

Theoretical Foundations of the UML Lecture 2: Races

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

April 21, 2020

イロト イボト イヨト イヨト

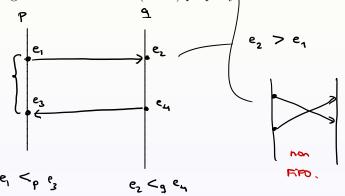
Joost-Pieter Katoen Theoretical Foundations of the UML

臣

- A Message Sequence Chart is a partial order
 - between send and receive events
 - totally ordered per process
 - receive events happen after their send events
 - respecting the first-in first out (FIFO) property,

vertical ordering message ordering

(*) *) *) *)



P

- A Message Sequence Chart is a partial order
 - between send and receive events
 - totally ordered per process
 - receive events happen after their send events
 - respecting the first-in first out (FIFO) property

vertical ordering message ordering

2 Linearizations are totally ordered extensions of partial orders

- all linearizations of an MSC are well-formed
 - every receive is preceded by a corresponding send
 respects the FIFO ordering
 no send events without corresponding receive

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

- A Message Sequence Chart is a partial order
 - between send and receive events
 - totally ordered per process
 - receive events happen after their send events
 - respecting the first-in first out (FIFO) property

vertical ordering message ordering

Lin (M)

▲ 同 ▶ → 国 ▶

2 Linearizations are totally ordered extensions of partial orders

- all linearizations of an MSC are well-formed
 - every receive is preceded by a corresponding send
 - **2** respects the FIFO ordering

③ no send events without corresponding receive

S Every well-formed word can be transformed into an MSC

• two linearizations of the same MSC yield isomorphic MSCs

MSC M

- A Message Sequence Chart is a partial order
 - between send and receive events
 - totally ordered per process
 - receive events happen after their send events
 - respecting the first-in first out (FIFO) property

vertical ordering message ordering

Lin (M

2 Linearizations are totally ordered extensions of partial orders

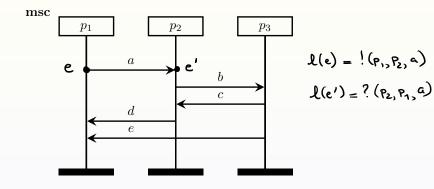
- all linearizations of an MSC are well-formed
 - every receive is preceded by a corresponding send
 - Prespects the FIFO ordering
 - **③** no send events without corresponding receive

Solution Every well-formed word can be transformed into an MSC

• two linearizations of the same MSC yield isomorphic MSCs

So: there is a 1-to-1 relation between an MSC and its linearizations

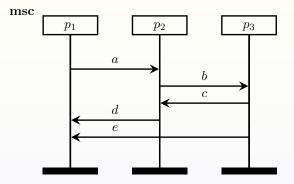
Example



Joost-Pieter Katoen Theoretical Foundations of the UML

æ

< 2> < 2>



These pictures are formalized using partial orders.

注入 人主人

æ

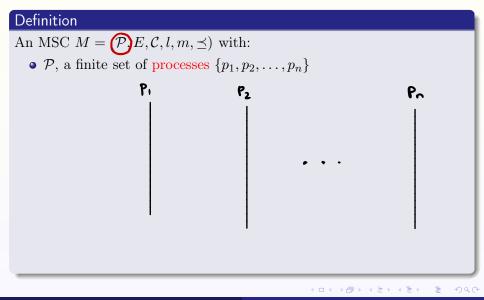
Definition

An MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$ with:

Joost-Pieter Katoen Theoretical Foundations of the UML

・ロト ・四ト ・ヨト ・ヨト

2



Definition

An MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$ with:

- \mathcal{P} , a finite set of processes $\{p_1, p_2, \ldots, p_n\}$
- E, a finite set of events

$$E = \biguplus_{p \in \mathcal{P}} E_p = E_? \cup E_!$$

Verticelly horizontally

Definition

An MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$ with:

- \mathcal{P} , a finite set of processes $\{p_1, p_2, \ldots, p_n\}$
- E, a finite set of events

$$E = \biguplus_{p \in \mathcal{P}} E_p = E_? \cup E_!$$

a,b,c

イロト イボト イヨト イヨト

• \mathcal{C} , a finite set of message contents \sim

Definition

An MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$ with:

- \mathcal{P} , a finite set of processes $\{p_1, p_2, \ldots, p_n\}$
- E, a finite set of events

$$E = \biguplus_{p \in \mathcal{P}} E_p = E_? \cup E_!$$

- \mathcal{C} , a finite set of message contents
- $l: E \to Act$, a labelling function defined by:

$$l(e) = \begin{cases} !(p,q,a) & \text{if } e \in E_p \cap E_! \\ ?(p,q,a) & \text{if } e \in E_p \cap E_? \end{cases}, \text{ for } p \neq q \in \mathcal{P}, a \in \mathcal{C} \end{cases}$$

・ロト ・ 一日 ト ・ 日 ト

Joost-Pieter Katoen Theoretical Foundations of the UML

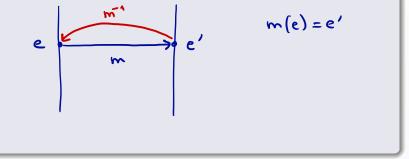
・ロト ・聞ト ・ヨト ・ヨト

æ

Definition

• $m: E_! \to E_?$ a bijection ("matching function"), satisfying:

$$m(e) = e' \wedge l(e) = !(p,q,a) \text{ implies } l(\underline{e'}) = ?(q,p,a) \quad (p \neq q, \ a \in \mathcal{C})$$

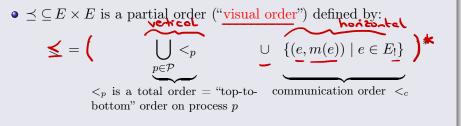


・ロト ・聞ト ・ヨト ・ヨト

Definition

• $m: E_! \to E_?$ a bijection ("matching function"), satisfying:

$$m(e) = e' \wedge l(e) = !(p,q,a) \text{ implies } l(e') = ?(q,p,a) \ (p \neq q, \ a \in \mathcal{C})$$

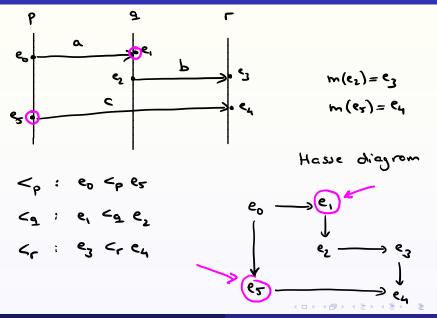


where for relation R, R^* denotes its reflexive and transitive closure.

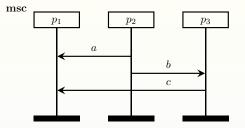
イロト イヨト イヨト

P

Example



Visual order can be misleading

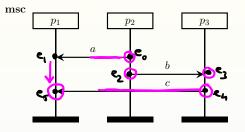


Joost-Pieter Katoen Theoretical Foundations of the UML

< ∃⇒

æ

Visual order can be misleading



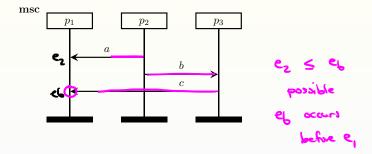
If message b takes much shorter than message a, then c might arrive at p_1 before a.

$$\frac{!(P_{2},P_{1},a)}{!(P_{1},P_{3},b)}$$

$$\frac{!(P_{1},P_{3},b)}{!(P_{3},P_{2},b)}$$

$$\frac{!(P_{3},P_{2},c)}{!(P_{1},P_{3},c)}$$

Visual order can be misleading



If message b takes much shorter than message a, then c might arrive at p_1 before a.

In practice,
$$e_6$$
 might occur before e_2 , but $e_2 <_{p_1} e_6$ and thus $e_2 \preceq e_6$.
This is misleading and called a race.

< 日 ►

э

< ∃ →

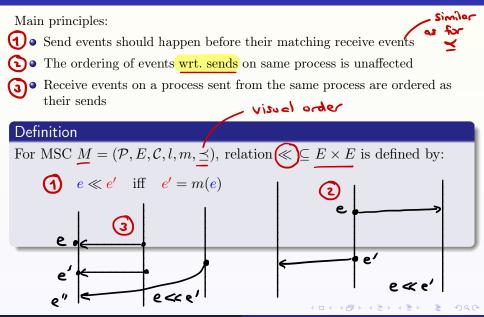
A race condition asserts a particular order of events will occur because of the visual ordering (i.e., the partial order \preceq) when, in practice, this order cannot be guaranteed to hold.

