
Overview

1 Lecture 4: Message Sequence Graphs

Joost-Pieter Katoen Theoretical Foundations of the UML 1/21

Ga

(
Automata

%

3 the

Theoretical Foundations of the UML

Lecture 3+4: Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

April 28, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML 2/21

Summary of Lecture #3

1 A Message Sequence Chart is a visual partial order

between send and receive events

totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the FIFO property

2 Race: in practice, the order of receive events cannot be guaranteed

3 Causal order

send events should happen before their matching receive events

the ordering of events wrt. sends on same process is respected

receive events on a process sent from the same process are ordered

as their sends

4 A MSC has a race if causal order 6= visual order

checking whether an MSC has a race can be done in quadratic time

(in number of events)

using an optimized version of Warshall’s algorithm

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21

non - Fifo

Summary of Lecture #3

1 A Message Sequence Chart is a visual partial order

between send and receive events

totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the FIFO property

2 Race: in practice, the order of receive events cannot be guaranteed

3 Causal order

send events should happen before their matching receive events

the ordering of events wrt. sends on same process is respected

receive events on a process sent from the same process are ordered

as their sends

4 A MSC has a race if causal order 6= visual order

checking whether an MSC has a race can be done in quadratic time

(in number of events)

using an optimized version of Warshall’s algorithm

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21

,
⇒he MS C

: race

Summary of Lecture #3

1 A Message Sequence Chart is a visual partial order

between send and receive events

totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the FIFO property

2 Race: in practice, the order of receive events cannot be guaranteed

3 Causal order

send events should happen before their matching receive events

the ordering of events wrt. sends on same process is respected

receive events on a process sent from the same process are ordered

as their sends

4 A MSC has a race if causal order 6= visual order

checking whether an MSC has a race can be done in quadratic time

(in number of events)

using an optimized version of Warshall’s algorithm

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21

s
*

⇐
*

g
v

④:# ¥ I

Summary of Lecture #3

1 A Message Sequence Chart is a visual partial order

between send and receive events

totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the FIFO property

2 Race: in practice, the order of receive events cannot be guaranteed

3 Causal order

send events should happen before their matching receive events

the ordering of events wrt. sends on same process is respected

receive events on a process sent from the same process are ordered

as their sends

4 A MSC has a race if causal order 6= visual order

checking whether an MSC has a race can be done in quadratic time

(in number of events)

using an optimized version of Warshall’s algorithm

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21

Summary of Lecture #3

1 A Message Sequence Chart is a visual partial order

between send and receive events

totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the FIFO property

2 Race: in practice, the order of receive events cannot be guaranteed

3 Causal order

send events should happen before their matching receive events

the ordering of events wrt. sends on same process is respected

receive events on a process sent from the same process are ordered

as their sends

4 A MSC has a race if causal order 6= visual order

checking whether an MSC has a race can be done in quadratic time

(in number of events)

using an optimized version of Warshall’s algorithm

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21

I
OCIEP)

The need for composing MSCs

An MSC describes a possible single scenario

Typically: a set of scenarios

and dependencies between these scenarios:

after scenario 1, scenario 2 occurs

after scenario 1, scenario 2 or 3 occurs

scenario 1 occurs repeatedly

Need for: sequential composition (= concatenation),

alternative composition, and

iteration of MSCs

) This yields Message Sequence Graphs

Alternatives: ensembles of MSCs, high-level MSCs (MSC’96)

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

{ My ,
- - .

, Mk) KEIN

-

finite(
infinite Maceio

arbitrarily many times Mt

O
I

⑤ Jr MS graph

b

The need for composing MSCs

An MSC describes a possible single scenario

Typically: a set of scenarios

and dependencies between these scenarios:

after scenario 1, scenario 2 occurs

after scenario 1, scenario 2 or 3 occurs

scenario 1 occurs repeatedly

Need for: sequential composition (= concatenation),

alternative composition, and

iteration of MSCs

) This yields Message Sequence Graphs

Alternatives: ensembles of MSCs, high-level MSCs (MSC’96)

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

(
④ ⇒

- ④f④
,

\
or

The need for composing MSCs

An MSC describes a possible single scenario

Typically: a set of scenarios

and dependencies between these scenarios:

after scenario 1, scenario 2 occurs

after scenario 1, scenario 2 or 3 occurs

scenario 1 occurs repeatedly

Need for: sequential composition (= concatenation),

alternative composition, and

iteration of MSCs

) This yields Message Sequence Graphs

Alternatives: ensembles of MSCs, high-level MSCs (MSC’96)

