
Semantics and Verification of Software
Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-19/sv-sw/

https://moves.rwth-aachen.de/teaching/ss-19/sv-sw/


Recap: Operational Semantics of Blocks and Procedures

Outline of Lecture 16

Recap: Operational Semantics of Blocks and Procedures

Recap: Denotational Semantics of Blocks and Procedures

Axiomatic Semantics of Blocks and Procedures

Non-Recursive Procedures

Partial Correctness for Recursive Procedures

Total Correctness for Recursive Procedures

2 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Recap: Operational Semantics of Blocks and Procedures

Procedure Environments and Declarations

• Effect of procedure call determined by its body and variable and procedure environment of
its declaration:

PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}
denotes the set of procedure environments
• Effect of declaration: update of environment (and store)

updvJ.K : VDec × VEnv × Sto→ VEnv × Sto

updvJvar x;vK(ρ, σ) := updvJvK(ρ[x 7→ lx ], σ[lx 7→ 0])
updvJεK(ρ, σ) := (ρ, σ)

updpJ.K : PDec × VEnv × PEnv → PEnv
updpJproc P is c end;pK(ρ, π) := updpJpK(ρ, π[P 7→ (c, ρ, π)])

updpJεK(ρ, π) := π

where lx := min{l ∈ Loc | σ(l) = ⊥}

3 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Recap: Operational Semantics of Blocks and Procedures

Execution Relation I

Definition (Execution relation)

For c ∈ Cmd , σ, σ′ ∈ Sto, ρ ∈ VEnv , and π ∈ PEnv , the execution relation
(ρ, π) ` 〈c, σ〉 → σ′ (“in environment (ρ, π), statement c transforms store σ into σ′”)
is defined by the following rules:

(skip)

(ρ, π) ` 〈skip, σ〉 → σ

(asgn)

〈a, σ ◦ ρ〉 → z

(ρ, π) ` 〈x := a, σ〉 → σ[ρ(x) 7→ z]

(seq)

(ρ, π) ` 〈c1, σ〉 → σ′ (ρ, π) ` 〈c2, σ
′〉 → σ′′

(ρ, π) ` 〈c1;c2, σ〉 → σ′′

(if-t)

〈b, σ ◦ ρ〉 → true (ρ, π) ` 〈c1, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2 end, σ〉 → σ′

4 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Recap: Operational Semantics of Blocks and Procedures

Execution Relation II

Definition (Execution relation; continued)

(if-f)

〈b, σ ◦ ρ〉 → false (ρ, π) ` 〈c2, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2 end, σ〉 → σ′

(wh-f)

〈b, σ ◦ ρ〉 → false

(ρ, π) ` 〈while b do c end, σ〉 → σ

(wh-t)

〈b, σ ◦ ρ〉→ true (ρ, π)`〈c, σ〉→σ′ (ρ, π)`〈while b do c end, σ′〉→σ′′

(ρ, π) ` 〈while b do c end, σ〉 → σ′′

(call)

(ρ′, π′[P 7→ (c, ρ′, π′)]) ` 〈c, σ〉 → σ′

(ρ, π) ` 〈call P, σ〉 → σ′
if π(P) = (c, ρ′, π′)

(block)

updvJvK(ρ, σ) = (ρ′, σ′) updpJpK(ρ′, π) = π′ (ρ′, π′) ` 〈c, σ′〉 → σ′′

(ρ, π) ` 〈begin v p c end, σ〉 → σ′′

5 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Recap: Denotational Semantics of Blocks and Procedures

Outline of Lecture 16

Recap: Operational Semantics of Blocks and Procedures

Recap: Denotational Semantics of Blocks and Procedures

Axiomatic Semantics of Blocks and Procedures

Non-Recursive Procedures

Partial Correctness for Recursive Procedures

Total Correctness for Recursive Procedures

6 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Recap: Denotational Semantics of Blocks and Procedures

Procedure Environments

• Procedure environments now store semantic information:
– So far: PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}
– Now: PEnv ′ := {π | π : PVar 99K (Sto 99K Sto)}, to be used in
C′′J.K : Cmd → VEnv → PEnv ′ → (Sto 99K Sto)

