Theoretical Foundations of the UML - SS 2020
— Exercise Sheet 5 —

Hand in until Monday May 25, 09:00 am via RWTHmoodle

General Remarks

- The exercises should be solved in groups of three students.
- Only one student per group is supposed to upload a solution sheet as a PDF file, where the names and matriculation numbers of all the group members have to be explicitly indicated.
- Questions regarding the lectures and exercises, if any, are expected in the Q&A session via Zoom (instead of emails), with the next on Thursday 21 May, at 16:00. Zoom ID: 369 366 110, Password: FUML-QA

Exercise 1 (CMSG Review) (2 Points)

Consider the following CMSCs. Construct a safe CMSG G containing the all of the vertices $M_1, M_2, M_3, M_4,$ and M_5, and at least one loop (not necessarily a self-loop). Furthermore, there must be at least one accepting path traversing all vertices. You may use vertices multiple times.

Exercise 2 (Language of CFM) (2.5 Points)

Consider the following weak CFM A with processes p, q, r. The shorthand $!s$ indicates a send event to process $s \in \{p, q, r\}$ with message content m. $?s$ is defined similarly.
Exercise 3 (CFM Boundedness) (2.5 Points)

Reconsider \mathcal{A} from the previous question. Determine if \mathcal{A} is universally (\forall-) bounded.

In case it is \forall-bounded, determine the smallest B such that \mathcal{A} is \forall-B-bounded. In this case it suffices to show why \mathcal{A} is not \forall-$(B-1)$-bounded.

In case it is not \forall-bounded, give the channel which is unbounded and argue, why this channel is unbounded.

Exercise 4 (Determinism and Deadlock in CFM) (3 Points)

Consider the following CFM \mathcal{A}_2 with accepting states $F = \{(p_1, q_1), (p_3, q_1)\}$ and synchronization messages $D = \{m_1, m_2\}$. A transition label $!(p, q, a), m_1$ refers to action $!(p, q, a)$ with synchronization message m_1.

Give a MSC M which is in the language of \mathcal{A}, that is $M \in \mathcal{L}(\mathcal{A})$. M should contain at least two send events.
A_2:

process p:

\[
\begin{align*}
p_0 & \overset{!(p, q, a), m_1}{\rightarrow} p_2 \overset{!(p, q, a), m_1}{\rightarrow} p_3 \\
p_1 & \overset{!(p, q, b), m_1}{\rightarrow} \\
\end{align*}
\]

process q:

\[
\begin{align*}
q_0 & \overset{?(q, p, a), m_1}{\rightarrow} q_2 \overset{?(q, p, b), m_1}{\rightarrow} \\
q_1 & \overset{?(q, p, a), m_1}{\rightarrow} \\
\end{align*}
\]

a) Is A_2 deterministic? If yes, justify your answer. If no, give all pairs of transitions which violate the determinism.

b) Does A_2 contain a deadlock? If yes, give a run in A_2 reaching the deadlock. You may omit the channel contents η and the synchronization data $m_i \in \mathbb{D}$ from the run. If no, justify your answer.