Lecture 4: Message Sequence Graphs
Theoretical Foundations of the UML
Lecture 3+4: Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

April 28, 2020
A Message Sequence Chart is a visual partial order:

- between send and receive events
- totally ordered per process
- receive events happen after their send events
- respecting the FIFO property

Race: in practice, the order of receive events cannot be guaranteed.

Causal order: send events should happen before their matching receive events.

The ordering of events with regards to sends on the same process is respected.

AMSC Race: if causal order = visual order. Checking whether an MSC has a race can be done in quadratic time (in number of events) using an optimized version of Warshall's algorithm.

Vertical ordering: receive events can only happen after their send events.

Horizontal ordering: receive events happen after their send events, respecting the FIFO property.

Non-FIFO: receive events can happen before their send events.
A Message Sequence Chart is a **visual** partial order
- between send and receive events
- totally ordered per process
- receive events happen after their send events
- respecting the FIFO property

Race: in practice, the order of receive events cannot be guaranteed

![Diagram of Message Sequence Chart with race](image)
Summary of Lecture #3

1. A Message Sequence Chart is a visual partial order \(\leq^* \) between send and receive events:
 - totally ordered per process
 - receive events happen after their send events (vertical ordering)
 - respecting the FIFO property (horizontal ordering)

2. Race: in practice, the order of receive events cannot be guaranteed.

3. Causal order \(\ll^* \):
 - send events should happen before their matching receive events
 - the ordering of events wrt. sends on same process is respected
 - receive events on a process sent from the same process are ordered as their sends

\[\begin{array}{c}
n \end{array} \]
A Message Sequence Chart is a visual partial order:
- between send and receive events
- totally ordered per process
- receive events happen after their send events
- respecting the FIFO property

Race: in practice, the order of receive events cannot be guaranteed.

Causal order:
- send events should happen before their matching receive events
- the ordering of events wrt. sends on same process is respected
- receive events on a process sent from the same process are ordered as their sends

A MSC has a race if causal order \neq visual order.
Summary of Lecture #3

1. A Message Sequence Chart is a **visual** partial order
 - between send and receive events
 - totally ordered per process
 - receive events happen after their send events
 - respecting the FIFO property

2. **Race:** in practice, the order of receive events cannot be guaranteed

3. **Causal order**
 - send events should happen before their matching receive events
 - the ordering of events wrt. sends on same process is respected
 - receive events on a process sent from the same process are ordered as their sends

4. A MSC has a **race** if causal order \neq visual order
 - checking whether an MSC has a race can be done in quadratic time
 - (in number of events)
 - using an optimized version of Warshall’s algorithm

\[O(E_1^3) \]
The need for composing MSCs

- An MSC describes a possible **single** scenario
- Typically: a **set** of scenarios

![Diagram of a MSC with a loop and a sequence of scenarios](image)

\[
\begin{align*}
\{M_1, \ldots, M_k\} & \quad k \in \mathbb{N} \\
\text{finite} & \\
M & \text{scenario} \\
\text{arbitrarily many times} & \\
M^* & \\
\text{MS Graph}
\end{align*}
\]
The need for composing MSCs

- An MSC describes a possible single scenario
- Typically: a set of scenarios
- and dependencies between these scenarios:
 - after scenario 1, scenario 2 occurs
 - after scenario 1, scenario 2 or 3 occurs
 - scenario 1 occurs repeatedly

This yields Message Sequence Graphs

Alternatives: ensembles of MSCs, high-level MSCs (MSC'96)
The need for composing MSCs

- An MSC describes a possible single scenario
- Typically: a set of scenarios
- and dependencies between these scenarios:
 - after scenario 1, scenario 2 occurs
 - after scenario 1, scenario 2 or 3 occurs
 - scenario 1 occurs repeatedly
- Need for: sequential composition (= concatenation), alternative composition, and iteration of MSCs
The need for composing MSCs

