
Theoretical Foundations of the UML

Lecture 5+6: Compositional Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

May 4, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML 1/29



Outline

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 2/29

-
motivation

- p 9- r

- - -

Hot!
-

E
- e -

} two decision problem ,

Undecidable

decidable



Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 3/29



An MSC that cannot be decomposed [Yannakakis 1999]

This MSC cannot be decomposed as

M1 •M2 • . . . •Mn for n > 1

This can be seen as follows:

e1 and e2 = m(e1) must both belong to M1

e3 � e2 and e1 � e4 thus

e3, e4 /2 Mj , for j < 1 and j > 1
=) e3, e4 must belong to M1

by similar reasoning: e5, e6 2 M1 etc.

Problem:
Compulsory matching between send and receive events in the same

MSG vertex (i.e., send e and receive m(e) must belong to the same

MSC).

Joost-Pieter Katoen Theoretical Foundations of the UML 4/29

→

.
c-



An MSC that cannot be decomposed [Yannakakis 1999]

This MSC cannot be decomposed as

M1 •M2 • . . . •Mn for n > 1

This can be seen as follows:

e1 and e2 = m(e1) must both belong to M1

e3 � e2 and e1 � e4 thus

e3, e4 /2 Mj , for j < 1 and j > 1
=) e3, e4 must belong to M1

by similar reasoning: e5, e6 2 M1 etc.

Problem:
Compulsory matching between send and receive events in the same

MSG vertex (i.e., send e and receive m(e) must belong to the same

MSC).

Joost-Pieter Katoen Theoretical Foundations of the UML 4/29

e , ez

::L
"

?

e.
fee:

•

M
I Mz

=



An MSC that cannot be decomposed [Yannakakis 1999]

This MSC cannot be decomposed as

M1 •M2 • . . . •Mn for n > 1

This can be seen as follows:

e1 and e2 = m(e1) must both belong to M1

e3 � e2 and e1 � e4 thus

e3, e4 /2 Mj , for j < 1 and j > 1
=) e3, e4 must belong to M1

by similar reasoning: e5, e6 2 M1 etc.

Problem:
Compulsory matching between send and receive events in the same

MSG vertex (i.e., send e and receive m(e) must belong to the same

MSC).

Joost-Pieter Katoen Theoretical Foundations of the UML 4/29

•

•



An MSC that cannot be decomposed [Yannakakis 1999]

This MSC cannot be decomposed as

M1 •M2 • . . . •Mn for n > 1

This can be seen as follows:

e1 and e2 = m(e1) must both belong to M1

e3 � e2 and e1 � e4 thus

e3, e4 /2 Mj , for j < 1 and j > 1
=) e3, e4 must belong to M1

by similar reasoning: e5, e6 2 M1 etc.

Problem:
Compulsory matching between send and receive events in the same

MSG vertex (i.e., send e and receive m(e) must belong to the same

MSC).

Joost-Pieter Katoen Theoretical Foundations of the UML 4/29

•

:
O



An MSC that cannot be decomposed [Yannakakis 1999]

This MSC cannot be decomposed as

M1 •M2 • . . . •Mn for n > 1

This can be seen as follows:

e1 and e2 = m(e1) must both belong to M1

e3 � e2 and e1 � e4 thus

e3, e4 /2 Mj , for j < 1 and j > 1
=) e3, e4 must belong to M1

by similar reasoning: e5, e6 2 M1 etc.

Problem:
Compulsory matching between send and receive events in the same

MSG vertex (i.e., send e and receive m(e) must belong to the same

MSC).

Joost-Pieter Katoen Theoretical Foundations of the UML 4/29

•

O
O

••
•

O
Or

•

:
G



An MSC that cannot be decomposed [Yannakakis 1999]

This MSC cannot be decomposed as

M1 •M2 • . . . •Mn for n > 1

This can be seen as follows:

e1 and e2 = m(e1) must both belong to M1

e3 � e2 and e1 � e4 thus

e3, e4 /2 Mj , for j < 1 and j > 1
=) e3, e4 must belong to M1

by similar reasoning: e5, e6 2 M1 etc.

Problem:
Compulsory matching between send and receive events in the same

MSG vertex (i.e., send e and receive m(e) must belong to the same

MSC).

