

Semantics and Verification of Software

Summer Semester 2019

Lecture 2: Operational Semantics of WHILE I (Evaluation of Expressions)

Thomas Noll Software Modeling and Verification Group RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-19/sv-sw/

Recap: Syntax of WHILE

Outline of Lecture 2

Recap: Syntax of WHILE

Operational Semantics of WHILE

Evaluation of Arithmetic Expressions

Excursus: Proof by Structural Induction

Evaluation of Boolean Expressions

Recap: Syntax of WHILE

Syntactic Categories

WHILE: simple imperative programming language without procedures or advanced data structures

Syntactic categories:

Category	Domain	Meta variable
Numbers	$\mathbb{Z} = \{0, 1, -1, \ldots\}$	Z
Truth values	$\mathbb{B} = \{true, false\}$	t
Variables	$Var = \{x, y, \ldots\}$	X
Arithmetic expressions	AExp (next slide)	a
Boolean expressions	BExp (next slide)	b
Commands (statements)	Cmd (next slide)	C

Recap: Syntax of WHILE

Syntax of WHILE Programs

Definition (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free grammar:

```
a := z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp
b := t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \land b_2 \mid b_1 \lor b_2 \in BExp
c := \text{skip} \mid x := a \mid c_1; c_2 \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end } \mid \text{while } b \text{ do } c \text{ end } \in Cmd
```

Remarks: we assume that

- the syntax of numbers, truth values and variables is predefined (i.e., no "lexical analysis")
- the syntactic interpretation of ambiguous constructs (expressions) is uniquely determined (by brackets or priorities)

Outline of Lecture 2

Recap: Syntax of WHILE

Operational Semantics of WHILE

Evaluation of Arithmetic Expressions

Excursus: Proof by Structural Induction

Evaluation of Boolean Expressions

Operational Semantics of WHILE

 Idea: define meaning of programs by specifying its behaviour being executed on an (abstract) machine

- Idea: define meaning of programs by specifying its behaviour being executed on an (abstract) machine
- Here: evaluation/execution relation for program fragments (expressions, statements)

- Idea: define meaning of programs by specifying its behaviour being executed on an (abstract) machine
- Here: evaluation/execution relation for program fragments (expressions, statements)
- Approach based on Structural Operational Semantics (SOS)
 - G.D. Plotkin: A structural approach to operational semantics, DAIMI FN-19, Computer Science Department, Aarhus University, 1981

- Idea: define meaning of programs by specifying its behaviour being executed on an (abstract) machine
- Here: evaluation/execution relation for program fragments (expressions, statements)
- Approach based on Structural Operational Semantics (SOS)
 - G.D. Plotkin: A structural approach to operational semantics, DAIMI FN-19, Computer Science Department, Aarhus University, 1981
- Employs derivation rules of the form

- meaning: if every premise [and all side conditions] are fulfilled, then the conclusion can be drawn
- a rule with no premises is called an axiom

- Idea: define meaning of programs by specifying its behaviour being executed on an (abstract) machine
- Here: evaluation/execution relation for program fragments (expressions, statements)
- Approach based on Structural Operational Semantics (SOS)
 - G.D. Plotkin: A structural approach to operational semantics, DAIMI FN-19, Computer Science Department, Aarhus University, 1981
- Employs derivation rules of the form

- meaning: if every premise [and all side conditions] are fulfilled, then the conclusion can be drawn
- a rule with no premises is called an axiom
- Derivation rules can be composed to form derivation trees with axioms as leaves (formal definition later)

Outline of Lecture 2

Recap: Syntax of WHILE

Operational Semantics of WHILE

Evaluation of Arithmetic Expressions

Excursus: Proof by Structural Induction

Evaluation of Boolean Expressions

Program States

- Meaning of expression = its value (in the usual sense)
- Depends on the values of the variables in the expression

Program States

- Meaning of expression = its value (in the usual sense)
- Depends on the values of the variables in the expression

Definition 2.1 (Program state)

A (program) state is an element of the set

$$\Sigma := \{ \sigma \mid \sigma : Var \rightarrow \mathbb{Z} \},$$

called the state space.

Thus $\sigma(x)$ denotes the value of $x \in Var$ in state $\sigma \in \Sigma$.

Evaluation of Arithmetic Expressions I

Remember: $a := z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp$

Evaluation of Arithmetic Expressions I

Remember: $a := z | x | a_1 + a_2 | a_1 - a_2 | a_1 * a_2 \in AExp$

Definition 2.2 (Evaluation relation for arithmetic expressions)

If $a \in AExp$ and $\sigma \in \Sigma$, then $\langle a, \sigma \rangle$ is called a configuration.