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

-
Dm → Dm

- I
④

-
' ④

④ D ↳ as

The need for composing MSCs

An MSC describes a possible single scenario

Typically: a set of scenarios

and dependencies between these scenarios:

after scenario 1, scenario 2 occurs

after scenario 1, scenario 2 or 3 occurs

scenario 1 occurs repeatedly

Need for: sequential composition (= concatenation),

alternative composition, and

iteration of MSCs

) This yields Message Sequence Graphs

Alternatives: ensembles of MSCs, high-level MSCs (MSC’96)

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

a :hierarchical
MSCS

#
ate

or

message sequence

chat automata

Message Sequence Graphs

U F S

conn

info

msc

U F S

fail

ack

msc

U F S

ack

grant

msc

U F S

off

msc

initial

vertex

MSG

edge

final

vertex

MSG vertex

u0 u1

u2 u3

Joost-Pieter Katoen Theoretical Foundations of the UML 5/21

Y >

a

£ final vertex

✓

→

I

Message Sequence Graphs

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

Definition

A Message Sequence Graph (MSG) G = (V,!, v0, F,�) with:

(V,!) is a digraph with finite set V of vertices and !✓ V ⇥ V a

set of edges

v0 2 V is the starting (or: initial) vertex

F ✓ V is a set of final vertices

� : V ! M associates to each vertex v 2 V , an MSC �(v)

Note:

An MSG can be considered as a non-deterministic finite-state automaton without

input alphabet where states are MSCs. Obviously, every MSC is an MSG.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/21

Message Sequence Graphs

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

Definition

A Message Sequence Graph (MSG) G = (V,!, v0, F,�) with:

(V,!) is a digraph with finite set V of vertices and !✓ V ⇥ V a

set of edges

v0 2 V is the starting (or: initial) vertex

F ✓ V is a set of final vertices

� : V ! M associates to each vertex v 2 V , an MSC �(v)

Note:

An MSG can be considered as a non-deterministic finite-state automaton without

input alphabet where states are MSCs. Obviously, every MSC is an MSG.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/21

- -

Example

Joost-Pieter Katoen Theoretical Foundations of the UML 7/21

MSG g : g = (V
, → vo

,

F
,

b)

7r-Bto[gfa8Bi
V -- Lao , . . , us.

)

Bf
'

/

,

Mlk
→ = { (no ,u ,)

,
luo

,
421,142,40)

,Buz
.

ay
Cuz.us))

BA Vo = Uo

F = { 4,43)
U F S

- - ack -Huo ' . Mo -

II±I unit .

Concatenation of MSCs: definition

Let Mi = (Pi, Ei, Ci, li,mi,�i) with i 2 {1, 2}
be two MSCs with E1 \ E2 = ?

The concatenation of M1 and M2 is the MSC

M1 •M2 = (P, E, C, l,m,�) with:

P = P1 [P2 E = E1 [E2 C = C1 [C2
(with E? = E1,? [E2,? etc.)

l(e) =

⇢
l1(e) if e 2 E1

l2(e) if e 2 E2
m(e) =

⇢
m1(e) if e 2 E1

m2(e) if e 2 E2

� =
�
�1 [�2 [{(e, e0) | 9p 2 P. e 2 E1 \ Ep , e0 2 E2 \ Ep}

�⇤

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

.

M
, -7 Mz

Concatenation of MSCs: definition

Let Mi = (Pi, Ei, Ci, li,mi,�i) with i 2 {1, 2}
be two MSCs with E1 \ E2 = ?

The concatenation of M1 and M2 is the MSC

M1 •M2 = (P, E, C, l,m,�) with:

P = P1 [P2 E = E1 [E2 C = C1 [C2
(with E? = E1,? [E2,? etc.)

l(e) =

⇢
l1(e) if e 2 E1

l2(e) if e 2 E2
m(e) =

⇢
m1(e) if e 2 E1

m2(e) if e 2 E2

� =
�
�1 [�2 [{(e, e0) | 9p 2 P. e 2 E1 \ Ep , e0 2 E2 \ Ep}

�⇤

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

-
- -

EEE !

- III -
- -

Concatenation of MSCs: definition

Let Mi = (Pi, Ei, Ci, li,mi,�i) with i 2 {1, 2}
be two MSCs with E1 \ E2 = ?

