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Summary of Lecture #1
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Summary of Lecture #1

O A Message Sequence Chart is a partial order

¢ between send and receive events
o totally ordered per process vertical ordering
o receive events happen after their send events message ordering
o respecting the first-in first out (FIFO) property
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Summary of Lecture #1

O A Message Sequence Chart is a partial order

¢ between send and receive events

o totally ordered per process vertical ordering
o receive events happen after their send events message ordering
]

respecting the first-in first out (FIFO) property

@ Linearizations are totally ordered extensions of partial orders
o all linearizations of an MSC are well-formed

@ respects the FIFO ordering

{0 every receive is preceded by a corresponding send
© no send events without corresponding receive
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Summary of Lecture #1

O A Message Sequence Chart is a partial order

¢ between send and receive events

o totally ordered per process vertical ordering
o receive events happen after their send events message ordering
]

respecting the first-in first out (FIFO) property

@ Linearizations are totally ordered extensions of partial orders
o all linearizations of an MSC are well-formed

@ every receive is preceded by a corresponding send
@ respects the FIFO ordering
© no send events without corresponding receive

MsSC M >  Li~(M)

© Every well-formed word can be transformed into an MSC

¢ two linearizations of the same MSC yield isomorphic MSCs
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Summary of Lecture #1

O A Message Sequence Chart is a partial order

¢ between send and receive events

o totally ordered per process vertical ordering
o receive events happen after their send events message ordering
o respecting the first-in first out (FIFO) property

@ Linearizations are totally ordered extensions of partial orders
o all linearizations of an MSC are well-formed

@ every receive is preceded by a corresponding send
@ respects the FIFO ordering
© no send events without corresponding receive

© Every well-formed word can be transformed into an MSC
¢ two linearizations of the same MSC yield isomorphic MSCs

Lin (M)

e e
@ So: there is a 1-to-1 relation between an MSC and its linearizations
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Example
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These pictures are formalized using partial orders.
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Message Sequence Chart (MSC) (1)

An MSC M = (P, E,C,l,m, =) with:

4
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Message Sequence Chart (MSC) (1)

An MSC M = @E,c, I,m, =) with:
@ P, a finite set of processes {p1,p2,...,Pn}

P ' Pz ?ﬁ

4
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Message Sequence Chart (MSC) (1)

An MSC M = (P, E,C,l,m, =) with:
@ P, a finite set of processes {p1,p2,...,Pn}

@ F, a finite set of events

E={ E,=E; UE

pEP
w

verk u\b or to~Y a\b

4

Joost-Pieter Katoen Theoretical Foundations of the UML 5/23




Message Sequence Chart (MSC) (1)

Definition
An MSC M = (P, E,C,l,m, =) with:
@ P, a finite set of processes {p1,p2,...,Pn}

@ F, a finite set of events

E=H E,=E:UE
peEP

b, e

G
)
o C, a finite set of message contents ~ l o \
e
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Message Sequence Chart (MSC) (1)

An MSC M = (P, E,C,l,m, =) with:
@ P, a finite set of processes {p1,p2,...,Pn}

@ F, a finite set of events

E=\H E,=E:UE
peEP

o C, a finite set of message contents
o [: E — Act, a labelling function defined by:

(p,g,a) if e€ E,NE

l(e) = , for eP,ael
(© {?(p,q,a) if ecE,NEr P#E

4
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Message Sequence Chart (MSC) (2)
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Message Sequence Chart (MSC) (2)

@ m: Ey — E> a bijection (“matching function”), satisfying:

m(e) = e Al(e) =!(p,q, a) implies I(¢') =?(¢,p,a) (p#4q, a €C)

—

Py
e >¢ e’
™~
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Message Sequence Chart (MSC) (2)

[ Definition

@ m: Ey — E> a bijection (“matching function”), satisfying:

m(e) =€ Al(e) =!(p,q,a) implies I(e') =?(q,p,a) (p# q, a €C)

