problem (PCP).

. . . black board . . .

The complement decision problem “does CMSG G have no safe, accepting

path?” is undecidable too.
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Claim : the decision problem
"

does CMS G g hare

at least one safe path ? "

is undecidable .
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Pinot by a reduction from the PCP problem .
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It remains to prove that the seduction :
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is correct .
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