Overview

P\'\tv\eMMQﬁ im MISCs
At Cb~‘;\;ce\'t$ e N

?nkrmh'\ﬂ\r\
@ Lecture 2: Races
— . forol dchnlon

o\g ot
S \ oMl
M3C ey o vace.

Joost-Pieter Katoen Theoretical Foundations of the UML

Theoretical Foundations of the UML

Lecture 2: Races

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-20/fuml/

April 21, 2020

Joost-Pieter Katoen Theoretical Foundations of the

Summary of Lecture #1

Joost-Pieter Katoen Theoretical Foundations of the UML 3/23

Summary of Lecture #1

O A Message Sequence Chart is a partial order

¢ between send and receive events
o totally ordered per process vertical ordering
o receive events happen after their send events message ordering
o respecting the first-in first out (FIFO) property
P =Y
e, > e
2 1
e, L&
7

RFD |
& <P ('3 <, <S ¢y

Joost-Pieter Katoen Theoretical Foundations of the UML

Summary of Lecture #1

O A Message Sequence Chart is a partial order

¢ between send and receive events

o totally ordered per process vertical ordering
o receive events happen after their send events message ordering
]

respecting the first-in first out (FIFO) property

@ Linearizations are totally ordered extensions of partial orders
o all linearizations of an MSC are well-formed

@ respects the FIFO ordering

{0 every receive is preceded by a corresponding send
© no send events without corresponding receive

Joost-Pieter Katoen Theoretical Foundations of the U

Summary of Lecture #1

O A Message Sequence Chart is a partial order

¢ between send and receive events

o totally ordered per process vertical ordering
o receive events happen after their send events message ordering
]

respecting the first-in first out (FIFO) property

@ Linearizations are totally ordered extensions of partial orders
o all linearizations of an MSC are well-formed

@ every receive is preceded by a corresponding send
@ respects the FIFO ordering
© no send events without corresponding receive

MsSC M > Li~(M)

© Every well-formed word can be transformed into an MSC

¢ two linearizations of the same MSC yield isomorphic MSCs

Joost-Pieter Katoen Theoretical Foundations of the U

Summary of Lecture #1

O A Message Sequence Chart is a partial order

¢ between send and receive events

o totally ordered per process vertical ordering
o receive events happen after their send events message ordering
o respecting the first-in first out (FIFO) property

@ Linearizations are totally ordered extensions of partial orders
o all linearizations of an MSC are well-formed

@ every receive is preceded by a corresponding send
@ respects the FIFO ordering
© no send events without corresponding receive

© Every well-formed word can be transformed into an MSC
¢ two linearizations of the same MSC yield isomorphic MSCs

Lin (M)

e e
@ So: there is a 1-to-1 relation between an MSC and its linearizations

Joost-Pieter Katoen Theoretical Foundations of the UML 3/23

msc
Le | [e | [ps |
- a A 2(e) = '(e,,7,, =)
~ b
P > JQ.(C') = 7 ("L,?1>G)

4 d h
: e

—— —— ——

Joost-Pieter Katoen Theoretical Foundations of the UML 4/23

Example

msc
| | m | | b
a
A
”
A
V.
<
P d
Y
e
A
N
]] |

These pictures are formalized using partial orders.

Joost-Pieter Katoen Theoretical Foundations of the

Message Sequence Chart (MSC) (1)

An MSC M = (P, E,C,l,m, =) with:

4

Joost-Pieter Katoen Theoretical Foundations of the UML 5/23

Message Sequence Chart (MSC) (1)

An MSC M = @E,c, I,m, =) with:
@ P, a finite set of processes {p1,p2,...,Pn}

P ' Pz ?ﬁ

4

Joost-Pieter Katoen Theoretical Foundations of the UML 5/23

Message Sequence Chart (MSC) (1)

An MSC M = (P, E,C,l,m, =) with:
@ P, a finite set of processes {p1,p2,...,Pn}

@ F, a finite set of events

E={ E,=E; UE

pEP
w

verk u\b or to~Y a\b

4

Joost-Pieter Katoen Theoretical Foundations of the UML 5/23

Message Sequence Chart (MSC) (1)

Definition
An MSC M = (P, E,C,l,m, =) with:
@ P, a finite set of processes {p1,p2,...,Pn}