- An MSC describes a possible **single** scenario
- Typically: a **set** of scenarios
- and dependencies between these scenarios:
 - after scenario 1, scenario 2 occurs
 - after scenario 1, scenario 2 or 3 occurs
 - scenario 1 occurs **repeatedly**
- Need for: **sequential composition** (= concatenation), **alternative composition**, and **iteration** of MSCs

⇒ This yields **Message Sequence Graphs**

- Alternatives: ensembles of MSCs, high-level MSCs (MSC'96)

aka: hierarchical MSCs or message sequence chat automata
Message Sequence Graphs

initial vertex

MSG vertex

MSG edge

final vertex

Joost-Pieter Katoen Theoretical Foundations of the UML
Let \mathbb{M} be the set of MSCs (up to isomorphism, i.e., event identities).

Definition

A **Message Sequence Graph** (MSG) $G = (V, \rightarrow, v_0, F, \lambda)$ with:

- (V, \rightarrow) is a digraph with finite set V of vertices and $\rightarrow \subseteq V \times V$ a set of edges.
- $v_0 \in V$ is the starting (or: initial) vertex.
- $F \subseteq V$ is a set of final vertices.
- $\lambda : V \rightarrow \mathbb{M}$ associates to each vertex $v \in V$, an MSC $\lambda(v)$.

Note: An MSG can be considered as a non-deterministic finite-state automaton without input alphabet where states are MSCs. Obviously, every MSC is an MSG.
Let \mathbb{M} be the set of MSCs (up to isomorphism, i.e., event identities).

Definition

A Message Sequence Graph (MSG) $G = (V, \rightarrow, v_0, F, \lambda)$ with:

- (V, \rightarrow) is a digraph with finite set V of vertices and $\rightarrow \subseteq V \times V$ a set of edges
- $v_0 \in V$ is the starting (or: initial) vertex
- $F \subseteq V$ is a set of final vertices
- $\lambda : V \rightarrow \mathbb{M}$ associates to each vertex $v \in V$, an MSC $\lambda(v)$

Note:

An MSG can be considered as a non-deterministic finite-state automaton without input alphabet where states are MSCs. Obviously, every MSC is an MSG.
Example

\[g = (V, \rightarrow, v_0, F, \lambda) \]

\[V = \{ u_0, \ldots, u_3 \} \]

\[\rightarrow = \{ (u_0, u_1), (u_0, u_2), (u_2, u_0), (u_2, u_3) \} \]

\[v_0 = u_0 \]

\[F = \{ u_1, u_3 \} \]

\[\lambda(u_0) = M_0 = \begin{pmatrix} c & o & n \end{pmatrix} \]

\[\lambda(u_1) = \begin{pmatrix} g & r & a & t \end{pmatrix} \]

\[\lambda(u_2) = \begin{pmatrix} g & r & a & t \end{pmatrix} \]

\[\lambda(u_3) = \begin{pmatrix} a & c & k \end{pmatrix} \]
Let $M_i = (P_i, E_i, C_i, l_i, m_i, \preceq_i)$ with $i \in \{1, 2\}

be two MSCs with $E_1 \cap E_2 = \emptyset$
Concatenation of MSCs: definition

Let $M_i = (\mathcal{P}_i, E_i, C_i, l_i, m_i, \preceq_i)$ with $i \in \{1, 2\}$ be two MSCs with $E_1 \cap E_2 = \emptyset$

The concatenation of M_1 and M_2 is the MSC $M_1 \cdot M_2 = (\mathcal{P}, E, C, l, m, \preceq)$ with:

- $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$
- $E = E_1 \cup E_2$
- $C = C_1 \cup C_2$

(with $E_? = E_1,? \cup E_2,?$ etc.)

- $l(e) = \begin{cases} l_1(e) & \text{if } e \in E_1 \\ l_2(e) & \text{if } e \in E_2 \end{cases}$
- $m(e) = \begin{cases} m_1(e) & \text{if } e \in E_1 \\ m_2(e) & \text{if } e \in E_2 \end{cases}$

Joost-Pieter Katoen
Theoretical Foundations of the UML
Concatenation of MSCs: definition

Let $M_i = (\mathcal{P}_i, E_i, C_i, l_i, m_i, \preceq_i)$ with $i \in \{1, 2\}$ be two MSCs with $E_1 \cap E_2 = \emptyset$.