• Procedure declarations (“proc P is c end”) update procedure environment:

updpJ.K : PDec × VEnv × PEnv ′ → PEnv ′

– non-recursive case: P not (indirectly) called within c
⇒ π(P) immediately given by C′′JcKρ π:

updpJproc P is c end;pK(ρ, π) := updpJpK(ρ, π[P 7→ C′′JcKρ π])

– recursive case: π(P) must be a solution of equation f = C′′JcKρ π[P 7→ f ]
(cf. fixpoint semantics of while loop – Slide 6.12):

updpJproc P is c end;pK(ρ, π) := updpJpK(ρ, π[P 7→ fix(Ψ)])

where Ψ : (Sto 99K Sto)→ (Sto 99K Sto) : f 7→ C′′JcKρ π[P 7→ f ]

– updpJεK(ρ, π) := π
– Remark: non-recursive is special instance of recursive case

7 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Recap: Denotational Semantics of Blocks and Procedures

Statement Semantics Including Procedures

Definition (Denotational semantics with procedures)

C′′J.K : Cmd → VEnv → PEnv ′ → (Sto 99K Sto)

is given by
C′′JskipKρ π := idSto

C′′Jx := aKρ π σ := σ[ρ(x) 7→ AJaK(lookup ρ σ)]
C′′Jc1;c2Kρ π := (C′′Jc2Kρ π) ◦ (C′′Jc1Kρ π)

C′′Jif b then c1 else c2 endKρ π := cond(BJbK ◦ (lookup ρ),C′′Jc1Kρ π,C′′Jc2Kρ π)
C′′Jwhile b do c endKρ π := fix(Φ)

C′′Jcall PKρ π := π(P)
C′′Jbegin v p c endKρ π σ := C′′JcKρ′ π′ σ′

where updvJvK(ρ, σ) = (ρ′, σ′)
updpJpK(ρ′, π) = π′

lookup ρ σ := σ ◦ ρ
Φ(f ) := cond(BJbK ◦ (lookup ρ), f ◦ C′′JcKρ π, idSto)

8 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Axiomatic Semantics of Blocks and Procedures

Outline of Lecture 16

Recap: Operational Semantics of Blocks and Procedures

Recap: Denotational Semantics of Blocks and Procedures

Axiomatic Semantics of Blocks and Procedures

Non-Recursive Procedures

Partial Correctness for Recursive Procedures

Total Correctness for Recursive Procedures

9 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Axiomatic Semantics of Blocks and Procedures

The Approach

• For simplicity:
– ignore nested blocks (i.e., all variables and procedures are global)
– consider only statements with at most one procedure declaration

• Start with non-recursive procedures
– approach: prove partial/total correctness of procedure call by showing partial/total correctness of

procedure body (similarly to “inlining” in operational semantics)
– non-termination due to recursive calls excluded
– partial correctness coincides with total correctness (up to loops)

• Next step: recursive procedures
– approach: prove partial/total correctness of procedure call by showing partial/total correctness of

procedure body under the assumption that recursive calls behave correctly
– non-terminating recursive calls possible
– requires additional means to ensure total correctness

10 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Axiomatic Semantics of Blocks and Procedures

The Approach

• For simplicity:
– ignore nested blocks (i.e., all variables and procedures are global)
– consider only statements with at most one procedure declaration

• Start with non-recursive procedures
– approach: prove partial/total correctness of procedure call by showing partial/total correctness of

procedure body (similarly to “inlining” in operational semantics)
– non-termination due to recursive calls excluded
– partial correctness coincides with total correctness (up to loops)

• Next step: recursive procedures
– approach: prove partial/total correctness of procedure call by showing partial/total correctness of

procedure body under the assumption that recursive calls behave correctly
– non-terminating recursive calls possible
– requires additional means to ensure total correctness

10 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Axiomatic Semantics of Blocks and Procedures

The Approach

• For simplicity:
– ignore nested blocks (i.e., all variables and procedures are global)
– consider only statements with at most one procedure declaration