@ F, a finite set of events

E=H E,=E:UE
peEP

b, e

G
)
o C, a finite set of message contents ~ l o \
e

Joost-Pieter Katoen Theoretical Foundations of the UML

Message Sequence Chart (MSC) (1)

An MSC M = (P, E,C,l,m, =) with:
@ P, a finite set of processes {p1,p2,...,Pn}

@ F, a finite set of events

E=\H E,=E:UE
peEP

o C, a finite set of message contents
o [: E — Act, a labelling function defined by:

(p,g,a) if e€ E,NE

l(e) = , for eP,ael
(© {?(p,q,a) if ecE,NEr P#E

4

Joost-Pieter Katoen Theoretical Foundations of the UML 5/23

Message Sequence Chart (MSC) (2)

Joost-Pieter Katoen Theoretical Foundations of the UML 6/23

Message Sequence Chart (MSC) (2)

@ m: Ey — E> a bijection (“matching function”), satisfying:

m(e) = e Al(e) =!(p,q, a) implies I(¢') =?(¢,p,a) (p#4q, a €C)

—

Py
e >¢ e’
™~

Joost-Pieter Katoen Theoretical Foundations of the UML 6/23

Message Sequence Chart (MSC) (2)

[Definition

@ m: Ey — E> a bijection (“matching function”), satisfying:

m(e) =€ Al(e) =!(p,q,a) implies I(e') =?(q,p,a) (p# q, a €C)

< C 9 ° € e 99 .
e XCExFEisa par&mgl{%rg?r (“visual order”) deﬁr&&iﬁlg;kgk
K
<—(U < U {(em(e) [ec B})
peEP = T
~—— ~
<p is a total order = “top-to- communication order <.

bottom” order on process p

where for relation R, R* denotes its reflexive and transitive closure.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/23

P

S

SH—

r

\Y

€ <p &y
e <q €,
<3

3 w(e)=¢;3

4 ™ (Q,—\ = c‘.‘

Hesoe d-\ao ows

/
e >.

<, e
& R

Joost-Pieter Katoen Theoretical Foundations of the UML 7/23

Visual order can be misleading

msc
[» | [p | [» |
a
<
b
>
> C]
N
I 42

Joost-Pieter Katoen Theoretical Foundations of the UML 8/23

Visual order can be misleading

JCR W <)

\ (o ey,)
Veyp, =)

If message b takes much shorter than message a,

then ¢ might arrive at p; before a. \ (Pl ,?,,C)

) (p,,%5,0)

" (Pf)?li q)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/23

Visual order can be misleading

msc
[» | [p | [ps |
> a
S b e, € &
&3 . porslde
E—— —— —— €, occend

If message b takes much shorter than message a,
then ¢ might arrive at p; before a.

In practicq] eg might occur before ex))but ez <;, eg and thus es =< eq.

This is misleading and called a race.

Joost-Pieter Katoen Theoretical Foundations of the UML 8/23

What is a race?

A race condition asserts a particular order of events will occur because
of the visual ordering (i.e., the partial order <) when, in practice, this
order cannot be guaranteed to hold.

Joost-Pieter Katoen Theoretical Foundations of the UML 9/23

What is a race?

A race condition asserts a particular order of events will occur because
of the visual ordering (i.e., the partial order <) when, in practice, this
order cannot be guaranteed to hold.

Q: When are race conditions possible and how to detect them?
(@ — — — T —
\wp\k i
%mcb defne ek 0\501;\:\\»:“ ~ ISU ™
1S & vcCe ? \ Yook
M \.as o rate o

Joost-Pieter Katoen Theoretical Foundations of the UML 9/23

Causal order

—_—
defned i~ o &ffect 0y Men
o . Gisee) oder — Pok of fue ™SC
B defnkon.