Joost-Pieter Katoen Theoretical Foundations of the UML 4/29

•

MSG DIT
•

-



Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 5/29

compulsory matching

- between send and

receive events  within

the  same MSC is

relaxed
-



Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC

(= allow for incomplete message transfer)

Definition (Compositional MSC)
M = (P, E, C, l,m,�) is a compositional MSC (CMSC, for short)

where P, E, C and l are defined as before, and

m : E! ! E? is a partial, injective function such that (as before):

m(e) = e0 ^ l(e) = !(p, q, a) implies l(e0) = ?(q, p, a)

� =
�S

p2P <p [ {(e,m(e)) | e 2 dom(m)| {z }
domain of m| {z }

“m(e) is defined”

}
�⇤

Note:
An MSC is a CMSC where m is total and bijective.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

n  -

(
p a-

-  -

→
one Msc " {÷ e

.



Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC

(= allow for incomplete message transfer)

Definition (Compositional MSC)
M = (P, E, C, l,m,�) is a compositional MSC (CMSC, for short)

where P, E, C and l are defined as before, and

m : E! ! E? is a partial, injective function such that (as before):

m(e) = e0 ^ l(e) = !(p, q, a) implies l(e0) = ?(q, p, a)

� =
�S

p2P <p [ {(e,m(e)) | e 2 dom(m)| {z }
domain of m| {z }

“m(e) is defined”

}
�⇤

Note:
An MSC is a CMSC where m is total and bijective.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

\
 at labeling⇐  es !

message e , e  → ! G. arm )
content

? ftp.m )



Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC

(= allow for incomplete message transfer)

Definition (Compositional MSC)
M = (P, E, C, l,m,�) is a compositional MSC (CMSC, for short)

where P, E, C and l are defined as before, and

m : E! ! E? is a partial, injective function such that (as before):

m(e) = e0 ^ l(e) = !(p, q, a) implies l(e0) = ?(q, p, a)

� =
�S

p2P <p [ {(e,m(e)) | e 2 dom(m)| {z }
domain of m| {z }

“m(e) is defined”

}
�⇤

Note:
An MSC is a CMSC where m is total and bijective.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

- -
- -

-  - - -
- - -  - -

(in Mses
,

it  is  a bijection(
in Msas  it  is  a total Anatto?injective e

,
,ez EE !

e.  He , ⇒ rule
, ) -4 mlez )



Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC

(= allow for incomplete message transfer)

Definition (Compositional MSC)
M = (P, E, C, l,m,�) is a compositional MSC (CMSC, for short)

where P, E, C and l are defined as before, and

m : E! ! E? is a partial, injective function such that (as before):

m(e) = e0 ^ l(e) = !(p, q, a) implies l(e0) = ?(q, p, a)

� =
�S

p2P <p [ {(e,m(e)) | e 2 dom(m)| {z }
domain of m| {z }

“m(e) is defined”

}
�⇤

Note:
An MSC is a CMSC where m is total and bijective.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

C-
- -

- I *

vertical ordering

-

horizontal ordering



Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC

(= allow for incomplete message transfer)

Definition (Compositional MSC)
M = (P, E, C, l,m,�) is a compositional MSC (CMSC, for short)

where P, E, C and l are defined as before, and

m : E! ! E? is a partial, injective function such that (as before):

m(e) = e0 ^ l(e) = !(p, q, a) implies l(e0) = ?(q, p, a)

� =
�S

p2P <p [ {(e,m(e)) | e 2 dom(m)| {z }
domain of m| {z }

“m(e) is defined”

}
�⇤

Note:
An MSC is a CMSC where m is total and bijective.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29



CMSC example

m(e2) = e3
e1 /2 dom(m)
e4 /2 rng(m)

Joost-Pieter Katoen Theoretical Foundations of the UML 7/29

÷ . . .



Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E, C1 [ C2, l,m,�) with:

E = E1 [ E2

l(e) = l1(e) if e 2 E1 , l2(e) otherwise

m(e) = E! ! E? satisfies:

1 m extends m1 and m2, i.e., e 2 dom(mi) implies m(e) = mi(e)
2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process

(matching from top to bottom)

the k-th unmatched send in M1 is matched with

the k-th unmatched receive in M2 (of the same “type”)

3 M1 •M2 is FIFO (when restricted to matched events)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

-

#
the  set  of  

cozy;
bond

" "
'



Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E, C1 [ C2, l,m,�) with:

E = E1 [ E2

l(e) = l1(e) if e 2 E1 , l2(e) otherwise

m(e) = E! ! E? satisfies:

1 m extends m1 and m2, i.e., e 2 dom(mi) implies m(e) = mi(e)
2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process

