Theoretical Foundations of the UML - SS 2020

Theoretical Foundations of the UML - SS 2020 - Exercise Sheet 2 -

Hand in until Monday May 4, 09:00 am via RWTHmoodle

General Remarks

- The exercises should be solved in groups of *three* students.
- Only one student per group is supposed to upload a solution sheet as a PDF file, where the names and matriculation numbers of all the group members have to be explicitly indicated.
- Questions regarding the lectures and exercises, if any, are expected in the Q&A session via Zoom (instead of emails), with the next on Thursday 30 April, at 16:00. Zoom ID: 369 366 110, Password: FUML-QA

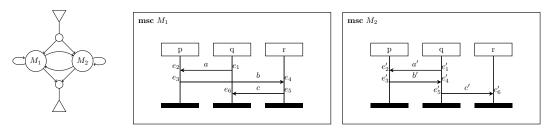
Exercise 1 (Warm Up)

(1 Points)

Prove or disprove: An MSC with the set of processes \mathcal{P} has a race only if $|\mathcal{P}| \geq 3$.

Exercise 2 (Paths, Language and Races in MSGs) (1+2+2 Points)

Consider the MSG \mathcal{G} :

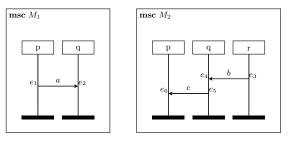


- 1) Give 3 different accepting paths of the MSG \mathcal{G} .
- 2) Determine the MSC language $L(\mathcal{G})$.
- 3) Determine whether \mathcal{G} contains a race, and if so give all its races. Justify your answer.

Exercise 3 (Strong Concatenation)

(4+2+2 Points)

As presented in the second lecture, the (weak) concatenation of two MSCs M_1 and M_2 (denoted by $M_1 \bullet_w M_2$), intuitively is constructed by gluing the process lines together such that M_1 is situated on top of M_2 (cf. Figure 2.1).



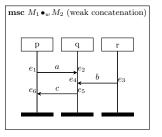


Figure 2.1: Two MSCs and their weak concatenation

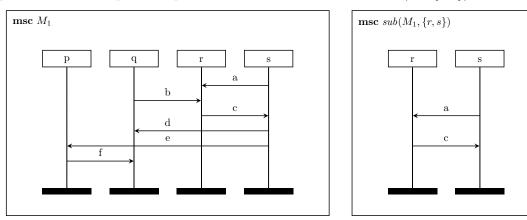
- 1) Define the variant operator called *strong concatenation* \bullet_s of two MSCs M_1 and M_2 , namely, all events of MSC M_1 have to be executed before the first event of M_2 . For this purpose determine a structure $M = M_1 \bullet_s M_2 := (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, for $M_i = (\mathcal{P}_i, E_i, \mathcal{C}_i, l_i, m_i, \preceq_i)$ for $i \in \{1, 2\}$, that results from concatenating the two MSCs strongly.
- 2) For M_1 and M_2 in Figure 2.1, draw the Hasse diagrams of $M_1 \bullet_w M_2$ and $M_1 \bullet_s M_2$, respectively.
- 3) Prove or disprove: $(M_1 \text{ is race-free} \land M_2 \text{ is race-free}) \implies M_1 \bullet_s M_2$ is race-free.

Exercise 4 (Sub-MSCs)

Lehrstuhl für Informatik 2

(2+2+2 Points)

For an MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$ and a subset of processes $\mathcal{P}' \subseteq \mathcal{P}$ we consider the sub-MSC $sub(M, \mathcal{P}')$ which arises from M by erasing all processes in $\mathcal{P} \setminus \mathcal{P}'$ as well as the incoming and outgoing messages of these processes. For example, we depict an MSC M_1 and the sub-MSC $sub(M_1, \{r, s\})$ below.



- 1) Provide the formal definition of the MSC $sub(M, \mathcal{P}')$.
- 2) Prove or disprove: M is race-free \implies for any $\mathcal{P}' \subseteq \mathcal{P}$, $sub(M, \mathcal{P}')$ is race-free.
- 3) Prove or disprove: $sub(M, \mathcal{P}')$ is race-free for some $\mathcal{P}' \subseteq \mathcal{P} \implies M$ is race-free.

Exercise 5 (Race-Freeness)

(6 Points)

It was shown in the lecture that (weak) concatenation of MSCs does not preserve race-freeness:

 $(M_1 \text{ is race-free} \land M_2 \text{ is race-free}) \implies M_1 \bullet M_2 \text{ is race-free.}$

We will now have a look at the other direction:

PROPOSITION 2.1:

 $(M_1 \text{ has a race } \lor M_2 \text{ has a race}) \implies M_1 \bullet M_2 \text{ has a race.}$

Prove or disprove Proposition 2.1.