• Start with non-recursive procedures
– approach: prove partial/total correctness of procedure call by showing partial/total correctness of

procedure body (similarly to “inlining” in operational semantics)
– non-termination due to recursive calls excluded
– partial correctness coincides with total correctness (up to loops)

• Next step: recursive procedures
– approach: prove partial/total correctness of procedure call by showing partial/total correctness of

procedure body under the assumption that recursive calls behave correctly
– non-terminating recursive calls possible
– requires additional means to ensure total correctness

10 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Non-Recursive Procedures

Outline of Lecture 16

Recap: Operational Semantics of Blocks and Procedures

Recap: Denotational Semantics of Blocks and Procedures

Axiomatic Semantics of Blocks and Procedures

Non-Recursive Procedures

Partial Correctness for Recursive Procedures

Total Correctness for Recursive Procedures

11 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Non-Recursive Procedures

Proof Rules for Non-Recursive Procedures

Idea: a property that holds for the body of a procedure also applies to its calls

Definition 16.1 (Proof rule for partial correctness; extends Definition 9.12)

For proc P is c end ∈ PDec:

(call)

{A} c {B}
{A} call P {B}

Definition 16.2 (Proof rule for total correctness; extends Definition 11.13)

For proc P is c end ∈ PDec:

(call)

{A} c {⇓B}
{A} call P {⇓B}

12 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Non-Recursive Procedures

Proof Rules for Non-Recursive Procedures

Idea: a property that holds for the body of a procedure also applies to its calls

Definition 16.1 (Proof rule for partial correctness; extends Definition 9.12)

For proc P is c end ∈ PDec:

(call)

{A} c {B}
{A} call P {B}

Definition 16.2 (Proof rule for total correctness; extends Definition 11.13)

For proc P is c end ∈ PDec:

(call)

{A} c {⇓B}
{A} call P {⇓B}

12 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Non-Recursive Procedures

An Example Proof

Example 16.3

Let c ∈ Cmd be given by

begin
var x; var y; var t;
proc P is
t := x; x := y; y := t

end;
call P

end

and i, j ∈ LVar . Then:

` {x = i ∧ y = j} call P {⇓x = j ∧ y = i}
(on the board)

13 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Partial Correctness for Recursive Procedures

Outline of Lecture 16

Recap: Operational Semantics of Blocks and Procedures

Recap: Denotational Semantics of Blocks and Procedures

Axiomatic Semantics of Blocks and Procedures

Non-Recursive Procedures

Partial Correctness for Recursive Procedures

Total Correctness for Recursive Procedures

14 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Partial Correctness for Recursive Procedures

Proof Rules for Recursive Procedures

Observation: previous proof rules insufficient to handle recursive case
• correctness proof of call P requires correctness proof of body c
• correctness proof of c requires correctness proof of each call P within c
• ...

Idea: employ inductive reasoning
• prove correctness of call by showing correctness of body under the assumption that each

recursive call satisfies the correctness property
• requires extension of proof system by conditional provability relations of the form

{C} call P {D} ` {A} c {B}
meaning: “assuming that {C} call P {D} is provable, {A} c {B} can also be shown”

Definition 16.4 (Proof rule for partial correctness; extends Definition 9.12)

For proc P is c end ∈ PDec:

(call)

{A} call P {B} ` {A} c {B}
{A} call P {B}

15 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Partial Correctness for Recursive Procedures

Proof Rules for Recursive Procedures

Observation: previous proof rules insufficient to handle recursive case
• correctness proof of call P requires correctness proof of body c
• correctness proof of c requires correctness proof of each call P within c
• ...

Idea: employ inductive reasoning
• prove correctness of call by showing correctness of body under the assumption that each

recursive call satisfies the correctness property
• requires extension of proof system by conditional provability relations of the form

{C} call P {D} ` {A} c {B}
meaning: “assuming that {C} call P {D} is provable, {A} c {B} can also be shown”

Definition 16.4 (Proof rule for partial correctness; extends Definition 9.12)

For proc P is c end ∈ PDec:

(call)

{A} call P {B} ` {A} c {B}
{A} call P {B}

15 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Partial Correctness for Recursive Procedures

Proof Rules for Recursive Procedures

Observation: previous proof rules insufficient to handle recursive case
• correctness proof of call P requires correctness proof of body c
• correctness proof of c requires correctness proof of each call P within c
• ...