(matching from top to bottom)

the k-th unmatched send in M1 is matched with

the k-th unmatched receive in M2 (of the same “type”)

3 M1 •M2 is FIFO (when restricted to matched events)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

- -

-



Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E, C1 [ C2, l,m,�) with:

E = E1 [ E2

l(e) = l1(e) if e 2 E1 , l2(e) otherwise

m(e) = E! ! E? satisfies:

1 m extends m1 and m2, i.e., e 2 dom(mi) implies m(e) = mi(e)
2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process

(matching from top to bottom)

the k-th unmatched send in M1 is matched with

the k-th unmatched receive in M2 (of the same “type”)

3 M1 •M2 is FIFO (when restricted to matched events)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

} all the  same  as for

- - -

concatenation of MSCS
.



Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E, C1 [ C2, l,m,�) with:

E = E1 [ E2

l(e) = l1(e) if e 2 E1 , l2(e) otherwise

m(e) = E! ! E? satisfies:

1 m extends m1 and m2, i.e., e 2 dom(mi) implies m(e) = mi(e)

2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process

(matching from top to bottom)

the k-th unmatched send in M1 is matched with

the k-th unmatched receive in M2 (of the same “type”)

3 M1 •M2 is FIFO (when restricted to matched events)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

for  events  is E
,

. for  ohioh my  is defined

the  matching event  remains the same



Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E, C1 [ C2, l,m,�) with:

E = E1 [ E2

l(e) = l1(e) if e 2 E1 , l2(e) otherwise

m(e) = E! ! E? satisfies:

1 m extends m1 and m2, i.e., e 2 dom(mi) implies m(e) = mi(e)
2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process

(matching from top to bottom)

the k-th unmatched send in M1 is matched with

the k-th unmatched receive in M2 (of the same “type”)

3 M1 •M2 is FIFO (when restricted to matched events)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

iI . I:*
I ng

Me



Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E, C1 [ C2, l,m,�) with:

E = E1 [ E2

l(e) = l1(e) if e 2 E1 , l2(e) otherwise

m(e) = E! ! E? satisfies:

1 m extends m1 and m2, i.e., e 2 dom(mi) implies m(e) = mi(e)
2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process

(matching from top to bottom)

the k-th unmatched send in M1 is matched with

the k-th unmatched receive in M2 (of the same “type”)

3 M1 •M2 is FIFO (when restricted to matched events)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

I -

•
same  message  content

"

¥ It • → /
gender  corresponds to  receiverp



Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E, C1 [ C2, l,m,�) with:

E = E1 [ E2

l(e) = l1(e) if e 2 E1 , l2(e) otherwise

m(e) = E! ! E? satisfies:

1 m extends m1 and m2, i.e., e 2 dom(mi) implies m(e) = mi(e)
2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process

(matching from top to bottom)

the k-th unmatched send in M1 is matched with

the k-th unmatched receive in M2 (of the same “type”)

3 M1 •M2 is FIFO (when restricted to matched events)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

l



Concatenation of CMSCs (2)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E1 [ E2, C1 [ C2, l,m,�) with:

l and m are defined as on the previous slide

� is the reflexive and transitive closure of:
⇣S

p2P <p,1 [ <p,2

⌘
[ {(e, e0) | e 2 E1 \ Ep , e0 2 E2 \ Ep}

[ {(e,m(e) | e 2 dom(m)}

Joost-Pieter Katoen Theoretical Foundations of the UML 9/29



Concatenation of CMSCs (2)

Let Mi = (Pi, Ei, Ci, li,mi,�i) 2 CM i 2 {1, 2}
be CMSCs with E1 \ E2 = ?

The concatenation of CMSCs M1 and M2 is the CMSC

M1 •M2 = (P1 [ P2, E1 [ E2, C1 [ C2, l,m,�) with:

l and m are defined as on the previous slide

� is the reflexive and transitive closure of:
⇣S

p2P <p,1 [ <p,2

⌘
[ {(e, e0) | e 2 E1 \ Ep , e0 2 E2 \ Ep}

[ {(e,m(e) | e 2 dom(m)}

Joost-Pieter Katoen Theoretical Foundations of the UML 9/29

{
÷÷ . →

Process  wise i  all events

at process p  in Mz hoppers
after  all event  at p in M

,
.