Joost-Pieter Katoen Theoretical Foundations of the UML 10/23

Causal order

Sim\er

Main principles:
@0 Send events should happen before their matching receive events <
@o The ordering of events wrt. sends on same process is unaffected

@0 Receive events on a process sent from the same process are ordered as
their sends .
ViSe &) oder

Definition
For MSC M = (P, E,C,1,m,=), relation@g E x E is defined by:

@ e iff ¢ =m(e) @
©) R
€ o o | /
sl «— T e’/
e
<e’
" I e’ €

Joost-Pieter Katoen Theoretical Foundations of the UML

Causal order

Main principles:
@ Send events should happen before their matching receive events
@ @ The ordering of events wrt. sends on same process is unaffected

@ Receive events on a process sent from the same process are ordered as
their sends

For MSC M = (P, E,C,l,m, =), relation < C E x E is defined by:
ez iff ¢ =m(e)
P or e<p€ and Ey N {e,e'} # @ @

el — |

el - 9

Joost-Pieter Katoen Theoretical Foundations of the UML 10/23

y V\n—‘ e)

_» \M"(e’)

J
c 7é (J b ecaonsa Hee I wO

process W soch Mack

) < e (2D

W~

C\S \(v\-\ (Q) an~d (\,{—‘ (Q ’) oClue Qt

N Flee ® PO Cesies

Causal order

Main principles:
@ Send events should happen before their matching receive events
@ The ordering of events wrt. sends on same process is unaffected

@ @ Receive events on a process sent from the same process are ordered as
their sends

Definition
For MSC M = (P, E,C,l,m, =), relation < C E x E is defined by:

ez iff ¢ =m(e)
? q ror e<peand By N{ee}#0

Q| o e,¢’ € B, By and m(e) <o m7(¢)

P X
'\ v v

{ |
Y [W
I O (Q) bola ok P o e} q

Joost-Pieter Katoen Theoretical Foundations of the UML

Causal order

Main principles:
@ Send events should happen before their matching receive events
@ The ordering of events wrt. sends on same process is unaffected

@ Receive events on a process sent from the same process are ordered as

their sends elher (or batil) e
ord ¢! are sends

Definition

For MSC M = (P, E,C,l,m, =), relation& C E x E is defined by:
@ iff ¢ =m(e)
or e<p€ and Ey N {e,e'} # @
or e, ¢ € E,NE; and m™t(e) <, mL(e)

4

@s a partial order (referred to as causal order) in which events at the
same process are not necessarily ordered.

v

Joost-Pieter Katoen Theoretical Foundations of the UML

Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:

e<e iff € =m(e)
or e<pc and Ey N {e, ¢’} # @
or e e € E,NE; and m™l(e) <, m(e)

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:

e<e iff € =m(e)
or e<pc and Ey N {e, ¢’} # @
or e e € E,NE; and m™l(e) <, m(e)

msc
[| [] [|
a
b b
| c
| | |

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:
e<e iff € =m(e)

or e<pc and Ey N {e, ¢’} # @
or e e € E,NE; and m™l(e) <, m(e)

msc
Le | [| [r]
e, |~ €, "
§—%
e\ |« e
L] L] L]

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:

e<e it € =m(e)
or e<pc and Ey N {e, ¢’} # @
or e e € E,NE; and m™l(e) <, m(e)

msc
[m] [,] [»m |) =g,
e a e‘ —> Q\ << el
‘ b
S —>%
el [€ (3
| | |

Example
e K eo, e3 < ey, e; K eg, ©

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:

e<e iff € =m(e)

or e<pc and Ey N {e, '} # 0 @
or e e € E,NE; and m™(e) <, m(e)

msc
[] [,] I
a

QL < el b eq <P3 cf

& %

c

e« e 1e,,e:) O F) £8
| | |

€, < s

Example
e K eo, e3 K ey, e; K eg, e KX es, eq K €
—

——

7% @ @

N

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:

e<e it € =m(e)
or e<pc and Ey N {e, ¢’} # @
or e e € E,NE; and m™l(e) <, m(e) @

msc

[] [,] I
2 e
<

b

) :
4

| | |

e KX eg, e3 K ey, e; K eg, e KX es, ey K
es, not (eg < ep)

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23

Races

Definition

MSC M contaifis a race)if for some e, e’ € B> and process p:

e <, € but not (e <* ¢')

where <* C F x FE is the reflexive and transitive closure of <.