The concatenation of M1 and M2 is the MSC

M1 •M2 = (P, E, C, l,m,�) with:

P = P1 [P2 E = E1 [E2 C = C1 [C2
(with E? = E1,? [E2,? etc.)

l(e) =

⇢
l1(e) if e 2 E1

l2(e) if e 2 E2
m(e) =

⇢
m1(e) if e 2 E1

m2(e) if e 2 E2

� =
�
�1 [�2 [{(e, e0) | 9p 2 P. e 2 E1 \ Ep , e0 2 E2 \ Ep}

�⇤

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

O

←

-
- -

Concatenation of MSCs: observations

Ordering

� =
�
�1 [�2 [{(e, e0) | 9p 2 P. e 2 E1 \ Ep , e0 2 E2 \ Ep}

�⇤

Observations

events are ordered per process:

every event at p in MSC M1 precedes every event at p in MSC M2

events at distinct processes in M1 and M2 can be incomparable

thus: a process may start with M2 before other processes do pause

this differs from: first complete M1, then start with M2

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

± in

Concatenation of MSCs: observations

Ordering

� =
�
�1 [�2 [{(e, e0) | 9p 2 P. e 2 E1 \ Ep , e0 2 E2 \ Ep}

�⇤

Observations

events are ordered per process:

every event at p in MSC M1 precedes every event at p in MSC M2

events at distinct processes in M1 and M2 can be incomparable

thus: a process may start with M2 before other processes do pause

this differs from: first complete M1, then start with M2

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

- - - -

Concatenation of MSCs: observations

Ordering

� =
�
�1 [�2 [{(e, e0) | 9p 2 P. e 2 E1 \ Ep , e0 2 E2 \ Ep}

�⇤

Observations

events are ordered per process:

every event at p in MSC M1 precedes every event at p in MSC M2

events at distinct processes in M1 and M2 can be incomparable

thus: a process may start with M2 before other processes do pause

this differs from: first complete M1, then start with M2

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

O O

'

th-ei7
⇒

Concatenation of MSCs: observations

Ordering

� =
�
�1 [�2 [{(e, e0) | 9p 2 P. e 2 E1 \ Ep , e0 2 E2 \ Ep}

�⇤

Observations

events are ordered per process:

every event at p in MSC M1 precedes every event at p in MSC M2

events at distinct processes in M1 and M2 can be incomparable

thus: a process may start with M2 before other processes do pause

this differs from: first complete M1, then start with M2

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

- - -

T
- -

have finished
• =/ ex .ggtem,a" events

m
.

Example (1)

p1 p2 p3

a

e1e2msc

•
p1 p2 p3

b

c

e01e
0
2e
0
3e
0
4msc

=

p1 p2 p3

a

b

c

e1e2e01e
0
2e
0
3e
0
4mscM1:

M2:
M1 •M2

e1 e2

e01e02

e03e04

e1 e2

e02

e03e04

e01�:

�1:

�2:

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Nk

e , er Mk
M ,

e , ez

Ba ei ei

ei es
'

ML

e 's a
'

en
'

e :

Example (1)

p1 p2 p3

a

e1e2msc

•
p1 p2 p3

b

c

e01e
0
2e
0
3e
0
4msc

=

p1 p2 p3

a

b

c

e1e2e01e
0
2e
0
3e
0
4mscM1:

M2:
M1 •M2

e1 e2

e01e02

e03e04

e1 e2

e02

e03e04

e01�:

�1:

�2:

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

AM

e. O ez My
e

, ez

Bp ei

oeiei e :

eioeien
'

es
'

-

✓ s 2

V

c a My . Mz

✓ v
v

v

C L

Example (2)

e1 e2

e01e02

e03e04

e1 e2

e02

e03e04

e01�:

�1:

�2:

Note:

Events e1 and e01 are not ordered in M1 •M2

Example linearizations:

e1 e2 e01 e02 . . . 2 Lin(M1 •M2)
e01 e1 e2 e02 . . . 2 Lin(M1 •M2)

Joost-Pieter Katoen Theoretical Foundations of the UML 11/21

? 7

✓

c a
M

,
. Mz

.
v

u

C C

Example (2)

e1 e2

e01e02

e03e04

e1 e2

e02

e03e04

e01�:

�1:

�2:

Note:

Events e1 and e01 are not ordered in M1 •M2

Example linearizations:

e1 e2 e01 e02 . . . 2 Lin(M1 •M2)
e01 e1 e2 e02 . . . 2 Lin(M1 •M2)

Joost-Pieter Katoen Theoretical Foundations of the UML 11/21

✓
Mu in

0 in

-
m

.