Examples

Joost-Pieter Katoen Theoretical Foundations of the UML 10/29



Examples

Joost-Pieter Katoen Theoretical Foundations of the UML 10/29

① Q :O :
:

for this M
,

and

① ① Mz
,

Mi . M2
(2)

g @ ↳ is  not defined

-b.
8-8 :



Associativity

Note:
Concatenation of CMSCs is not associative.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/29

0

8
-

P , P2

①
- -

mm

T÷÷T
f -

P2 -

②
-

-

For Mscs
,

•  is  associative (M
,

.Md . My = M
,

° ( Me . Mg)
T

no longer # so



Associativity

Note:
Concatenation of CMSCs is not associative.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/29

t



Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

-



Compositional MSG

Let CM be the set of all CMSCs.

Definition (Compositional MSG)
A compositional MSG (CMSG) G = (V,!, v0, F,�) with

� : V ! CM, where V,!, v0, and F as for MSGs.

The difference with an MSG is that the vertices in a CMSG are labeled

with compositional MSCs (rather than “real” MSCs).

Joost-Pieter Katoen Theoretical Foundations of the UML 13/29

y
fr

£ "
" "

#
graph

✓ o
EV

#
initial

vertex
-

- find(
sun vrhees



Paths

Let G = (V,!, v0, F,�) be a CMSG.

Definition (Path in a CMSG)
A path ⇡ of G is a finite sequence

⇡ = u0 u1 . . . un with ui 2 V (0  i  n) and ui ! ui+1 (0  i < n)

Definition (Accepting path of a CMSG)
Path ⇡ = u0 . . . un is accepting if: u0 = v0 and un 2 F .

Definition (CMSC of a path)
The CMSC of a path ⇡ = u0 . . . un is:

M(⇡) = (. . . (�(u0) • �(u1)) • �(u2) . . .) • �(un)

where CMSC concatenation is left associative.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29



Paths

Let G = (V,!, v0, F,�) be a CMSG.

Definition (Path in a CMSG)
A path ⇡ of G is a finite sequence

⇡ = u0 u1 . . . un with ui 2 V (0  i  n) and ui ! ui+1 (0  i < n)

Definition (Accepting path of a CMSG)
Path ⇡ = u0 . . . un is accepting if: u0 = v0 and un 2 F .

Definition (CMSC of a path)
The CMSC of a path ⇡ = u0 . . . un is:

M(⇡) = (. . . (�(u0) • �(u1)) • �(u2) . . .) • �(un)

where CMSC concatenation is left associative.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29



Paths

Let G = (V,!, v0, F,�) be a CMSG.

Definition (Path in a CMSG)
A path ⇡ of G is a finite sequence

⇡ = u0 u1 . . . un with ui 2 V (0  i  n) and ui ! ui+1 (0  i < n)

Definition (Accepting path of a CMSG)
Path ⇡ = u0 . . . un is accepting if: u0 = v0 and un 2 F .

Definition (CMSC of a path)
The CMSC of a path ⇡ = u0 . . . un is:

M(⇡) = (. . . (�(u0) • �(u1)) • �(u2) . . .) • �(un)

where CMSC concatenation is left associative.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29

- -



Paths

Let G = (V,!, v0, F,�) be a CMSG.

Definition (Path in a CMSG)
A path ⇡ of G is a finite sequence

⇡ = u0 u1 . . . un with ui 2 V (0  i  n) and ui ! ui+1 (0  i < n)

Definition (Accepting path of a CMSG)
Path ⇡ = u0 . . . un is accepting if: u0 = v0 and un 2 F .

Definition (CMSC of a path)
The CMSC of a path ⇡ = u0 . . . un is:

M(⇡) = (. . . (�(u0) • �(u1)) • �(u2) . . .) • �(un)

where CMSC concatenation is left associative.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29

- -

statin initial end in accepting
vertex vertex



Paths

Let G = (V,!, v0, F,�) be a CMSG.

Definition (Path in a CMSG)
A path ⇡ of G is a finite sequence

⇡ = u0 u1 . . . un with ui 2 V (0  i  n) and ui ! ui+1 (0  i < n)

Definition (Accepting path of a CMSG)
Path ⇡ = u0 . . . un is accepting if: u0 = v0 and un 2 F .

Definition (CMSC of a path)
The CMSC of a path ⇡ = u0 . . . un is:

M(⇡) = (. . . (�(u0) • �(u1)) • �(u2) . . .) • �(un)

where CMSC concatenation is left associative.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29

-  un -  c-



The MSC language of a CMSG

Definition (Language of a CMSG)
The (MSC) language of CMSG G is defined by:

L(G) = { M(⇡) 2 M| {z }
only “real” MSCs

| ⇡ is an accepting path of G}.