As relation@ontams at most all orderings i
the MSC M has a race whenever < ¢ <§*

[\

Vvisuel consal
o~ order

Joost-Pieter Katoen Theoretical Foundations of the UML 12/23

Race: example

msc
|p1| |p2| |p3
a
A
Y
b
»
7
c
<
Y
I I I

ieter Katoen Theoretical Foundations of the U

Race: example

msc
| b1 | | P2 | | p3 |
& <\ - <
b
) e, —> <4 e
eQ </ ks
]]]

Visual order versus causal order

Q e1 Ser, e3 ey, e5 Xep, €1 23, eq X es,
Q el ey, e3<K ey, e5 K eg, €1 K €3, e4 K e, N0t (ez K eg)

@ this MSC contains a race.

Joost-Pieter Katoen Theoretical Foundations of the UML

Other examples

On the black board.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/23

I o T B MSC wes & rcce
Sz
<< T
b S 4
4 << 3
(de c 5 4 £ S
T 1B 1 A €< 2
< &+ 2<6b 3 <<y
s <<
".?ﬁCQMSQ
P
e a T [
Co
1 S 2 M3C \es wo
4 le b 3 race .
C
b N
L' a2 3Ky, kY, &5

1K< 3, 3«bh

< wsoe\ order

Why are races problematic?

Recall: MSC M has a race if < € <* or equivalently:
&
Je,e' € By . (e <, €' and e & €') \’wu\',,
Whenever < ¢ <*, implementations based on <, may cause problems:
© unspecified message reception
@ a process receives a message which by the MSC is not possible

@ deadlocks

@ a process blocking on receipt of an unexpected message may block
others too

© message loss
o unexpectedly received messages may be ignored

exploiting wrong message content

Joost-Pieter Katoen Theoretical Foundations of the UML 15/23

Checking whether an MSC has a race

Joost-Pieter Katoen Theoretical Foundations of the UML 16/23

Checking whether an MSC has a race

\/o MSC M has a race if < € <«*

no
\/ @ How to check whether MSC M has a race?

Icompute < Iand check whethe
Ve

transitive closure <* is computed using Floyd-Warshall’s re\etos
algorithm

@ algorithm for finding shortest paths in a weighted digraph wij
positive or negative edge weights!

o easily adapted for computing the transitive closure of digraphs
o worst-case time complexity O(|E|?)

o by using some specifics of MSC/ this is reduced to O(|E|*)

serol eweks s MSC ™
@ So: race checking can be done quadratically in the number of events

Yor digraphs without negative cycles.

Joost-Pieter Katoen Theoretical Foundations of the UML

Computing <*: Warshall's algorithm

Algorithm

* : =
compute <* and compare with =< X—E B MsCs

Warshall’s algorithm

7

Warshall’s algorithm: input: R C X x X where X is a set

output:

Joost-Pieter Katoen Theoretical Foundations of the UML 17/23

Computing <*: Warshall's algorithm

Algorithm

compute <* and compare with <
—_——

Warshall’s algorithm

Warshall’s algorithm: input: R C X x X where X is a set
output: R*

v

Consider R and R* as directed graphs

There is an edge x = y in@ iff there is a (possibly empty) sequence

rT=T9—> 2 > Ty —>... > Tp=yin R

(our setting: X = F,R =<, R* = <«*)

4

Joost-Pieter Katoen Theoretical Foundations of the UML 17/23

Warshall's algorithm: preliminaries

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

Warshall's algorithm: preliminaries

@ assume: graph vertices are numbered {1,2,...,n} where n = |E|=
)|

R ®= 1%, -,x)
R= 1 (x.x), (%3 %), (x,_)»(,_,)\

o O @30

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

Warshall's algorithm: preliminaries

@ assume: graph vertices are numbered {1,2,...,n} where n = |E|

o for j € {1,...,n+1} define relation =% as follows:

2 =% y|iff 3 path in R from z to y such that all vertices
on the path (# z,y) have a smaller number than j

Joost-Pieter Katoen Theoretical Foundations of the UML

Warshall's algorithm: preliminaries

@ assume: graph vertices are numbered {1,2,...,n} where n = |E|

o for j € {1,...,n+1} define relation =% as follows:

2 =L y iff 3 path in R from z to y such that all vertices
on the path (# z,y) have a smaller number than j

