
Overview

1 Lecture 2: Races

Joost-Pieter Katoen Theoretical Foundations of the UML 1/23

o menon in MSCS

that complicatestheir✓
P

" "

interpretation

- \ formal definition

\
algor

.

than
-

' hating

\
output '

Msc has a race ?

Theoretical Foundations of the UML
Lecture 2: Races

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

April 21, 2020

Joost-Pieter Katoen Theoretical Foundations of the UML 2/23

Summary of Lecture #1

Joost-Pieter Katoen Theoretical Foundations of the UML 3/23

Summary of Lecture #1

1 A Message Sequence Chart is a partial order
between send and receive events
totally ordered per process vertical ordering

receive events happen after their send events message ordering

respecting the first-in first out (FIFO) property

Joost-Pieter Katoen Theoretical Foundations of the UML 3/23

p I

ez -
ez > e

,

±: 4¥
non

9 S
p 5 ez <

g
e

,

Fito
.

Summary of Lecture #1

1 A Message Sequence Chart is a partial order
between send and receive events
totally ordered per process vertical ordering

receive events happen after their send events message ordering

respecting the first-in first out (FIFO) property

2 Linearizations are totally ordered extensions of partial orders
all linearizations of an MSC are well-formed

1 every receive is preceded by a corresponding send
2 respects the FIFO ordering
3 no send events without corresponding receive

Joost-Pieter Katoen Theoretical Foundations of the UML 3/23

{

Summary of Lecture #1

1 A Message Sequence Chart is a partial order
between send and receive events
totally ordered per process vertical ordering

receive events happen after their send events message ordering

respecting the first-in first out (FIFO) property

2 Linearizations are totally ordered extensions of partial orders
all linearizations of an MSC are well-formed

1 every receive is preceded by a corresponding send
2 respects the FIFO ordering
3 no send events without corresponding receive

3 Every well-formed word can be transformed into an MSC
two linearizations of the same MSC yield isomorphic MSCs

Joost-Pieter Katoen Theoretical Foundations of the UML 3/23

→ MIMILiners

Summary of Lecture #1

1 A Message Sequence Chart is a partial order
between send and receive events
totally ordered per process vertical ordering

receive events happen after their send events message ordering

respecting the first-in first out (FIFO) property

2 Linearizations are totally ordered extensions of partial orders
all linearizations of an MSC are well-formed

1 every receive is preceded by a corresponding send
2 respects the FIFO ordering
3 no send events without corresponding receive

3 Every well-formed word can be transformed into an MSC
two linearizations of the same MSC yield isomorphic MSCs

4 So: there is a 1-to-1 relation between an MSC and its linearizations

Joost-Pieter Katoen Theoretical Foundations of the UML 3/23

kin C M)
-

Example

p1 p2 p3

a
b
c

d
e

msc

Joost-Pieter Katoen Theoretical Foundations of the UML 4/23

e co • e
' ele) =

! Cp
, , Be ,

a)

Ice ')= ? (Pap , ,
a)

Example

p1 p2 p3

a
b
c

d
e

msc

These pictures are formalized using partial orders.

Joost-Pieter Katoen Theoretical Foundations of the UML 4/23

Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,!) with:

Joost-Pieter Katoen Theoretical Foundations of the UML 5/23

Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,!) with:

P, a finite set of processes {p1, p2, . . . , pn}

Joost-Pieter Katoen Theoretical Foundations of the UML 5/23

O

Pi Pz Pn

G T u

Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,!) with:

P, a finite set of processes {p1, p2, . . . , pn}

E, a finite set of events

E =
⊎

p∈P

Ep = E? ·∪ E!

Joost-Pieter Katoen Theoretical Foundations of the UML 5/23

- -

vertically horizontally

Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,!) with:

P, a finite set of processes {p1, p2, . . . , pn}

E, a finite set of events

E =
⊎

p∈P

Ep = E? ·∪ E!

C, a finite set of message contents

Joost-Pieter Katoen Theoretical Foundations of the UML 5/23

-
a

,
b

,
c

← I .

Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,!) with:

P, a finite set of processes {p1, p2, . . . , pn}

E, a finite set of events

E =
⊎

p∈P

Ep = E? ·∪ E!

C, a finite set of message contents

l : E → Act , a labelling function defined by:

l(e) =

{

!(p, q, a) if e ∈ Ep ∩ E!

?(p, q, a) if e ∈ Ep ∩ E?