The concatenation of M_1 and M_2 is the MSC $M_1 \cdot M_2 = (\mathcal{P}, E, C, l, m, \preceq)$ with:

\begin{align*}
\mathcal{P} &= \mathcal{P}_1 \cup \mathcal{P}_2 \\
E &= E_1 \cup E_2 \\
C &= C_1 \cup C_2
\end{align*}

(with $E? = E_1,? \cup E_2,?$ etc.)

\begin{align*}
l(e) &= \begin{cases}
l_1(e) & \text{if } e \in E_1 \\
l_2(e) & \text{if } e \in E_2 \end{cases} \\
m(e) &= \begin{cases}
m_1(e) & \text{if } e \in E_1 \\
m_2(e) & \text{if } e \in E_2 \end{cases}
\end{align*}

\begin{align*}
\preceq &= (\preceq_1 \cup \preceq_2 \cup \{(e, e') | \exists p \in \mathcal{P}. e \in E_1 \cap E_p, e' \in E_2 \cap E_p\}^*)
\end{align*}
Concatenation of MSCs: observations

Ordering

\[\preceq = (\preceq_1 \cup \preceq_2 \cup \{(e, e') \mid \exists p \in \mathcal{P}. e \in E_1 \cap E_p, e' \in E_2 \cap E_p\})^* \]

\[\begin{array}{c}
M_1 \cdot M_2 \\
M_1 \\
M_2
\end{array} \]
Concatenation of MSCs: observations

Ordering

\[\preceq = (\preceq_1 \cup \preceq_2 \cup \{(e, e') \mid \exists p \in \mathcal{P}. e \in E_1 \cap E_p, e' \in E_2 \cap E_p\})^* \]

Observations

- events are ordered per process:

 every event at \(p \) in MSC \(M_1 \) precedes every event at \(p \) in MSC \(M_2 \)
Concatenation of MSCs: observations

Ordering

\[\preceq = (\preceq_1 \cup \preceq_2 \cup \{(e, e') \mid \exists p \in \mathcal{P}. e \in E_1 \cap E_p, e' \in E_2 \cap E_p\})^* \]

Observations

- Events are ordered per process:
 - Every event at \(p \) in MSC \(M_1 \) precedes every event at \(p \) in MSC \(M_2 \).
- Events at distinct processes in \(M_1 \) and \(M_2 \) can be incomparable.
Concatenation of MSCs: observations

Ordering

\[\preceq = (\preceq_1 \cup \preceq_2 \cup \{(e, e') \mid \exists p \in P. e \in E_1 \cap E_p, e' \in E_2 \cap E_p\})^* \]

Observations

- events are ordered per process:
 every event at \(p \) in MSC \(M_1 \) precedes every event at \(p \) in MSC \(M_2 \)
- events at distinct processes in \(M_1 \) and \(M_2 \) can be incomparable
- thus: a process may start with \(M_2 \) before other processes do pause
- this differs from: first complete \(M_1 \), then start with \(M_2 \)

\[\preceq \neq \text{execute all events in } M_1 \]

\[\text{have finished } M_1 \]
Example (1)

\[M_1: \]

\[M_2: \]

\[M_1 \circ M_2 \]
Example (1)

\[M_1 \cdot M_2 \]

\[\preceq_1 : e_1 \rightarrow e_2 \]

\[\preceq_2 : e'_4 \rightarrow e'_3 \]

\[M_1 : e_1 \rightarrow e_2 \]

\[M_2 : e'_1 \rightarrow e'_2 \]

\[M_1 \cdot M_2 \]
Example (2)

\[\preceq_1: e_1 \rightarrow e_2 \]
\[e'_2 \xleftarrow{\cdot} e'_1 \]
\[\preceq_2: e'_4 \xleftarrow{\cdot} e'_3 \]

\[e_1 \rightarrow e_2 \]
\[e'_2 \xleftarrow{\cdot} e'_1 \]
\[e'_4 \xleftarrow{\cdot} e'_3 \]

\[M_1 \cdot M_2 \]
Example (2)