A race condition asserts a particular order of events will occur because of the visual ordering (i.e., the partial order \preceq) when, in practice, this order cannot be guaranteed to hold.

Q: When are race conditions possible and how to detect them? formely define whet algorithm MSCM is a race? M has a race or not.

Joost-Pieter Katoen Theoretical Foundations of the UML

イロト 不得下 イヨト イヨト ニヨー



Joost-Pieter Katoen Theoretical Foundations of the UML

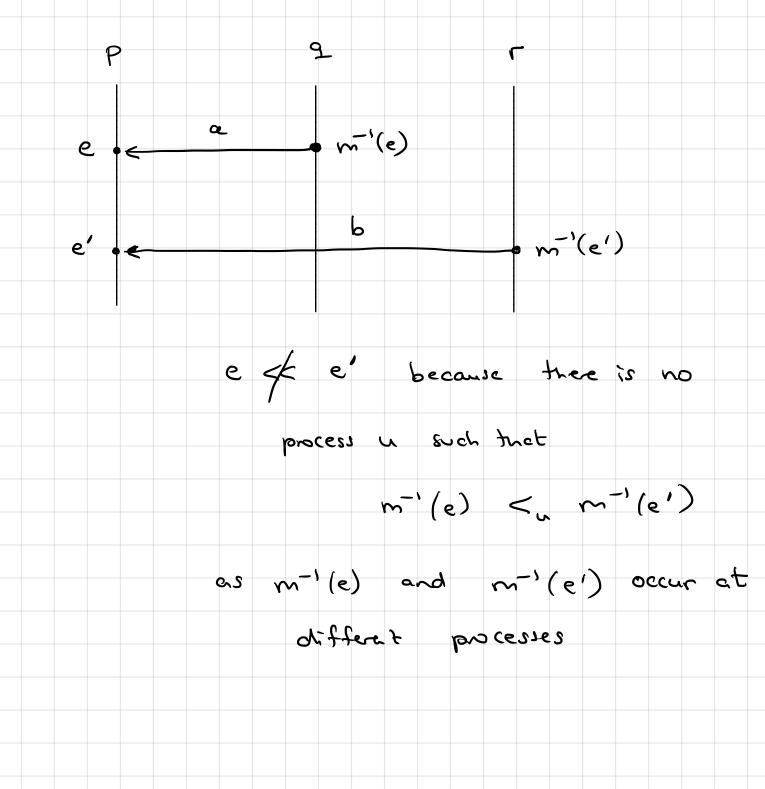
Main principles:

- Send events should happen before their matching receive events
- The ordering of events wrt. sends on same process is unaffected
 - Receive events on a process sent from the same process are ordered as their sends

Definition

For MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, relation $\ll \subseteq E \times E$ is defined by: $e \ll e'$ iff e' = m(e)or $e <_p e'$ and $E_! \cap \{e, e'\} \neq \emptyset$ 2 $e' \qquad \Rightarrow$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ



Main principles:

- Send events should happen before their matching receive events
- The ordering of events wrt. sends on same process is unaffected
- 3 Receive events on a process sent from the same process are ordered as their sends

Definition

For MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, relation $\ll \subseteq E \times E$ is defined by: $e \ll e'$ iff e' = m(e) q ror $e <_p e'$ and $E_! \cap \{e, e'\} \neq \emptyset$ ror'(e) or $e, e' \in E_p \cap E_?$ and $m^{-1}(e) <_q m^{-1}(e')$ both at p both at q

Main principles:

- Send events should happen before their matching receive events
- The ordering of events wrt. sends on same process is unaffected
- Receive events on a process sent from the same process are ordered as their sends either (or both) e

Definition

For MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, relation $\ll \subseteq E \times E$ is defined by: $e \ll e'$ iff e' = m(e)or $e <_p e'$ and $E_! \cap \{e, e'\} \neq \emptyset$ or $e, e' \in E_p \cap E_?$ and $m^{-1}(e) <_q m^{-1}(e')$

* s a partial order (referred to as causal order) in which events at the same process are not necessarily ordered.