, for p &= q ∈ P, a ∈ C

Joost-Pieter Katoen Theoretical Foundations of the UML 5/23

Message Sequence Chart (MSC) (2)

Joost-Pieter Katoen Theoretical Foundations of the UML 6/23

Message Sequence Chart (MSC) (2)

Definition

m : E! → E? a bijection (“matching function”), satisfying:

m(e) = e′ ∧ l(e) = !(p, q, a) implies l(e′) = ?(q, p, a) (p &= q, a ∈ C)

Joost-Pieter Katoen Theoretical Foundations of the UML 6/23

-
-

- -
-

e µ.e,
meet - e

'

Message Sequence Chart (MSC) (2)

Definition

m : E! → E? a bijection (“matching function”), satisfying:

m(e) = e′ ∧ l(e) = !(p, q, a) implies l(e′) = ?(q, p, a) (p &= q, a ∈ C)

! ⊆E ×E is a partial order (“visual order”) defined by:

! =
(⋃

p∈P

<p

︸ ︷︷ ︸

<p is a total order = “top-to-

bottom” order on process p

∪ {(e,m(e)) | e ∈ E!}

︸ ︷︷ ︸

communication order <c

)∗

where for relation R, R∗ denotes its reflexive and transitive closure.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/23

± C
-

*

Example

Joost-Pieter Katoen Theoretical Foundations of the UML 7/23

p a- r

Eo •

→
e ,

ez S m (ez)=e ,

es #
. ea m C es)=eg

Hasse diagram
<

p
i eco Cp es

Cs i e , as ez
eo →

④
←

t
Sr i eg Crea ez -3 e

,

→ to
. - !

.

Visual order can be misleading

p1 p2 p3

a

b

c

msc

Joost-Pieter Katoen Theoretical Foundations of the UML 8/23

Visual order can be misleading

p1 p2 p3

a

b

c

msc

If message b takes much shorter than message a,
then c might arrive at p1 before a.

Joost-Pieter Katoen Theoretical Foundations of the UML 8/23

e
, o -

⑨
Eo

f ez

@⑨
S

e⑨
-⑨eh ! Cpa

,
p , ,

a)

! C pups ,
b)

? (pg , Pz ,

b)

! (pg , P , ,
c)

7 ! (p , , Pz , C)
G ! Cp

, ,Pz ,
a)

Visual order can be misleading

p1 p2 p3

a

b

c

msc

If message b takes much shorter than message a,
then c might arrive at p1 before a.

In practice, e6 might occur before e2, but e2 <p1 e6 and thus e2 ! e6.

This is misleading and called a race.

Joost-Pieter Katoen Theoretical Foundations of the UML 8/23

ez -

ez E eb

EGO
I possible

Ef occurs

before e
,

-
- - -

What is a race?

A race condition asserts a particular order of events will occur because
of the visual ordering (i.e., the partial order !) when, in practice, this
order cannot be guaranteed to hold.

Joost-Pieter Katoen Theoretical Foundations of the UML 9/23

What is a race?

A race condition asserts a particular order of events will occur because
of the visual ordering (i.e., the partial order !) when, in practice, this
order cannot be guaranteed to hold.

Q: When are race conditions possible and how to detect them?

Joost-Pieter Katoen Theoretical Foundations of the UML 9/23

- input i

formally define what algorithm -
Msc m

is a race ? I
output :

M has a race or

not .

Causal order

Joost-Pieter Katoen Theoretical Foundations of the UML 10/23

-

defined in a different way
than

£
: visual order → pot of the MSC

definition .

Causal order

Main principles:

Send events should happen before their matching receive events

The ordering of events wrt. sends on same process is unaffected

Receive events on a process sent from the same process are ordered as
their sends

Definition

For MSC M = (P, E, C, l,m,!), relation * ⊆ E × E is defined by:

e * e′ iff e′ = m(e)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/23

y
similar

⑦
as

①

③

✓
visual order

- -

O
-

⑦ ②

③
e . -

e

og
o

•
I

e
'

e' • C o

e
"

tea ease
'

Causal order

Main principles:

Send events should happen before their matching receive events

The ordering of events wrt. sends on same process is unaffected

Receive events on a process sent from the same process are ordered as
their sends

Definition

For MSC M = (P, E, C, l,m,!), relation * ⊆ E × E is defined by:

e * e′ iff e′ = m(e)

or e <p e′ and E! ∩ {e, e′} &= ∅

Joost-Pieter Katoen Theoretical Foundations of the UML 10/23

②

-

②
a :*.