Note: Accepting paths that give rise to an CMSC (which is not an MSC) are

not part of L(G).

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29

0
-

(
Cnsc

ofpaf set  of Msg

L C o ) E TM net: LCE) E GIM ) IM



The MSC language of a CMSG

Definition (Language of a CMSG)
The (MSC) language of CMSG G is defined by:

L(G) = { M(⇡) 2 M| {z }
only “real” MSCs

| ⇡ is an accepting path of G}.

Note: Accepting paths that give rise to an CMSC (which is not an MSC) are

not part of L(G).

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29



Yannakakis’ example as compositional MSG

This MSC cannot be modeled for n > 1 by:

M = M1 •M2 • . . . •Mn with Mi 2 M

Thus it cannot be modeled by a MSG.

But it can be modeled as compositional MSG:

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29



Yannakakis’ example as compositional MSG

This MSC cannot be modeled for n > 1 by:

M = M1 •M2 • . . . •Mn with Mi 2 M

Thus it cannot be modeled by a MSG.

But it can be modeled as compositional MSG:

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

-  =



Yannakakis’ example as compositional MSG

This MSC cannot be modeled for n > 1 by:

M = M1 •M2 • . . . •Mn with Mi 2 M

Thus it cannot be modeled by a MSG.

But it can be modeled as compositional MSG:

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29



Yannakakis’ example as compositional MSG

This MSC cannot be modeled for n > 1 by:

M = M1 •M2 • . . . •Mn with Mi 2 M

Thus it cannot be modeled by a MSG.

But it can be modeled as compositional MSG:

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

A



CMS G

g :

Pi P2
Msc M

,
E L ( G ) -

t
• .

a

-

} Vo

In .

2

j .
.

) safe

-

a

± In?Evey accepting path IT for G i M Cst ) is an

Msc

→ Mcm ) e Llg )

C MSG g is called safe



Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 17/29

-



Safe paths and CMSGs

Definition (Safe path)
Path ⇡ of CMSG G is safe whenever M(⇡) 2 M.

Definition (Safe CMSG)
CMSG G is safe if for every accepting path ⇡ of G, M(⇡) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched

sends and receipts, i.e., if any of its accepting paths is indeed an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29



Safe paths and CMSGs

Definition (Safe path)
Path ⇡ of CMSG G is safe whenever M(⇡) 2 M.

Definition (Safe CMSG)
CMSG G is safe if for every accepting path ⇡ of G, M(⇡) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched

sends and receipts, i.e., if any of its accepting paths is indeed an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

/
Msc

-

in the CMSC of IT



Safe paths and CMSGs

Definition (Safe path)
Path ⇡ of CMSG G is safe whenever M(⇡) 2 M.

Definition (Safe CMSG)
CMSG G is safe if for every accepting path ⇡ of G, M(⇡) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched

sends and receipts, i.e., if any of its accepting paths is indeed an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

-



Safe paths and CMSGs

Definition (Safe path)
Path ⇡ of CMSG G is safe whenever M(⇡) 2 M.

Definition (Safe CMSG)
CMSG G is safe if for every accepting path ⇡ of G, M(⇡) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched

sends and receipts, i.e., if any of its accepting paths is indeed an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

-



Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 19/29



Existence of a safe accepting path

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting

path?” is undecidable.

Proof.
By a reduction from Post’s Correspondence Problem (PCP).

. . . black board . . .

The complement decision problem “does CMSG G have no safe, accepting

path?” is undecidable too.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29



Existence of a safe accepting path

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting

path?” is undecidable.

Proof.
By a reduction from Post’s Correspondence Problem (PCP).

. . . black board . . .

The complement decision problem “does CMSG G have no safe, accepting

path?” is undecidable too.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29



Existence of a safe accepting path

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting

path?” is undecidable.

Proof.
By a reduction from Post’s Correspondence Problem (PCP).

. . . black board . . .

The complement decision problem “does CMSG G have no safe, accepting

path?” is undecidable too.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29



Claim : the decision problem
"

does CMS G g hare

at least one safe path ? "

is undecidable .

L t accepting

Pinot by a reduction from the PCP problem .