Note:
Events e_1 and e'_1 are not ordered in $M_1 \cdot M_2$

Example linearizations:

\[
\begin{align*}
e_1 & \quad e_2 & \quad e'_1 & \quad e'_2 & \ldots & \in Lin(M_1 \cdot M_2) \\
e'_1 & \quad e_1 & \quad e_2 & \quad e'_2 & \ldots & \in Lin(M_1 \cdot M_2)
\end{align*}
\]
Properties of concatenation

1 Concatenation is associative:

\[(M_1 \bullet M_2) \bullet M_3 = M_1 \bullet (M_2 \bullet M_3)\]

\[M_1 \bullet M_2 \bullet \ldots \bullet M_k\]
Properties of concatenation

1. Concatenation is **associative**:

\[(M_1 \cdot M_2) \cdot M_3 = M_1 \cdot (M_2 \cdot M_3)\]

2. Concatenation preserves the **FIFO** property:

\[(M_1 \text{ is FIFO } \land M_2 \text{ is FIFO }) \implies M_1 \cdot M_2 \text{ is FIFO}\]

3. **Race-freeness**, however, is not preserved

\[(M_1 \text{ is race-free } \land M_2 \text{ is race-free }) \not\Rightarrow M_1 \cdot M_2 \text{ is race-free}\]
Example

Race Freedom

\[M_1: \]

\[\leq_1: e_1 \rightarrow e_2 \]

\[e'_2 \leftarrow e'_1 \]

\[\leq_2: e'_4 \leftarrow e'_3 \]

\[M_2: \]

\[\leq: e'_2 \leftarrow e'_1 \]

\[e'_4 \leftarrow e'_3 \]

\[M_1 \cdot M_2 \]
Let $G = (V, \rightarrow, v_0, F, \lambda)$ be an MSG.

A path through MSG G is a finite traversal through the graph G.

Definition

A path π in MSG G is a finite sequence

$$\pi = u_0 \ u_1 \ldots \ u_n$$

with $u_i \in V$ ($0 \leq i \leq n$) and $u_i \rightarrow u_{i+1}$ ($0 \leq i < n$)

$(u_i, u_{i+1}) \in \rightarrow$
Let $G = (V, \rightarrow, v_0, F, \lambda)$ be an MSG.

A path through MSG G is a finite traversal through the graph G.

Definition

A path π in MSG G is a finite sequence

$$\pi = u_0 \ u_1 \ldots \ u_n$$

with $u_i \in V$ ($0 \leq i \leq n$) and $u_i \rightarrow u_{i+1}$ ($0 \leq i < n$)

An accepting path through MSG G is a path starting in the initial vertex and ending in a final vertex.

Definition

Path $\pi = u_0 \ldots u_n$ is accepting if: $u_0 = v_0$ and $u_n \in F$.
Paths in an MSG represent MSCs

Let $G = (V, \rightarrow, v_0, F, \lambda)$ be an MSG.

Definition

The **MSC** of a path $\pi = u_0 \ldots u_n$ through MSG G is defined by:

$$M(\pi) = \lambda(u_0) \cdot \lambda(u_1) \cdot \ldots \cdot \lambda(u_n)$$

- MSC of u_0
- MSC of u_1
- MSC of u_n
Example paths

Accepting: \(u_0 u_1 \)
\(u_0 u_2 u_0 u_3 \)

Non-accepting: \(u_0 u_2 u_0 u_2 u_3 \) etc.

\(M(u_0 u_2 u_0 u_3) \)
Language of an MSG

- set of MSCs that are accepted by the MSG

- MSG G as a descriptor a set of MSCs

finite

Infinite
The language of an MSG, i.e., the set of MSCs it represents, is the set of MSCs of its accepting paths.