Idea: employ inductive reasoning
• prove correctness of call by showing correctness of body under the assumption that each

recursive call satisfies the correctness property
• requires extension of proof system by conditional provability relations of the form

{C} call P {D} ` {A} c {B}
meaning: “assuming that {C} call P {D} is provable, {A} c {B} can also be shown”

Definition 16.4 (Proof rule for partial correctness; extends Definition 9.12)

For proc P is c end ∈ PDec:

(call)

{A} call P {B} ` {A} c {B}
{A} call P {B}

15 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Partial Correctness for Recursive Procedures

Another Example Proof

Example 16.5 (cf. Example 15.4)

c = begin
proc F is
if x = 1 then
skip;

else
y := x * y;
x := x - 1;
call F

end


cF

end
y := 1;
call F;

end

To prove:

` {x > 0 ∧ i = y · x!} call F {y = i}
(on the board)

16 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Total Correctness for Recursive Procedures

Outline of Lecture 16

Recap: Operational Semantics of Blocks and Procedures

Recap: Denotational Semantics of Blocks and Procedures

Axiomatic Semantics of Blocks and Procedures

Non-Recursive Procedures

Partial Correctness for Recursive Procedures

Total Correctness for Recursive Procedures

17 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Total Correctness for Recursive Procedures

Proof Rules for Total Correctness

• Approach: to ensure termination, we have to bound the depth of recursive calls
• Guaranteed by equipping preconditions with depth bound parameter (similarly to iteration

counter for while loop in Definition 11.13)

Definition 16.6 (Proof rule for total correctness; extends Definition 11.13)

For proc P is c end ∈ PDec:

(call)

{i ≥ 0 ∧ A(i)} call P {⇓B} ` {i ≥ 0 ∧ A(i + 1)} c {⇓B} |= ¬A(0)

{∃i.i ≥ 0 ∧ A(i)} call P {⇓B}

• Premises:
– if {A(i)} call P {⇓B} is provable for all recursive calls of depth at most i ≥ 0, then we can prove

that a call at level i + 1 will be correct
– ¬A(0) disables calls at level 0

• Conclusion: for any depth i ≥ 0 of recursive calls, we have a proof of {A(i)} call P {⇓B}

18 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Total Correctness for Recursive Procedures

Proof Rules for Total Correctness

• Approach: to ensure termination, we have to bound the depth of recursive calls
• Guaranteed by equipping preconditions with depth bound parameter (similarly to iteration

counter for while loop in Definition 11.13)

Definition 16.6 (Proof rule for total correctness; extends Definition 11.13)

For proc P is c end ∈ PDec:

(call)

{i ≥ 0 ∧ A(i)} call P {⇓B} ` {i ≥ 0 ∧ A(i + 1)} c {⇓B} |= ¬A(0)

{∃i.i ≥ 0 ∧ A(i)} call P {⇓B}

• Premises:
– if {A(i)} call P {⇓B} is provable for all recursive calls of depth at most i ≥ 0, then we can prove

that a call at level i + 1 will be correct
– ¬A(0) disables calls at level 0

• Conclusion: for any depth i ≥ 0 of recursive calls, we have a proof of {A(i)} call P {⇓B}

18 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)



Total Correctness for Recursive Procedures

Yet Another Example Proof

Example 16.7 (cf. Example 15.4)

c = begin
proc F is
if x = 1 then
skip;

else
y := x * y;
x := x - 1;
call F

end


cF

end
y := 1;
call F;

end

To prove:

` {x > 0} call F {⇓ true}
(on the board)

19 of 19 Semantics and Verification of Software

Summer Semester 2019

Lecture 16: Extension by Blocks and Procedures III (Axiomatic Semantics)


	Recap: Operational Semantics of Blocks and Procedures
	Recap: Denotational Semantics of Blocks and Procedures
	Axiomatic Semantics of Blocks and Procedures
	Non-Recursive Procedures
	Partial Correctness for Recursive Procedures
	Total Correctness for Recursive Procedures