O

- - -

- -

-

Properties of concatenation

1 Concatenation is associative:

(M1 •M2) •M3 = M1 • (M2 •M3)

2 Concatenation preserves the FIFO property:

(M1 is FIFO ^M2 is FIFO) implies M1 •M2 is FIFO

3 Race-freeness, however, is not preserved

(M1 is race-free ^M2 is race-free) 6) M1 •M2 is race-free

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

- -

- -

M
,

o Mz •
- .

. .

• Mk

Properties of concatenation

1 Concatenation is associative:

(M1 •M2) •M3 = M1 • (M2 •M3)

2 Concatenation preserves the FIFO property:

(M1 is FIFO ^M2 is FIFO) implies M1 •M2 is FIFO

3 Race-freeness, however, is not preserved

(M1 is race-free ^M2 is race-free) 6) M1 •M2 is race-free

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

- -

p
-

Example (1)

p1 p2 p3

a

e1e2msc

•
p1 p2 p3

b

c

e01e
0
2e
0
3e
0
4msc

=

p1 p2 p3

a

b

c

e1e2e01e
0
2e
0
3e
0
4mscM1:

M2:
M1 •M2

e1 e2

e01e02

e03e04

e1 e2

e02

e03e04

e01�:

�1:

�2:

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Ggg Race Freedom

AM

race free
e ,

e
, ggg (

race

e
'①BA e; ei

es
'

ein

ei ei
race free ei e's

> 2

V

C C

✓
V

v

C L

Paths in MSGs

Let G = (V,!, v0, F,�) be an MSG.

A path through MSG G is a finite traversal through the graph G.

Definition

A path ⇡ in MSG G is a finite sequence

⇡ = u0 u1 . . . un with ui 2 V (0 i n) and ui ! ui+1 (0 i < n)

An accepting path through MSG G is a path starting in the initial

vertex and ending in a final vertex.

Definition

Path ⇡ = u0 . . . un is accepting if: u0 = v0 and un 2 F .

Joost-Pieter Katoen Theoretical Foundations of the UML 13/21

- - -

(Ui , 4in) E →

Paths in MSGs

Let G = (V,!, v0, F,�) be an MSG.

A path through MSG G is a finite traversal through the graph G.

Definition

A path ⇡ in MSG G is a finite sequence

⇡ = u0 u1 . . . un with ui 2 V (0 i n) and ui ! ui+1 (0 i < n)

An accepting path through MSG G is a path starting in the initial

vertex and ending in a final vertex.

Definition

Path ⇡ = u0 . . . un is accepting if: u0 = v0 and un 2 F .

Joost-Pieter Katoen Theoretical Foundations of the UML 13/21

O

- - -

- -

- -

-0
-

Paths in an MSG represent MSCs

Let G = (V,!, v0, F,�) be an MSG.

Definition

The MSC of a path ⇡ = u0 . . . un through MSG G is defined by:

M(⇡) = �(u0)| {z }
MSC of u0

• �(u1)| {z }
MSC of u1

• . . . • �(un)| {z }
MSC of un

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21

③ → ④ → IF - - - - - → → Dun

= Vo E F

/
"

- -

-

- -

Example paths

U F S

conn

info

msc

U F S

fail

ack

msc

U F S

ack

grant

msc

U F S

off

msc

initial

vertex

MSG

edge

final

vertex

MSG vertex

u0 u1

u2 u3

u0 u2 u0 u1 is accepting;u0 u2 u0 u2 is not accepting

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21

G.' egg P added M@uzu
U F S

→ a !
at

• f I b
u .

ur
⇐

.

→

b BE
an .

Uo U
,

Accepting :
you , you .

Non
- accepting i 40424042

Uo 4240424g
etc

.

Language of an MSG

The language of an MSG, i.e., the set of MSCs it represents, is the set

of MSCs of its accepting paths.

Definition

The MSC language of MSG G is defined by:

L(G) = {M(⇡) | ⇡ is an accepting path of G}.

Definition

The word language of MSG G is defined by Lin(L(G)) where

Lin({M1, . . . ,Mk}) =
k[

i=1

Lin(Mi).

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21

- Set of HSCs that are accepted by the MSG
- -

- MSG g as a descriptor a set of MSG

Afinite
infinite

Language of an MSG

The language of an MSG, i.e., the set of MSCs it represents, is the set

of MSCs of its accepting paths.

Definition

The MSC language of MSG G is defined by:

L(G) = {M(⇡) | ⇡ is an accepting path of G}.

Definition

The word language of MSG G is defined by Lin(L(G)) where

Lin({M1, . . . ,Mk}) =
k[

i=1

Lin(Mi).