<031
@ Then: (1) Eil iff gy X >3

(2) = L y ff z=gyorzxy e I elisaten
3) =z z iff z5zorrtyL2
d ‘ A
= &D Mo~ o..\‘) . sret d:'\ % -—@J

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

Warshall's algorithm: preliminaries

9> eR*
ted {1,2,...,n} where n = |E|

@ assume: graph vertices are num

o for j € {1,...,n+1} define rélation =% as follows:

2 =L y iff 3 path in R #om z to y such that all vertices
on the path/ # z,y) have a smaller number than j

@ Then: (1) iff =z g Yy &— ‘ternnchon Condlbon
(2) x;y iff z=yorz<y

+1 5
B) 252 if 2bzorly=52

@ Algorithm: determine the relations :1>, e, = =2 iteratively
using properties (2) + (3);

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

Warshall's algorithm: preliminaries

@ assume: graph vertices are numbered {1,2,...,n} where n = |E|

for j € {1,...,n+1} define relation =% as follows:

2 =L y iff 3 path in R from z to y such that all vertices
on the path (# z,y) have a smaller number than j

Then: (1) z=vy iff :1;%3/

[

(2) x%y iff z=yorz<y
y+l : Y Y y
B) r=2z ff r==zorr=y=z2

[

Algorithm: determine the relations :1>, e, = ntl iteratively
using properties (2) + (3); Result is then given by (1).

Stor in a boolean matrix C of cardinality |E| x |E)|

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

Warshall's algorithm: preliminaries

@ assume: graph vertices are numbered {1,2,...,n} where n = |E|

o for j € {1,...,n+1} define relation =% as follows:

2 =L y iff 3 path in R from z to y such that all vertices
on the path (# z,y) have a smaller number than j

@ Then: (1) z=y iff =z g y dermadnchnn
(2) a5 :1> Y iff = yorx <Ly wwselis oMo
—s | (3) e i r= zorx = y== 7 \oop
@ Algorithm: determine the relations :1>, e, = ntl iteratively

using properties (2) + (3); Result is then given by (1).
@ Store == in a boolean matrix C of cardinality |E| x |E)|
\/ @ Postcondition: Clz,y] = true iff (z,y) € R*

——

@ Precondition: Vz,y € X . C[z,y] = false

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23

Warshall's algorithm

/* first compute x =Ly */
for z:=1ton do s el s atdon
for y :=1ton do
Cle,y) = (w =y or (x,y) € R) Q@)
— ——
Ly
/* loop invariant: after the j-th iteration of 2
/* outermost loop it holds Clx, y] = true iff z 22 Yy */
1fory—1to@d ... 3
2. for z :=1 to n do 4
if C[z,y] then X =4 \w{, @
3. for z :=1 to n do ¥
if C’[y,]then y =
Clz, z] := true
——
I
R =2

Joost-Pieter Katoen Theoretical Foundations of the UML 19/23

Correctness and complexity

Lemma: correctness

After j iterations: x i y iff Clz,y] = true.

if: trivial; only if by induction on j.]

Joost-Pieter Katoen Theoretical Foundations of the UML 20/23

Clowm - o Fier (5 eebons (‘?\)r o~y Qé\SEn)

k - ™ ‘\wp\ns C t\c, W\:B =A
Proh : \9:) MAehSn~ aa Q

1) bawe cave: hzo 1 Ik flleas Rom e Miseltedn,
J+
2') M, siep. \et \335 G~d QS3unnr v = w.

-

) i Cllw] =1, dane V) D v

b) osime Clkn)=o0, The, &D M hyp it
S\l e ;—é) P SN I é_l‘) ™
B kD o \c‘i—;)\;ibm (b ()
ke Slas k % 3 i—am
Thes Cl) =tme and CLjw) = e
™o &M\Q e - abembon COm) s

sed o e =X

Correctness and complexity

Lemma: correctness

After j iterations: x 2 y iff Clz,y] = true. v’

if: trivial; only if by induction on j.]

Worst-case time complexity of Warshall’s algorithm : O(n?) with

n = |X|

follows from the fact that there is a triple-nested loop of which each loop has

at most n iterations. O

Joost-Pieter Katoen Theoretical Foundations of the UML 20/23

Efficiency improvement

Warshall’s algorithm computes R* for every binary relation R C X x X.