Proof idea : instance of Pcp 1-3 instance

( u
,

w ) CMSG

few/
U={ a

, ,
- -

, Un ) up EE*

W - { we , . . . ,wn3 wie Et

" " thit " d ⇒ " t

C MSG gyu
has a safe

, accepting path .

it , - - sik ij E Et .  . n ]

Such that Ui
, Wiz - . .  - Ugc = Wi

, Wiz - - r - . Wife

How does the CMSG Gu ,w
look like ?

FF
Zun

-



Components of CMSG Guy :

Pe { pi
, Pz

, Pg , Pg } processes

C = E to { end } a { 9 . - .  - an }
-

indices Ej
V

= LY
,

. . .vn } u Lui
,

. . .vn/3v2vr-3

Fe E up I

b ( Vi ) = CMSG corresponding to the word we

> ( vi. ) = a a a a Wi

the do the vertices Ye , up
'

and up look the?

By example .
let E= { a. b }

,

ui=abaa
,

wi -

bag
Then :

Pi Pc Pg Pg
•

send the word
a

b. ( Vi ) s R
= b -

Ui and index
> pz L

a sp
,

→ •

• g
a Pu I

)
pz

P , Pz Ps Pg
⇐

receive the
• b

.

J ( v ) =

Pro
> u word Wi plus

I a o→

O 7 Pz a "

Pr index l



ther ) p , P2 Pg Pg

end end
→ →

⑦
,

②
emo

-

③

⑦ indicates that process p ,
has sent  all its

messagesto p ,
and if ⑦ is received by pz ,

all

messages of p ,
have been received by pz .

② similar as ① but now for the
"

index
"

messages that are exchanged between Pz Ipg .

③ indicates that both
"

phases "

① and ② have

finished
.



It remains to prove that the seduction :

PCP instance C UN ) 1-3 CMSG gyu

is correct .
That is

,
our proof obligation is :

( u
,

w ) has a solution iff gu ,w
has a safe

, accepting
path

Proof ,

←

⇒
"

let index sequence in ,
. . .

, in be a solution of

PCP instance ( U
,

w ) .
Then there is on accepting path is

gyu : ii "
w

"

,

o_0
it

.
.

¥n:wi¥
/

- -

traverse the traverse the

•

y.

.

vertices
"

y .

'
"

vertices / )
according

to according to

,

/
in . - . . its 4 - - - the

D

As in ,
.

. . , ik is a solution to ( UW )
,

and by construction

of the Chs G gu ,
w it follows that : MCI ) =

((( blue ;) .  - II.diving). bae ;) .
. - . . .

. > coin ) . Hur )

( left - associated bracketing ) is an

Msg

.

Thus IT is safe and it is accepting.



"

⇐
•

let IT be a safe
, accepting path in Gu ,w

Assume :

it - Vc ; - - . Vim Vj
,

Vg: - - - - in - VF
-

m steps k steps

with in
,

- - , im E { I
, . →

n ) and ji, . . ,jk E { 3-  - . in } .

Since IT is safe and ends in vertex up ,
it follows :

① as ? ( pg , Pg ,
end ) occurs in Vp ,

all unmatched

sends by Pz in Sub path Vi
,

- . . Vin ,
are matched

by corresponding receive events by pg in the Sub path

Vj ,
- . . Vj; .

As in each vertex vie que message is

sent from pg and in V£e one message is received

by pm ,

it follows that MI

② As IT is safe
,

it follows that

b 0

Vii - - - Vim Vg; -
- - . Vjm

is safe and Fifo
.

-

Thus all
"

index
"

messages 4 , .  . , im set by pg

are received by Pg ;
in the same order .



Thus Ep = In ,
Ez -- Iz ,

- - .  .

,
Em --jm

So D= VE
,

- .  . Vim VI;
- - . . VIM Vp is Safet

-
- accepting

As IT is completed by ? Cpa
, Pz ,

end ) and

! C Papa ,
end ) after ? C pz.pe ,

end ) ,
it follows that

once pa has received all
"

index
"

messages , pz has

received all messages sent by pay in VE
,

- - - Vim
-

Process p ,
has sent we ; - - . Uim C to pz )

,

process pz has received Wc ; - . . Wim

Since LT is safe
,

it follows Ui
,

- - Uim = Wu ; - - n . Wim

Thus : Ey .
. . Em is a solution to the Pcp

instance ( a. w ) DX



Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 21/29

✓ Yann  ekokis

✓ "

⇒

safe path

✓

undecidable

- does  a CMS G only have

safe paths ?