< C 9 ° € e 99 .
e XCExFEisa par&mgl{%rg?r (“visual order”) deﬁr&&iﬁlg;kgk
K
<—( U < U {(em(e) [ec B} )
peEP = T
~—— ~
<p is a total order = “top-to- communication order <.

bottom” order on process p

where for relation R, R* denotes its reflexive and transitive closure.
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Visual order can be misleading
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Visual order can be misleading

JCR W <)

\ (o ey, )
Veyp, =)

If message b takes much shorter than message a,

then ¢ might arrive at p; before a. \ (Pl ,?,,C)

) (p,,%5,0)

" (Pf)?li q)
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Visual order can be misleading

msc
[ » | [ p | [ ps |
> a
S b e, € &
&3 . porslde
E—— —— —— €, occend

If message b takes much shorter than message a,
then ¢ might arrive at p; before a.

In practicq] eg might occur before ex))but ez <;, eg and thus es =< eq.

This is misleading and called a race.
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What is a race?

A race condition asserts a particular order of events will occur because
of the visual ordering (i.e., the partial order <) when, in practice, this
order cannot be guaranteed to hold.
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What is a race?

A race condition asserts a particular order of events will occur because
of the visual ordering (i.e., the partial order <) when, in practice, this
order cannot be guaranteed to hold.

Q: When are race conditions possible and how to detect them?
(@ — — — T  —
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Causal order
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Causal order

Sim\er

Main principles:
@0 Send events should happen before their matching receive events <
@o The ordering of events wrt. sends on same process is unaffected

@0 Receive events on a process sent from the same process are ordered as
their sends .
ViSe &) oder

Definition
For MSC M = (P, E,C,1,m,=), relation@g E x E is defined by:

@ e iff ¢ =m(e) @
©) R
€ o o | /
sl «— T e’/
e
<e’
" I e’ €
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Causal order

Main principles:
@ Send events should happen before their matching receive events
@ @ The ordering of events wrt. sends on same process is unaffected

@ Receive events on a process sent from the same process are ordered as
their sends

For MSC M = (P, E,C,l,m, =), relation < C E x E is defined by:
ez iff ¢ =m(e)
P or e<p€ and Ey N {e,e'} # @ @

el — |

el - 9
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Causal order

Main principles:
@ Send events should happen before their matching receive events
@ The ordering of events wrt. sends on same process is unaffected

@ @ Receive events on a process sent from the same process are ordered as
their sends

Definition
For MSC M = (P, E,C,l,m, =), relation < C E x E is defined by:

ez iff ¢ =m(e)
? q ror e<peand By N{ee}#0

Q| o e,¢’ € B, By and m(e) <o m7(¢)

P X
'\ v v

{ |
Y [ W
I O (Q) bola ok P o e} q
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Causal order

Main principles:
@ Send events should happen before their matching receive events
@ The ordering of events wrt. sends on same process is unaffected

@ Receive events on a process sent from the same process are ordered as

their sends elher (or batil) e
ord ¢! are sends

Definition

For MSC M = (P, E,C,l,m, =), relation& C E x E is defined by:
@ iff ¢ =m(e)
or e<p€ and Ey N {e,e'} # @
or e, ¢ € E,NE; and m™t(e) <, mL(e)

4

@s a partial order (referred to as causal order) in which events at the
same process are not necessarily ordered.

v
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Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:

e<e iff € =m(e)
or e<pc and Ey N {e, ¢’} # @
or e e € E,NE; and m™l(e) <, m(e)
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Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:

e<e iff € =m(e)
or e<pc and Ey N {e, ¢’} # @
or e e € E,NE; and m™l(e) <, m(e)

msc
[ | [ ] [ |
a
b b
| c
| | |
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Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:
e<e iff € =m(e)

or e<pc and Ey N {e, ¢’} # @
or e e € E,NE; and m™l(e) <, m(e)

msc
Le | [ | [r ]
e, |~ €, "
§—%
e\ |« e
L] L] L]
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Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:

e<e it € =m(e)
or e<pc and Ey N {e, ¢’} # @
or e e € E,NE; and m™l(e) <, m(e)

msc
[m ] [, ] [ »m | ) =g,
e a e‘ —> Q\ << el
‘ b
S —>%
el [€ (3
| | |

Example
e K eo, e3 < ey, e; K eg, ©
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Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:

e<e iff € =m(e)

or e<pc and Ey N {e, '} # 0 @
or e e € E,NE; and m™(e) <, m(e)

msc
[ ] [, ] I
a

QL < el b eq <P3 cf

& %

c

e« e 1e,,e:) O F) £8
| | |

€, < s

Example
e K eo, e3 K ey, e; K eg, e KX es, eq K €
—

——

7% @ @

N
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Causal order: example

For MSC M = (P, E,C,l,m, =), relation <« C E x E is defined by:

e<e it € =m(e)
or e<pc and Ey N {e, ¢’} # @
or e e € E,NE; and m™l(e) <, m(e) @

msc

[ ] [, ] I
2 e
<

b

) :
4

| | |

e KX eg, e3 K ey, e; K eg, e KX es, ey K
es, not (eg < ep)
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Races

Definition

MSC M contaifis a race)if for some e, e’ € B> and process p:

e <, € but not (e <* ¢')

where <* C F x FE is the reflexive and transitive closure of <.

As relation@ontams at most all orderings i
the MSC M has a race whenever < ¢ <§*

[\

Vvisuel consal
o~ order
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Race: example

msc
|p1| |p2| |p3
a
A
Y
b
»
7
c
<
Y
I I I
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Race: example

msc
| b1 | | P2 | | p3 |
& <\ - <
b
) e, —> <4 e
eQ </ ks
] ] ]

Visual order versus causal order

Q e1 Ser, e3 ey, e5 Xep, €1 23, eq X es,
Q el ey, e3<K ey, e5 K eg, €1 K €3, e4 K e, N0t (ez K eg)

@ this MSC contains a race.
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Other examples

On the black board.
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Why are races problematic?

Recall: MSC M has a race if < € <* or equivalently:
&
Je,e' € By . (e <, €' and e & €') \’wu\',,
Whenever < ¢ <*, implementations based on <, may cause problems:
© unspecified message reception
@ a process receives a message which by the MSC is not possible

@ deadlocks

@ a process blocking on receipt of an unexpected message may block
others too

© message loss
o unexpectedly received messages may be ignored

exploiting wrong message content
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Checking whether an MSC has a race
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Checking whether an MSC has a race

\/o MSC M has a race if < € <«*

no
\/ @ How to check whether MSC M has a race?

Icompute < Iand check whethe
Ve

transitive closure <* is computed using Floyd-Warshall’s  re\etos
algorithm

@ algorithm for finding shortest paths in a weighted digraph wij
positive or negative edge weights!

o easily adapted for computing the transitive closure of digraphs
o worst-case time complexity O(|E|?)

o by using some specifics of MSC/ this is reduced to O(|E|*)

serol eweks s MSC ™
@ So: race checking can be done quadratically in the number of events

Yor digraphs without negative cycles.

Joost-Pieter Katoen Theoretical Foundations of the UML



Computing <*: Warshall's algorithm

Algorithm

* : =
compute <* and compare with =< X—E B MsCs

Warshall’s algorithm

7

Warshall’s algorithm: input: R C X x X where X is a set

output:

Joost-Pieter Katoen Theoretical Foundations of the UML 17/23



Computing <*: Warshall's algorithm

Algorithm

compute <* and compare with <
—_——

Warshall’s algorithm

Warshall’s algorithm: input: R C X x X where X is a set
output: R*

v

Consider R and R* as directed graphs

There is an edge x = y in@ iff there is a (possibly empty) sequence

rT=T9—> 2 > Ty —>... > Tp=yin R

(our setting: X = F,R =<, R* = <«*)