- -

p 9- r

a

e • c- a hi
'
Ce)

b
e

'
•

E-
m

' '
(e

')

e ¢ e
°

because thee is no

process u such that

m
- '

(e) su m
- '

Ce ")

as m
- ' le) and rn

- ' (e
') occur at

different processes

Causal order

Main principles:

Send events should happen before their matching receive events

The ordering of events wrt. sends on same process is unaffected

Receive events on a process sent from the same process are ordered as
their sends

Definition

For MSC M = (P, E, C, l,m,!), relation " ⊆ E × E is defined by:

e " e′ iff e′ = m(e)

or e <p e′ and E! ∩ {e, e′} &= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/23

③

p g r

e. ←
•m

" "

y y - -

e

!
 .

m
- ' let TIP 7¥

Causal order

Main principles:

Send events should happen before their matching receive events

The ordering of events wrt. sends on same process is unaffected

Receive events on a process sent from the same process are ordered as
their sends

Definition

For MSC M = (P, E, C, l,m,!), relation " ⊆ E × E is defined by:

e " e′ iff e′ = m(e)

or e <p e′ and E! ∩ {e, e′} &= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

"∗ is a partial order (referred to as causal order) in which events at the
same process are not necessarily ordered.

Joost-Pieter Katoen Theoretical Foundations of the UML 10/23

O (
e

.

O

Causal order: example

Definition

For MSC M = (P , E, C, l,m,!), relation " ⊆ E × E is defined by:

e " e′ iff e′ = m(e)
or e <p e′ and E! ∩ {e, e′} &= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

Causal order: example

Definition

For MSC M = (P , E, C, l,m,!), relation " ⊆ E × E is defined by:

e " e′ iff e′ = m(e)
or e <p e′ and E! ∩ {e, e′} &= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

p1 p2 p3

a

b

c

msc

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

Causal order: example

Definition

For MSC M = (P , E, C, l,m,!), relation " ⊆ E × E is defined by:

e " e′ iff e′ = m(e)
or e <p e′ and E! ∩ {e, e′} &= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

p1 p2 p3

a

b

c

msc

Example

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

ez e
,

g ea

et er

Causal order: example

Definition

For MSC M = (P , E, C, l,m,!), relation " ⊆ E × E is defined by:

e " e′ iff e′ = m(e)
or e <p e′ and E! ∩ {e, e′} &= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

p1 p2 p3

a

b

c

msc

Example
e1 " e2, e3 " e4, e5 " e6,

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

①
-

m (e
,) = ez

ez e
,

→ e ,
a ez

g es

et es

①

Causal order: example

Definition

For MSC M = (P , E, C, l,m,!), relation " ⊆ E × E is defined by:

e " e′ iff e′ = m(e)
or e <p e′ and E! ∩ {e, e′} &= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

p1 p2 p3

a

b

c

msc

Example
e1 " e2, e3 " e4, e5 " e6, e1 " e3, e4 "
e5,

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

- -

②

ez • e , Eg Cpg e5

ez • es

EG er { eases) n E ! -40

es aces

er
- -

X ② ②

Causal order: example

Definition

For MSC M = (P , E, C, l,m,!), relation " ⊆ E × E is defined by:

e " e′ iff e′ = m(e)
or e <p e′ and E! ∩ {e, e′} &= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

p1 p2 p3

a

b

c

msc

Example
e1 " e2, e3 " e4, e5 " e6, e1 " e3, e4 "
e5, not (e2 " e6)

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

-
-

③

O

-

Races

Definition

MSC M contains a race if for some e, e′ ∈ E? and process p:

e <p e
′ but not (e "∗ e′)

where "∗ ⊆ E × E is the reflexive and transitive closure of ".

As relation "∗ contains at most all orderings in !,
the MSC M has a race whenever ! &⊆ "∗.

Joost-Pieter Katoen Theoretical Foundations of the UML 12/23

0 . -

- -

O O

voi÷ !

Race: example

p1 p2 p3

a

b

c

msc

Joost-Pieter Katoen Theoretical Foundations of the UML 13/23

Race: example

p1 p2 p3

a

b

c

msc

Visual order versus causal order
1 e1 ! e2, e3 ! e4, e5 ! e6, e1 ! e3, e4 ! e5, e2 ! e6
2 e1 " e2, e3 " e4, e5 " e6, e1 " e3, e4 " e5, not (e2 " e6)

As ! &⊆ "∗, this MSC contains a race.