Definition

For MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, relation $\ll \subseteq E \times E$ is defined by:

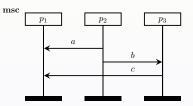
$$e \ll e' \quad \text{iff} \quad e' = m(e) \\ \text{or} \quad e <_p e' \text{ and } E_! \cap \{e, e'\} \neq \emptyset \\ \text{or} \quad e, e' \in E_p \cap E_? \text{ and } m^{-1}(e) <_q m^{-1}(e')$$

Joost-Pieter Katoen Theoretical Foundations of the UML

Definition

For MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, relation $\ll \subseteq E \times E$ is defined by:

$$e \ll e' \quad \text{iff} \quad e' = m(e) \\ \text{or} \quad e <_p e' \text{ and } E_! \cap \{e, e'\} \neq \emptyset \\ \text{or} \quad e, e' \in E_p \cap E_? \text{ and } m^{-1}(e) <_q m^{-1}(e')$$

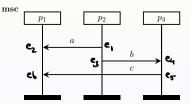


→ 御 → → 注 → → 注 → → 三注

Definition

For MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, relation $\ll \subseteq E \times E$ is defined by:

$$e \ll e' \quad \text{iff} \quad e' = m(e) \\ \text{or} \quad e <_p e' \text{ and } E_! \cap \{e, e'\} \neq \emptyset \\ \text{or} \quad e, e' \in E_p \cap E_? \text{ and } m^{-1}(e) <_q m^{-1}(e')$$



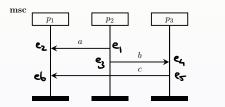
Example

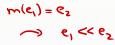
Joost-Pieter Katoen Theoretical Foundations of the UML

Definition

For MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, relation $\ll \subseteq E \times E$ is defined by:

$$\underbrace{e \ll e'}_{\text{or}} \quad \text{iff} \quad e' = m(e) \qquad \textcircled{1}_{e_1} \\ \text{or} \quad e <_p e' \text{ and } E_! \cap \{e, e'\} \neq \varnothing \\ \text{or} \quad e, e' \in E_p \cap E_? \text{ and } m^{-1}(e) <_q m^{-1}(e') \end{aligned}$$



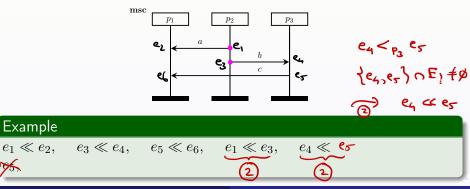


Definition

195

For MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, relation $\ll \subseteq E \times E$ is defined by:

$$e \ll e' \quad \text{iff} \quad e' = m(e) \\ \text{or} \quad e <_p e' \text{ and } \underline{E}_! \cap \{\underline{e, e'}\} \neq \emptyset \\ \text{or} \quad e, e' \in E_p \cap \overline{E}_? \text{ and } \overline{m^{-1}(e)} <_q m^{-1}(e') \end{cases}$$

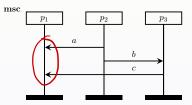


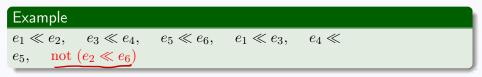
Joost-Pieter Katoen Theoretical Foundations of the UML

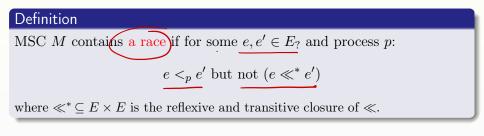
Definition

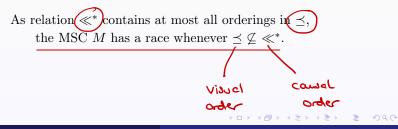
For MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, relation $\ll \subseteq E \times E$ is defined by:

$$e \ll e' \quad \text{iff} \quad e' = m(e) \\ \text{or} \quad e <_p e' \text{ and } E_! \cap \{e, e'\} \neq \emptyset \\ \text{or} \quad e, e' \in E_p \cap E_? \text{ and } m^{-1}(e) <_q m^{-1}(e') \quad (\textbf{3})$$