T
Qr\: :\v&«b

Joost-Pieter Katoen Theoretical Foundations of the UML 21/23

Efficiency improvement

Warshall’s algorithm computes R* for every binary relation R C X x X.

Recall: our interest is in determining R* for R :@

Joost-Pieter Katoen Theoretical Foundations of the UML 21/23

Efficiency improvement

Warshall’s algorithm computes R* for every binary relation R C X x X.
Recall: our interest is in determining R* for R :@

Using some properties of <, the complexity can be improved.
D e Y

O()

Joost-Pieter Katoen Theoretical Foundations of the UML 21/23

Efficiency improvement

Warshall’s algorithm computes R* for every binary relation R C X x X.
Recall: our interest is in determining R* for R = <«

Using some properties of <, the complexity can be improved.

Exploit that for <:

Joost-Pieter Katoen Theoretical Foundations of the UML 21/23

Efficiency improvement

Warshall’s algorithm computes R* for every binary relatior@; X xX.
Recall: our interest is in determining R* for R = <«
Using some properties of <, the complexity can be improved.

Exploit that for <:
Q < is acyclic (as it is a partial order)

Q@ the number of immediate predecessors of e €
under < is at most two (why?)

Note that e is an immediate predecessor of ¢’ (under <) if:

e< e and =(3e” ¢ {e,e'}. e <’ N <€)

Joost-Pieter Katoen Theoretical Foundations of the UML

Efficiency improvement

e e e

The main m) of Warshall’s algorithm:

for e:=1ton do e’
for ¢’ :=1 to n do)
[if Cl€, e] then C:
for ¢” :=1 to n do e
if Cle, €”] then
Cle,e"] .= true e

C(ele)

Joost-Pieter Katoen Theoretical Foundations of the UML 22/23

Efficiency improvement

The main loop of Warshall’s algorithm:

ore:=1tondo
for ¢/ := 1 ton do
if C[e’, €] then
0'(03) for ¢’ := 1 ton do
if Cle, €"] then
Cle,e"] .= true

The main loop of Alur et. al.’s algorithm for detecti&g races i%MSCE

for e :=1 ton do

—T~>
for ¢/ := e — 1 downto 1 do e =
if (not C[¢,e] and € < e) then
Cle/,e] := true
z b
U(n) fore” =1toe —1do &' <

if Cle”, €] then
Cle”, €] := tru&

Joost-Pieter Katoen Theoretical Foundations of the UML 22/23

Detecting races in MSCs

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n?).

4

Joost-Pieter Katoen Theoretical Foundations of the UML 23/23

Detecting races in MSCs

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n?).

Since < is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order <. This can be done in O(n) using a
standard topological sort.

Joost-Pieter Katoen Theoretical Foundations of the U

Detecting races in MSCs

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n?).

Since < is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order <. This can be done in O(n) using a
standard topological sort. Then observe that the innermost loop:
for e’ :=1to e —1do

if Cle”, '] then Cle”, e] := true
of the triple-nested main loop is executed for (e,e’) only if €’ is an immediate
predecessor of e under <. S -

Joost-Pieter Katoen Theoretical Foundations of the UML

Detecting races in MSCs

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n?).

Since < is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order <. This can be done in O(n) using a
standard topological sort. Then observe that the innermost loop:

for e’ :=1to e —1do

if Cle”, '] then Cle”, e] := true

of the triple-nested main loop is executed for (e,e’) only if €’ is an immediate
predecessor of e under <. As for MSCs, an event can have at most two immediate
predecessors, the innermost two loop is executed at most 2 - n times in total.

Joost-Pieter Katoen Theoretical Foundations of the U

Detecting races in MSCs

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n?).

Since < is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order <. This can be done in O(n) using a
standard topological sort. Then observe that the innermost loop:

for e’ :=1to e —1do

if Cle”, '] then Cle”, e] := true

of the triple-nested main loop is executed for (e,e’) only if €’ is an immediate
predecessor of e under <. As for MSCs, an event can have at most two immediate
predecessors, the innermost two loop is executed at most 2 - n times in total. This
yields a total worst-case time complexity of n’+2-n. O

4

Joost-Pieter Katoen Theoretical Foundations of the U