Joost-Pieter Katoen Theoretical Foundations of the UML 13/23

⑦
e:

:&
-

O

Other examples

On the black board.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/23

p s r

- - -

a
MSC has a race

7 702a :
b

3 34 y as

6 c
C

r g 45

-
- -

4 a 2

I : a t 2 I b o Kg
-

scab
because

2 sp
6 not za 6 t

-

p E r

a

z - > 2 MSC has no

b
4 s 3

race .

-

-

C
6 a t

K : n K2
,

ska
,546,245 ,1K 3,3KG

= I visual order

Why are races problematic?

Recall: MSC M has a race if ! "⊆ $∗ or equivalently:

∃e, e′ ∈ E? . (e <p e
′ and e "$∗ e′)

Whenever ! "⊆ $∗, implementations based on <p may cause problems:
1 unspecified message reception

a process receives a message which by the MSC is not possible
2 deadlocks

a process blocking on receipt of an unexpected message may block
others too

3 message loss
unexpectedly received messages may be ignored

4 exploiting wrong message content

Joost-Pieter Katoen Theoretical Foundations of the UML 15/23

{
-

÷::

Checking whether an MSC has a race

1for digraphs without negative cycles.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/23

Tortosa

Checking whether an MSC has a race

MSC M has a race if ! "⊆ $∗

How to check whether MSC M has a race?

compute $∗ and check whether ! ⊆ $∗

transitive closure $∗ is computed using Floyd-Warshall’s
algorithm

algorithm for finding shortest paths in a weighted digraph with
positive or negative edge weights1

easily adapted for computing the transitive closure of digraphs
worst-case time complexity O(|E|3)
by using some specifics of MSC, this is reduced to O(|E|2)

So: race checking can be done quadratically in the number of events

1for digraphs without negative cycles.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/23

I - -

] noes O
✓ relation

✓

↳ set of events in MSC M

Computing $∗: Warshall’s algorithm

Algorithm

compute $∗

︸ ︷︷ ︸

Warshall’s algorithm

and compare with !

Warshall’s algorithm: input: R ⊆ X ×X where X is a set
output: R∗

Joost-Pieter Katoen Theoretical Foundations of the UML 17/23

#
X = E for Msas

O

Computing $∗: Warshall’s algorithm

Algorithm

compute $∗

︸ ︷︷ ︸

Warshall’s algorithm

and compare with !

Warshall’s algorithm: input: R ⊆ X ×X where X is a set
output: R∗

Idea:

Consider R and R∗ as directed graphs

There is an edge x ⇒ y in R∗ iff there is a (possibly empty) sequence

x = x0 → x1 → x2 → . . . → xn = y in R

(our setting: X = E,R = $, R∗ = $∗)

Joost-Pieter Katoen Theoretical Foundations of the UML 17/23

-

O

-

= -

- - -

Warshall’s algorithm: preliminaries

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

Warshall’s algorithm: preliminaries

assume: graph vertices are numbered {1, 2, . . . , n} where n = |E|

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

=

1×1

R X={ x
, ,

. - ,xu)

R={ C x
, ,xa)

, Cska)
,

(Xz ,Xs))

-
graph (r) : ④ → ④ ④ → ④

Warshall’s algorithm: preliminaries

assume: graph vertices are numbered {1, 2, . . . , n} where n = |E|

for j ∈ {1, . . . , n+1} define relation
j

=⇒ as follows:

x
j

=⇒ y iff ∃ path in R from x to y such that all vertices
on the path ("= x, y) have a smaller number than j

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

0

④ FEE.to
number a j

x Isy

Warshall’s algorithm: preliminaries

assume: graph vertices are numbered {1, 2, . . . , n} where n = |E|

for j ∈ {1, . . . , n+1} define relation
j

=⇒ as follows:

x
j

=⇒ y iff ∃ path in R from x to y such that all vertices
on the path ("= x, y) have a smaller number than j

Then: (1) x =⇒ y iff x
n+1
=⇒ y

(2) x
1

=⇒ y iff x = y or x $ y

(3) x
y+1
=⇒ z iff x

y
=⇒ z or x

y
=⇒ y

y
=⇒ z

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

-

\
ntn

- -

X - sy

O
I initial isatin

- -

-

-

-

by indnetinaj -
stat ja x y

Warshall’s algorithm: preliminaries

assume: graph vertices are numbered {1, 2, . . . , n} where n = |E|

for j ∈ {1, . . . , n+1} define relation
j

=⇒ as follows:

x
j

=⇒ y iff ∃ path in R from x to y such that all vertices
on the path ("= x, y) have a smaller number than j