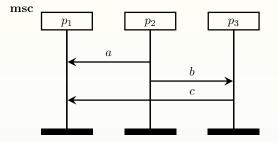






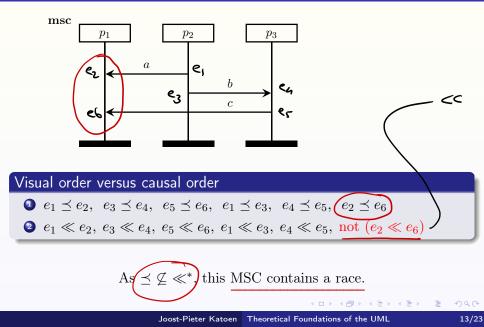
Joost-Pieter Katoen Theoretical Foundations of the UML

Race: example



Joost-Pieter Katoen Theoretical Foundations of the UML

Race: example

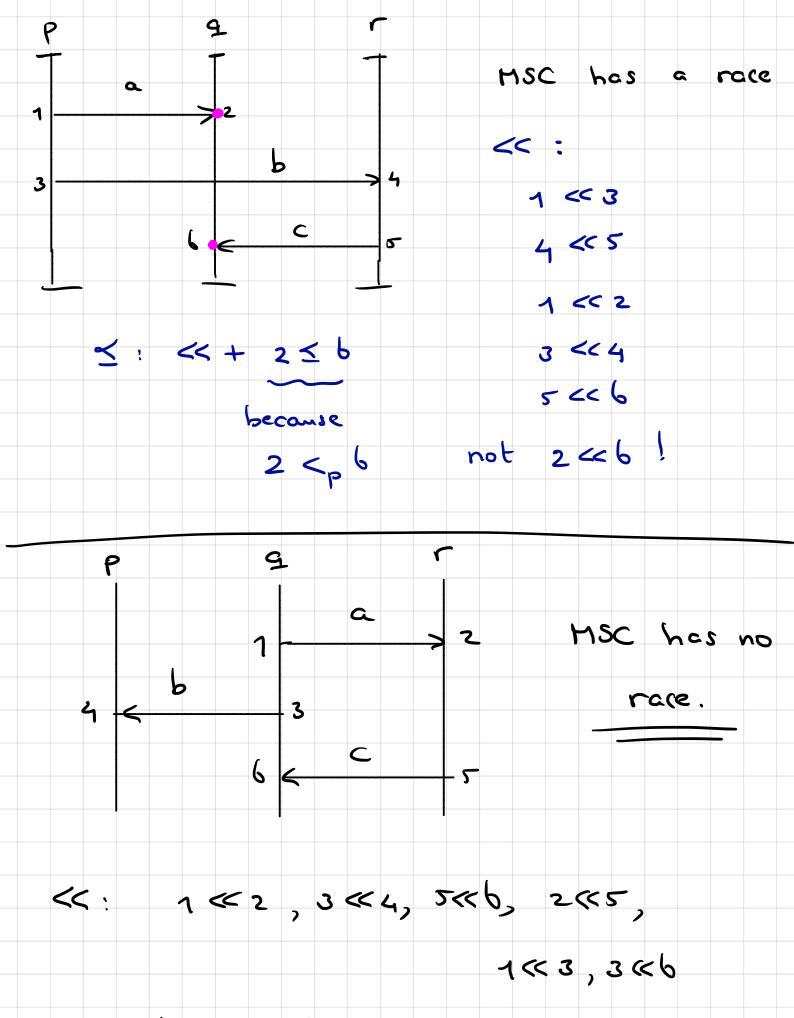


On the black board.

Joost-Pieter Katoen Theoretical Foundations of the UML

・ロト ・四ト ・ヨト ・ヨト

æ



= <u>K</u> visual order

Recall: MSC M has a race if $\preceq \not\subseteq \ll^*$ or equivalently:

$$\exists e, e' \in E_?$$
 . $(e <_p e' \text{ and } e \not\ll^* e')$

V

Whenever $\preceq \not\subseteq \ll^*$, implementations based on $<_p$ may cause problems:

- a process receives a message which by the MSC is not possible
- 2 deadlocks
 - a process blocking on receipt of an unexpected message may block others too
- 3 message loss
 - unexpectedly received messages may be ignored
- exploiting wrong message content