4
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Warshall's algorithm: preliminaries
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Warshall's algorithm: preliminaries

@ assume: graph vertices are numbered {1,2,...,n} where n = |E|=
)|

R ®= 1%, -,x)
R= 1 (x.x), (%3 %), (x,_)»(,_,)\

o O @30
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Warshall's algorithm: preliminaries

@ assume: graph vertices are numbered {1,2,...,n} where n = |E|

o for j € {1,...,n+1} define relation =% as follows:

2 =% y|iff 3 path in R from z to y such that all vertices
on the path (# z,y) have a smaller number than j

Joost-Pieter Katoen Theoretical Foundations of the UML



Warshall's algorithm: preliminaries

@ assume: graph vertices are numbered {1,2,...,n} where n = |E|

o for j € {1,...,n+1} define relation =% as follows:

2 =L y iff 3 path in R from z to y such that all vertices
on the path (# z,y) have a smaller number than j

<031
@ Then: (1) Eil iff gy X >3

(2) = L y ff z=gyorzxy e I elisaten
3) =z z iff z5zorrtyL2
d ‘ A
= &D Mo~ o..\‘) . sret d:'\ % -—@J
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Warshall's algorithm: preliminaries

9> eR*
ted {1,2,...,n} where n = |E|

@ assume: graph vertices are num

o for j € {1,...,n+1} define rélation =% as follows:

2 =L y iff 3 path in R #om z to y such that all vertices
on the path/ # z,y) have a smaller number than j

@ Then: (1) iff =z g Yy &— ‘ternnchon Condlbon
(2) x;y iff z=yorz<y

+1 5
B) 252 if 2bzorly=52

@ Algorithm: determine the relations :1>, e, = =2 iteratively
using properties (2) + (3);
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Warshall's algorithm: preliminaries

@ assume: graph vertices are numbered {1,2,...,n} where n = |E|

for j € {1,...,n+1} define relation =% as follows:

2 =L y iff 3 path in R from z to y such that all vertices
on the path (# z,y) have a smaller number than j

Then: (1) z=vy iff :1;%3/

[

(2) x%y iff z=yorz<y
y+l : Y Y y
B) r=2z ff r==zorr=y=z2

[

Algorithm: determine the relations :1>, e, = ntl iteratively
using properties (2) + (3); Result is then given by (1).

Stor in a boolean matrix C of cardinality |E| x |E)|
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Warshall's algorithm: preliminaries

@ assume: graph vertices are numbered {1,2,...,n} where n = |E|

o for j € {1,...,n+1} define relation =% as follows:

2 =L y iff 3 path in R from z to y such that all vertices
on the path (# z,y) have a smaller number than j

@ Then: (1) z=y iff =z g y dermadnchnn
(2) a5 :1> Y iff = yorx <Ly wwselis oMo
—s | (3) e i r= zorx = y== 7 \oop
@ Algorithm: determine the relations :1>, e, = ntl iteratively

using properties (2) + (3); Result is then given by (1).
@ Store == in a boolean matrix C of cardinality |E| x |E)|
\/ @ Postcondition: Clz,y] = true iff (z,y) € R*

——

@ Precondition: Vz,y € X . C[z,y] = false

Joost-Pieter Katoen Theoretical Foundations of the UML 18/23



Warshall's algorithm

/* first compute x =Ly */
for z:=1ton do s el s atdon
for y :=1ton do
Cle,y) = (w =y or (x,y) € R) Q@)
— ——
Ly
/* loop invariant: after the j-th iteration of 2
/* outermost loop it holds Clx, y] = true iff z 22 Yy */
1fory—1to@d ... 3
2. for z :=1 to n do 4
if C[z,y] then X =4 \w{, @
3. for z :=1 to n do ¥
if C’[y, ]then y =
Clz, z] := true
——
I
R =2
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Correctness and complexity

Lemma: correctness

After j iterations: x i y iff Clz,y] = true.

if: trivial; only if by induction on j. ]
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Correctness and complexity

Lemma: correctness

After j iterations: x 2 y iff Clz,y] = true. v’

if: trivial; only if by induction on j. ]

Worst-case time complexity of Warshall’s algorithm : O(n?) with

n = |X|

follows from the fact that there is a triple-nested loop of which each loop has

at most n iterations. O
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Efficiency improvement

Warshall’s algorithm computes R* for every binary relation R C X x X.