Then: (1) x =⇒ y iff x
n+1
=⇒ y

(2) x
1

=⇒ y iff x = y or x $ y

(3) x
y+1
=⇒ z iff x

y
=⇒ z or x

y
=⇒ y

y
=⇒ z

Algorithm: determine the relations
1

=⇒, . . . ,
n

=⇒,
n+1
=⇒ iteratively

using properties (2) + (3);

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

(
, Y) ER *

of
← termination Condition

-
-

Warshall’s algorithm: preliminaries

assume: graph vertices are numbered {1, 2, . . . , n} where n = |E|

for j ∈ {1, . . . , n+1} define relation
j

=⇒ as follows:

x
j

=⇒ y iff ∃ path in R from x to y such that all vertices
on the path ("= x, y) have a smaller number than j

Then: (1) x =⇒ y iff x
n+1
=⇒ y

(2) x
1

=⇒ y iff x = y or x $ y

(3) x
y+1
=⇒ z iff x

y
=⇒ z or x

y
=⇒ y

y
=⇒ z

Algorithm: determine the relations
1

=⇒, . . . ,
n

=⇒,
n+1
=⇒ iteratively

using properties (2) + (3); Result is then given by (1).

Store
i

=⇒ in a boolean matrix C of cardinality |E|× |E|

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

O
- -

Warshall’s algorithm: preliminaries

assume: graph vertices are numbered {1, 2, . . . , n} where n = |E|

for j ∈ {1, . . . , n+1} define relation
j

=⇒ as follows:

x
j

=⇒ y iff ∃ path in R from x to y such that all vertices
on the path ("= x, y) have a smaller number than j

Then: (1) x =⇒ y iff x
n+1
=⇒ y

(2) x
1

=⇒ y iff x = y or x $ y

(3) x
y+1
=⇒ z iff x

y
=⇒ z or x

y
=⇒ y

y
=⇒ z

Algorithm: determine the relations
1

=⇒, . . . ,
n

=⇒,
n+1
=⇒ iteratively

using properties (2) + (3); Result is then given by (1).

Store
i

=⇒ in a boolean matrix C of cardinality |E|× |E|

Postcondition: C[x, y] = true iff (x, y) ∈ R∗

Precondition: ∀x, y ∈ X . C[x, y] = false

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

termination

initial isatin

→ loop

.
- - -

-

Warshall’s algorithm

/* first compute x
1

=⇒ y */

for x := 1 to n do
for y := 1 to n do

C[x, y] := (x = y or (x, y) ∈ R
︸ ︷︷ ︸

x#y

)

/* loop invariant: after the j-th iteration of */

/* outermost loop it holds: C[x, y] = true iff x
j+1
=⇒ y */

for y := 1 to n do
for x := 1 to n do

if C[x, y] then
for z := 1 to n do

if C[y, z] then
C[x, z] := true

Joost-Pieter Katoen Theoretical Foundations of the UML 19/23

-

-
-

- } init axon

i .

- ①Is
. . . .

2 . - -

s . { g
-I it

y } loop ③

y ⇒ z

-

x ?E→z

Correctness and complexity

Lemma: correctness

After j iterations: x
j+1
=⇒ y iff C[x, y] = true.

Proof.

if: trivial; only if: by induction on j.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/23

Claim : after
j iterations (for

any oEjEn) :

jti
k → m implies CEk,mJ=7

Proof : by induction on j .

1) base case : j=o i it follows from the initial isatin

jtr
2) ind . step : let j 3 o and assume he ⇒ m -

-

a) if C Ek
,

m] ⇒
,

done ✓

k¥mb) assume C Ebm) = o
.

Then by ind . hyp .

,
it

follows k ¥ m . But since he m

iff k #
m or k # j m

C by Cs))

it follows k # j m .

Thus C Eksj] = tune and C Ejsm] = tune

Thes deny the j - th iteration Cham) is

set to true DX

Correctness and complexity

Lemma: correctness

After j iterations: x
j+1
=⇒ y iff C[x, y] = true.

Proof.

if: trivial; only if: by induction on j.

Complexity

Worst-case time complexity of Warshall’s algorithm : O(n3) with
n = |X|

Proof.
follows from the fact that there is a triple-nested loop of which each loop has

at most n iterations.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/23

✓

-

Efficiency improvement [Alur et al. ’96]

Warshall’s algorithm computes R∗ for every binary relation R ⊆ X ×X.