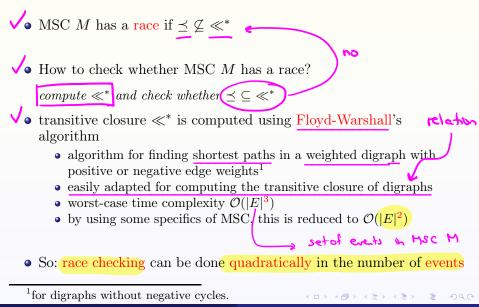
Checking whether an MSC has a race

Joost-Pieter Katoen Theoretical Foundations of the UML

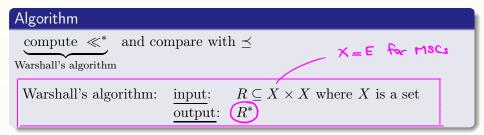
< ∃ →

æ

Checking whether an MSC has a race

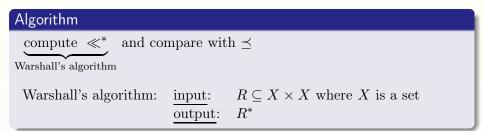


Computing \ll^* : Warshall's algorithm



イロッ 人物 マイロット 人物 マイロッ

Computing \ll^* : Warshall's algorithm



Idea:

Consider R and R^* as directed graphs

There is an edge $x \Rightarrow y$ in \mathbb{R}^* iff there is a (possibly empty) sequence

$$x = x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_n = y \text{ in } R$$

(our setting: $X = E, R = \ll, R^* = \ll^*$)

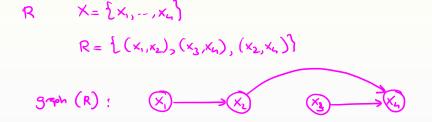
Joost-Pieter Katoen Theoretical Foundations of the UML

<**∂** ► <

E ► < E ►</p>

æ

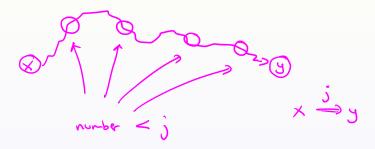
• assume: graph vertices are numbered $\{1, 2, ..., n\}$ where n = |E| =



э

(4 同) (4 日) (4 日)

assume: graph vertices are numbered {1,2,...,n} where n = |E|
for j ∈ {1,...,n+1} define relation ⇒ as follows:
x ⇒ y iff ∃ path in R from x to y such that all vertices on the path (≠ x, y) have a smaller number than j



Joost-Pieter Katoen Theoretical Foundations of the UML

・ロト ・四ト ・ヨト ・ヨト

æ

∕(x,y) ∈ R* • assume: graph vertices are numbered $\{1, 2, \ldots, n\}$ where n = |E|• for $j \in \{1, \ldots, n+1\}$ define relation $\stackrel{j}{\Longrightarrow}$ as follows: $x \xrightarrow{j} y$ iff \exists path in R from x to y such that all vertices on the path $(\neq x, y)$ have a smaller number than j • Then: (1) $(x \Longrightarrow y)$ iff $x \Longrightarrow^{n+1} y$ \leftarrow termination condition • Algorithm: determine the relations $\stackrel{1}{\Longrightarrow}, \ldots, \stackrel{n}{\Longrightarrow}, \stackrel{n+1}{\Longrightarrow}$ iteratively using properties (2) + (3);

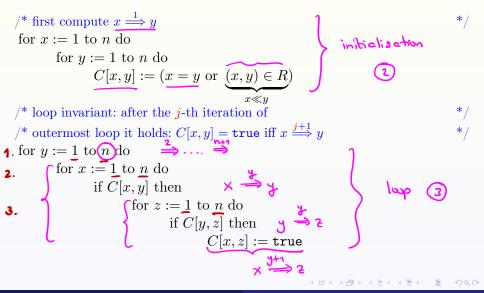
・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- assume: graph vertices are numbered $\{1, 2, ..., n\}$ where n = |E|
- for j ∈ {1,...,n+1} define relation ⇒ as follows:
 x ⇒ y iff ∃ path in R from x to y such that all vertices on the path (≠ x, y) have a smaller number than j
- Then: (1) $x \Longrightarrow y$ iff $x \xrightarrow{n+1} y$ (2) $x \xrightarrow{1} y$ iff x = y or $x \ll y$ (3) $x \xrightarrow{y+1} z$ iff $x \xrightarrow{y} z$ or $x \xrightarrow{y} y \xrightarrow{y} z$
- Algorithm: determine the relations ¹→,...,ⁿ→, ⁿ⁺¹→ iteratively using properties (2) + (3); Result is then given by (1).
 Store ⁱ→ in a boolean matrix C of cardinality |E|×|E|