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21

-

the HSCs of accepting paths in g

Language of an MSG

The language of an MSG, i.e., the set of MSCs it represents, is the set

of MSCs of its accepting paths.

Definition

The MSC language of MSG G is defined by:

L(G) = {M(⇡) | ⇡ is an accepting path of G}.

Definition

The word language of MSG G is defined by Lin(L(G)) where

Lin({M1, . . . ,Mk}) =
k[

i=1

Lin(Mi).

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21

÷

Example

Joost-Pieter Katoen Theoretical Foundations of the UML 17/21

accepted paths i

Uo (Uz Uo)
*

Ur ,

Uo (Uz no)
*

Uz Ug

where * means arbitrarily

many (but finitely many)

rise . s
ugh { mind "

yM (uoluz

I 4611 = is

Races in MSGs

Recall: MSC M has a race if � 6✓⌧⇤

or, equivalently Lin(M,�) 6✓ Lin(M,⌧⇤)

or, equivalently Lin(M,⌧⇤) ⇢ Lin(M,�)

Definition

MSG G has a race if Lin(G,⌧⇤) ⇢ Lin(G,�)

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21

-
-

I I
visual

Cans of

order order

Races in MSGs

Recall: MSC M has a race if � 6✓⌧⇤

or, equivalently Lin(M,�) 6✓ Lin(M,⌧⇤)

or, equivalently Lin(M,⌧⇤) ⇢ Lin(M,�)

Definition

MSG G has a race if Lin(G,⌧⇤) ⇢ Lin(G,�)

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21

= -

linearis axons linear . satins

wrt I =/ wrt at

Races in MSGs

Recall: MSC M has a race if � 6✓⌧⇤

or, equivalently Lin(M,�) 6✓ Lin(M,⌧⇤)

or, equivalently Lin(M,⌧⇤) ⇢ Lin(M,�)

Definition

MSG G has a race if Lin(G,⌧⇤) ⇢ Lin(G,�)

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21

*

MSG g has race if some MSC M E LCG) has a race
.

Example

Definition

MSG G has a race if Lin(G,⌧⇤) ⇢ Lin(G,�)

p1 p2 p3

a

b

msc
p1 p2 p3

c

msc

MSG G:

MSG G has a race.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/21

race free race free

Uo
•

• Up

LCG) = { Huo) . dlu ,) }

=

Deciding whether an MSG has a race is undecidable

Theorem [Muscholl & Peled, 1999]

The decision problem “does MSG G have a race?” is undecidable.

Proof.

By a reduction from the universality of semi-trace languages. Requires

some Mazurkiewicz’ trace theory. Omitted here. We will see other

reduction proofs later on.

No undecidable problem can ever be solved by a computer or computer

program of any kind.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21

Does MSC M have a race ? → Worsham algorithm

.
OCIEI

')

I events in M

Does Msg g have a race ?

- if L

(g)
= { My . .

, Mh) KEIN .

run Worsham 's on each Mi

OCK . IEP)

- if LC =L Ms , . rn . . I

Deciding whether an MSG has a race is undecidable

Theorem [Muscholl & Peled, 1999]

The decision problem “does MSG G have a race?” is undecidable.

Proof.

By a reduction from the universality of semi-trace languages. Requires

some Mazurkiewicz’ trace theory. Omitted here. We will see other

reduction proofs later on.

No undecidable problem can ever be solved by a computer or computer

program of any kind.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21

-

L = E
* 7 universality problem

Deciding whether an MSG has a race is undecidable

Theorem [Muscholl & Peled, 1999]

The decision problem “does MSG G have a race?” is undecidable.

Proof.

By a reduction from the universality of semi-trace languages. Requires

some Mazurkiewicz’ trace theory. Omitted here. We will see other

reduction proofs later on.

No undecidable problem can ever be solved by a computer or computer

program of any kind.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21

0

Do MSGs have an MSC in common?

Theorem: undecidability of empty intersection

The decision problem:

for MSGs G1 and G2, do we have L(G1) \ L(G2) = ??

is undecidable.

Proof: Reduction from Post’s Correspondence Problem (PCP)

. . . black board . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 21/21

- - - - -

Do MSGS G ,and Gz describe at least

one common MSC ?

Do MSGs have an MSC in common?

Theorem: undecidability of empty intersection

The decision problem:

for MSGs G1 and G2, do we have L(G1) \ L(G2) = ??

is undecidable.

Proof: Reduction from Post’s Correspondence Problem (PCP)

. . . black board . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 21/21

?
next lecture