Joost-Pieter Katoen Theoretical Foundations of the UML 21/23

T

arbitrary

Efficiency improvement [Alur et al. ’96]

Warshall’s algorithm computes R∗ for every binary relation R ⊆ X ×X.

Recall: our interest is in determining R∗ for R = $

Joost-Pieter Katoen Theoretical Foundations of the UML 21/23

-
O

Efficiency improvement [Alur et al. ’96]

Warshall’s algorithm computes R∗ for every binary relation R ⊆ X ×X.

Recall: our interest is in determining R∗ for R = $

Using some properties of $, the complexity can be improved.

Joost-Pieter Katoen Theoretical Foundations of the UML 21/23

O

Tin

Efficiency improvement [Alur et al. ’96]

Warshall’s algorithm computes R∗ for every binary relation R ⊆ X ×X.

Recall: our interest is in determining R∗ for R = $

Using some properties of $, the complexity can be improved.

Exploit that for $:

Joost-Pieter Katoen Theoretical Foundations of the UML 21/23

Efficiency improvement [Alur et al. ’96]

Warshall’s algorithm computes R∗ for every binary relation R ⊆ X ×X.

Recall: our interest is in determining R∗ for R = $

Using some properties of $, the complexity can be improved.

Exploit that for $:

1 $ is acyclic (as it is a partial order)

2 the number of immediate predecessors of e ∈ E
under $ is at most two (why?)

Note that e is an immediate predecessor of e′ (under $) if:

e $ e′ and ¬(∃e′′ /∈ {e, e′}. e $ e′′ ∧ e′′ $ e′)

Joost-Pieter Katoen Theoretical Foundations of the UML 21/23

0

e
" ⑧ →

✓ e' too-fo e

Efficiency improvement [Alur et al. ’96]

The main loop of Warshall’s algorithm:

for e := 1 to n do
for e′ := 1 to n do

if C[e′, e] then
for e′′ := 1 to n do

if C[e, e′′] then
C[e′, e′′] := true

Joost-Pieter Katoen Theoretical Foundations of the UML 22/23

e
"

e
'

e

-

e
"

[c :

[e
' .

e

Cee 're " I

Efficiency improvement [Alur et al. ’96]

The main loop of Warshall’s algorithm:

for e := 1 to n do
for e′ := 1 to n do

if C[e′, e] then
for e′′ := 1 to n do

if C[e, e′′] then
C[e′, e′′] := true

The main loop of Alur et. al.’s algorithm for detecting races in MSCs:

for e := 1 to n do
for e′ := e− 1 downto 1 do

if (not C[e′, e] and e′ $ e) then
C[e′, e] := true

for e′′ := 1 to e′ − 1 do
if C[e′′, e′] then

C[e′′, e] := true

Joost-Pieter Katoen Theoretical Foundations of the UML 22/23

I our

e
"

e
'

e

eh
→

{ any e
.

)
e

Detecting races in MSCs

Theorem

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n2).

Proof.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/23

-

-

Detecting races in MSCs

Theorem

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n2).

Proof.
Since ! is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order ". This can be done in O(n) using a

standard topological sort.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/23

Detecting races in MSCs

Theorem

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n2).

Proof.
Since ! is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order ". This can be done in O(n) using a

standard topological sort. Then observe that the innermost loop:

for e′′ := 1 to e′ − 1 do
if C[e′′, e′] then C[e′′, e] := true

of the triple-nested main loop is executed for (e, e′) only if e′ is an immediate
predecessor of e under !.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/23

"
- -

Detecting races in MSCs

Theorem

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n2).

Proof.
Since ! is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order ". This can be done in O(n) using a

standard topological sort. Then observe that the innermost loop:

for e′′ := 1 to e′ − 1 do
if C[e′′, e′] then C[e′′, e] := true

of the triple-nested main loop is executed for (e, e′) only if e′ is an immediate
predecessor of e under !. As for MSCs, an event can have at most two immediate

predecessors, the innermost two loop is executed at most 2 · n times in total.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/23

Detecting races in MSCs

Theorem

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n2).

Proof.
Since ! is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order ". This can be done in O(n) using a

standard topological sort. Then observe that the innermost loop:

for e′′ := 1 to e′ − 1 do
if C[e′′, e′] then C[e′′, e] := true

of the triple-nested main loop is executed for (e, e′) only if e′ is an immediate
predecessor of e under !. As for MSCs, an event can have at most two immediate

predecessors, the innermost two loop is executed at most 2 · n times in total. This
yields a total worst-case time complexity of n2+2·n.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/23