・ロット 本語 マート キョット 日マ

- assume: graph vertices are numbered $\{1, 2, ..., n\}$ where n = |E|
- for j ∈ {1,...,n+1} define relation ⇒ as follows:
 x ⇒ y iff ∃ path in R from x to y such that all vertices on the path (≠ x, y) have a smaller number than j
- Then: (1) $x \Longrightarrow y$ iff $x \xrightarrow{n+1} y$ termination (2) $x \xrightarrow{1} y$ iff x = y or $x \ll y$ (3) $x \xrightarrow{y+1} z$ iff $x \xrightarrow{y} z$ or $x \xrightarrow{y} y \xrightarrow{y} z$ loop
- Algorithm: determine the relations ¹→,...,ⁿ→, ⁿ⁺¹ iteratively using properties (2) + (3); Result is then given by (1).
- Store $\stackrel{i}{\Longrightarrow}$ in a boolean matrix C of cardinality $|E| \times |E|$
- ✓ Postcondition: C[x, y] =true iff $(x, y) \in R^*$
 - \bullet Precondition: $\forall x,y \in X \;.\; C[x,y] = \texttt{false}$

Warshall's algorithm



Lemma: correctness

After j iterations: $x \stackrel{j+1}{\Longrightarrow} y$ iff C[x, y] =true.

Proof.

if: trivial; *only if*: by induction on j.

<ロト <回ト < 三ト < 三ト = 三

Claim: after j iterations (for any
$$0 \le j \le n$$
):
k $\xrightarrow{j+1}$ m implies $C[k,m]=1$
Proof: by induction on j
1) base case: $j=0$: it follows from the hiticalisation
2) ind. step: let j>0 and assume k $\xrightarrow{j+1}$ m.
a) if $C[k,m]=1$, done \vee k \xrightarrow{j} m
b) assume $C[k,m]=0$. Then by ind. typ., it
follows k \xrightarrow{j} m. But since k $\xrightarrow{j+1}$ m
iff k \xrightarrow{j} m or k \xrightarrow{j} j \xrightarrow{j} m (by (3))
it follows k \xrightarrow{j} j \xrightarrow{j} m.
Thus $C[k,j] = the end $C[j,m] = the$
Then during the j-th iteration $C[k,m]$ is
set to true$

Lemma: correctness

After j iterations: $x \stackrel{j+1}{\Longrightarrow} y$ iff C[x, y] =true.

V

Proof.

if: trivial; only if: by induction on j.

Complexity

Worst-case time complexity of Warshall's algorithm : $O(n^3)$ with n = |X|

Proof.

follows from the fact that there is a triple-nested loop of which each loop has at most n iterations.

э

Warshall's algorithm computes R^* for every binary relation $R \subseteq X \times X$.

æ

→ ∃ → → ∃ →

< 同 ▶

Warshall's algorithm computes R^* for every binary relation $R \subseteq X \times X$.

Recall: our interest is in determining \underline{R}^* for $R = \bigcirc$

э

・ 同 ト ・ ヨ ト ・ ヨ ト …

Warshall's algorithm computes R^* for every binary relation $R \subseteq X \times X$.

 $\mathcal{O}(n^3)$

Recall: our interest is in determining R^* for $R = \bigotimes$

Using some properties of \ll , the complexity can be improved.

Joost-Pieter Katoen Theoretical Foundations of the UML

P

Warshall's algorithm computes R^* for every binary relation $R \subseteq X \times X$. Recall: our interest is in determining R^* for $R = \ll$ Using some properties of \ll , the complexity can be improved.

Exploit that for \ll :

э

・ 「「・ ・ 」 ・ ・ 「 ・

 \checkmark

Warshall's algorithm computes R^* for every binary relation $R \subseteq X \times X$.

Recall: our interest is in determining R^* for $R = \ll$

Using some properties of \ll , the complexity can be improved.

Exploit that for \ll :

• \ll is acyclic (as it is a partial order)

② the number of immediate predecessors of e ∈ Eunder ≪ is at most two (why?)