T
Qr\: :\v&«b
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Efficiency improvement

Warshall’s algorithm computes R* for every binary relation R C X x X.

Recall: our interest is in determining R* for R :@
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Efficiency improvement

Warshall’s algorithm computes R* for every binary relation R C X x X.
Recall: our interest is in determining R* for R :@

Using some properties of <, the complexity can be improved.
D e Y

O()
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Efficiency improvement

Warshall’s algorithm computes R* for every binary relation R C X x X.
Recall: our interest is in determining R* for R = <«

Using some properties of <, the complexity can be improved.

Exploit that for <:
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Efficiency improvement

Warshall’s algorithm computes R* for every binary relatior@; X xX.
Recall: our interest is in determining R* for R = <«
Using some properties of <, the complexity can be improved.

Exploit that for <:
Q < is acyclic (as it is a partial order)

Q@ the number of immediate predecessors of e €
under < is at most two (why?)

Note that e is an immediate predecessor of ¢’ (under <) if:

e< e and =(3e” ¢ {e,e'}. e <’ N <€)
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Efficiency improvement

e e e

The main m) of Warshall’s algorithm:

for e:=1ton do e’
for ¢’ :=1 to n do )
[ if Cl€, e] then C:
for ¢” :=1 to n do e
if Cle, €”] then
Cle,e"] .= true e

C(ele)
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Efficiency improvement

The main loop of Warshall’s algorithm:

ore:=1tondo
for ¢/ := 1 ton do
if C[e’, €] then
0'(03) for ¢’ := 1 ton do
if Cle, €"] then
Cle,e"] .= true

The main loop of Alur et. al.’s algorithm for detecti&g races i%MSCE

for e :=1 ton do

—T~>
for ¢/ := e — 1 downto 1 do e =
if (not C[¢,e] and € < e) then
Cle/,e] := true
z b
U(n ) fore” =1toe —1do &' <

if Cle”, €] then
Cle”, €] := tru&
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Detecting races in MSCs

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n?).

4
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Detecting races in MSCs

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n?).

Since < is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order <. This can be done in O(n) using a
standard topological sort.
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Detecting races in MSCs

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n?).

Since < is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order <. This can be done in O(n) using a
standard topological sort. Then observe that the innermost loop:
for e’ :=1to e —1do

if Cle”, '] then Cle”, e] := true
of the triple-nested main loop is executed for (e,e’) only if €’ is an immediate
predecessor of e under <. S -
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Detecting races in MSCs

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n?).

Since < is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order <. This can be done in O(n) using a
standard topological sort. Then observe that the innermost loop:

for e’ :=1to e —1do

if Cle”, '] then Cle”, e] := true

of the triple-nested main loop is executed for (e,e’) only if €’ is an immediate
predecessor of e under <. As for MSCs, an event can have at most two immediate
predecessors, the innermost two loop is executed at most 2 - n times in total.
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Detecting races in MSCs

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n?).

Since < is acyclic, we number the events such that the numbering defines a total
order that is consistent with visual order <. This can be done in O(n) using a
standard topological sort. Then observe that the innermost loop:

for e’ :=1to e —1do

if Cle”, '] then Cle”, e] := true

of the triple-nested main loop is executed for (e,e’) only if €’ is an immediate
predecessor of e under <. As for MSCs, an event can have at most two immediate
predecessors, the innermost two loop is executed at most 2 - n times in total. This
yields a total worst-case time complexity of n’+2-n. O
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