Definition

The MSC language of MSG G is defined by:

$$L(G) = \{ M(\pi) \mid \pi \text{ is an accepting path of } G \}.$$
The language of an MSG, i.e., the set of MSCs it represents, is the set of MSCs of its accepting paths.

Definition

The **MSC language** of MSG G is defined by:

$$L(G) = \{ M(\pi) \mid \pi \text{ is an accepting path of } G \}.$$

Definition

The **word language** of MSG G is defined by $Lin(L(G))$ where

$$Lin(\{M_1, \ldots, M_k\}) = \bigcup_{i=1}^{k} Lin(M_i).$$
Example

\[L(G) = \{ M(u_0(u_2u_0)^*u_1), M(u_0(u_2u_0)^*u_2u_3) \} \]

\[|L(G)| = \infty \]
Recall: MSC M has a race if $\leq \not\ll^*$
Races in MSGs

Recall: MSC M has a race if $\leq \not\subset \ll^*$

or, equivalently $\text{Lin}(M, \leq) \not\subset \text{Lin}(M, \ll^*)$

Linearisations wrt \leq \neq linearisations wrt \ll^*
Races in MSGs

Recall: MSC M has a race if $\leq \subsetneq \ll^*$

or, equivalently $\text{Lin}(M, \leq) \subsetneq \text{Lin}(M, \ll^*)$

or, equivalently $\text{Lin}(M, \ll^*) \subset \text{Lin}(M, \leq)$

Definition

MSG G has a race if $\text{Lin}(G, \ll^*) \subset \text{Lin}(G, \leq)$

MSG g has race if some MSC $M \in L(G)$ has a race.
Example

Definition

MSG G has a race if $\text{Lin}(G, \ll^*) \subset \text{Lin}(G, \leq)$

MSG G has a race.
Deciding whether an MSG has a race is undecidable

\(\text{Theorem} \) [Muscholl & Peled, 1999]

The decision problem "does MSG \(G \) have a race?" is undecidable.

Proof. By a reduction from the universality of semi-trace languages. Requires some Mazurkiewicz' trace theory. Omitted here. We will see other reduction proofs later on.

No undecidable problem can ever be solved by a computer or computer program of any kind.

Does MSC \(M \) have a race? \(\rightarrow \) Warshall algorithm

\[O(1E1^2) \]

\(\forall \text{ events } m \cdot M \)

Does MSG \(G \) have a race?

- if \(L(G) = \{ M_1, \ldots, M_k \} \) \(k \in \mathbb{N} \).

 run Warshall's on each \(M_i \)

 \[O(k \cdot 1E1^2) \]

- if \(L(G) = \{ M \} \)

\(\rightarrow \) Worsham's algorithm.
Deciding whether an MSG has a race is undecidable

Theorem

[Muscholl & Peled, 1999]

The decision problem “does MSG G have a race?” is undecidable.

Proof.

By a reduction from the universality of semi-trace languages. Requires some Mazurkiewicz’ trace theory. Omitted here. We will see other reduction proofs later on.

$L = \Sigma^*$? universality problem
Deciding whether an MSG has a race is undecidable

Theorem [Muscholl & Peled, 1999]

The decision problem “does MSG G have a race?” is undecidable.

Proof.

By a reduction from the universality of semi-trace languages. Requires some Mazurkiewicz’ trace theory. Omitted here. We will see other reduction proofs later on.

No undecidable problem can ever be solved by a computer or computer program of any kind.
Do MSGs have an MSC in common?

Theorem: undecidability of empty intersection

The decision problem:

for MSGs G_1 and G_2, do we have $L(G_1) \cap L(G_2) = \emptyset$?

is undecidable.

Do MSGs G_1 and G_2 describe at least one common MSC?
Do MSGs have an MSC in common?

Theorem: undecidability of empty intersection

The decision problem:

for MSGs G_1 and G_2, do we have $L(G_1) \cap L(G_2) = \emptyset$?

is undecidable.

Proof: Reduction from Post’s Correspondence Problem (PCP)

\[\text{... black board ...} \]

next lecture