Note that e is an immediate predecessor of e' (under \ll) if:

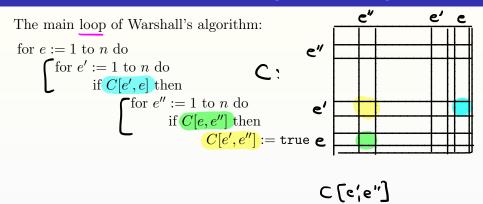
$$e \ll e'$$
 and $\neg (\exists e'' \notin \{e, e'\})$. $e \ll e'' \land e'' \ll e'$

P

・ 同 ト ・ ヨ ト ・ モ ト …

Efficiency improvement

[Alur et al. '96]



Joost-Pieter Katoen Theoretical Foundations of the UML

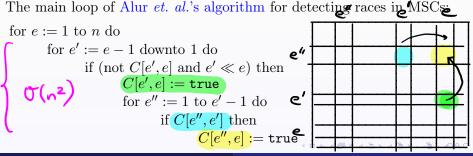
э

Efficiency improvement

[Alur et al. '96]

The main loop of Warshall's algorithm:

for
$$e := 1$$
 to n do
for $e' := 1$ to n do
if $C[e', e]$ then
 $\mathcal{O}(n^3)$ for $e'' := 1$ to n do
if $C[e, e'']$ then
 $C[e', e''] :=$ true



Joost-Pieter Katoen Theoretical Foundations of the UML

Let M be an MSC with set E of events and $\underline{n = |E|}$. Checking whether M has a race can be done in $\mathcal{O}(n^2)$.

Proof.

< ∃ >

э

▲ 伊 ▶ ▲ 国 ▶

Let M be an MSC with set E of events and n = |E|. Checking whether M has a race can be done in $\mathcal{O}(n^2)$.

Proof.

Since \ll is acyclic, we number the events such that the numbering defines a total order that is consistent with visual order \preceq . This can be done in $\mathcal{O}(n)$ using a standard topological sort.

▲ 伊 ▶ ▲ 国 ▶

Let M be an MSC with set E of events and n = |E|. Checking whether M has a race can be done in $\mathcal{O}(n^2)$.

Proof.

Since \ll is acyclic, we number the events such that the numbering defines a total order that is consistent with visual order \preceq . This can be done in $\mathcal{O}(n)$ using a standard topological sort. Then observe that the innermost loop:

for
$$e'' := 1$$
 to $e' - 1$ do
if $C[e'', e']$ then $C[e'', e] := \texttt{true}$

of the triple-nested main loop is executed for (e, e') only if e' is an immediate predecessor of e under \ll .

・ 「「・ ・ ヨ ・ ・ ヨ ・

Let M be an MSC with set E of events and n = |E|. Checking whether M has a race can be done in $\mathcal{O}(n^2)$.

Proof.

Since \ll is acyclic, we number the events such that the numbering defines a total order that is consistent with visual order \preceq . This can be done in $\mathcal{O}(n)$ using a standard topological sort. Then observe that the innermost loop:

for
$$e'' := 1$$
 to $e' - 1$ do
if $C[e'', e']$ then $C[e'', e] := \texttt{true}$

of the triple-nested main loop is executed for (e, e') only if e' is an immediate predecessor of e under \ll . As for MSCs, an event can have at most two immediate predecessors, the innermost two loop is executed at most $2 \cdot n$ times in total.

Let M be an MSC with set E of events and n = |E|. Checking whether M has a race can be done in $\mathcal{O}(n^2)$.

Proof.

Since \ll is acyclic, we number the events such that the numbering defines a total order that is consistent with visual order \preceq . This can be done in $\mathcal{O}(n)$ using a standard topological sort. Then observe that the innermost loop:

for
$$e'' := 1$$
 to $e' - 1$ do
if $C[e'', e']$ then $C[e'', e] := \texttt{true}$

of the triple-nested main loop is executed for (e, e') only if e' is an immediate predecessor of e under \ll . As for MSCs, an event can have at most two immediate predecessors, the innermost two loop is executed at most $2 \cdot n$ times in total. This yields a total worst-case time complexity of $n^2+2 \cdot n$.

イロト イボト イヨト イヨト