Expression a evaluates to $z \in \mathbb{Z}$ in state σ (notation: $\langle a, \sigma \rangle \to z$) if this relationship is derivable by means of the following rules:

Axioms:
$$\frac{\overline{\langle z,\sigma\rangle \to z} \quad \overline{\langle x,\sigma\rangle \to \sigma(x)}}{\overline{\langle a_1,\sigma\rangle \to z_1} \quad \langle a_2,\sigma\rangle \to z_2} \quad \text{where } z:=z_1+z_2$$

$$\frac{\langle a_1+a_2,\sigma\rangle \to z}{\langle a_1+a_2,\sigma\rangle \to z} \quad \text{where } z:=z_1-z_2$$

$$\frac{\langle a_1,\sigma\rangle \to z_1 \quad \langle a_2,\sigma\rangle \to z_2}{\langle a_1-a_2,\sigma\rangle \to z} \quad \text{where } z:=z_1-z_2$$

$$\frac{\langle a_1,\sigma\rangle \to z_1 \quad \langle a_2,\sigma\rangle \to z_2}{\langle a_1*a_2,\sigma\rangle \to z} \quad \text{where } z:=z_1\cdot z_2$$

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9$$
:

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9$$
:

$$\langle (x+3)*(y-2), \sigma \rangle \rightarrow$$

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9$$
:

$$\frac{\langle x+3,\sigma\rangle \rightarrow \langle y-2,\sigma\rangle \rightarrow}{\langle (x+3)*(y-2),\sigma\rangle \rightarrow}$$

$$\frac{\langle a_1, \sigma \rangle \to z_1 \quad \langle a_2, \sigma \rangle \to z_2}{\langle a_1 * a_2, \sigma \rangle \to z} \quad \text{where } z := z_1 \cdot z_2$$

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9:$$

$$\frac{\overline{\langle x, \sigma \rangle} \to \overline{\langle 3, \sigma \rangle} \to}{\overline{\langle x+3, \sigma \rangle} \to \overline{\langle y-2, \sigma \rangle} \to}$$

$$\overline{\langle (x+3)*(y-2), \sigma \rangle} \to$$

$$\frac{\overline{\langle a_1, \sigma \rangle} \to z_1 \quad \overline{\langle a_2, \sigma \rangle} \to z_2}{\overline{\langle a_1+a_2, \sigma \rangle} \to z} \quad \text{where } z := z_1 + z_2$$

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9:$$

$$\frac{\langle x, \sigma \rangle \to 3}{\langle x+3, \sigma \rangle \to} \frac{\langle x+3, \sigma \rangle \to}{\langle x+3, \sigma \rangle \to} \frac{\langle y-2, \sigma \rangle \to}{\langle (x+3)*(y-2), \sigma \rangle \to}$$

$$\frac{\langle x, \sigma \rangle \to \sigma(x)}{\langle x, \sigma \rangle \to \sigma(x)}$$

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9:$$

$$\frac{\overline{\langle x, \sigma \rangle \to 3} \quad \overline{\langle 3, \sigma \rangle \to 3}}{\overline{\langle x+3, \sigma \rangle \to}} \quad \overline{\langle y-2, \sigma \rangle \to}$$

$$\overline{\langle (x+3)*(y-2), \sigma \rangle \to}$$

$$\overline{\langle z, \sigma \rangle \to z}$$

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9:$$

$$\frac{\overline{\langle x, \sigma \rangle \to 3} \quad \overline{\langle 3, \sigma \rangle \to 3}}{\overline{\langle x+3, \sigma \rangle \to 6}} \quad \overline{\langle y-2, \sigma \rangle \to}$$

$$\overline{\langle (x+3)*(y-2), \sigma \rangle \to}$$

$$\frac{\overline{\langle a_1, \sigma \rangle \to z_1 \quad \langle a_2, \sigma \rangle \to z_2}}{\overline{\langle a_1+a_2, \sigma \rangle \to z}} \quad \text{where } z := z_1 + z_2$$

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9:$$

$$\frac{\overline{\langle x, \sigma \rangle \to 3} \quad \overline{\langle 3, \sigma \rangle \to 3}}{\overline{\langle x+3, \sigma \rangle \to 6}} \quad \overline{\langle y, \sigma \rangle \to} \quad \overline{\langle 2, \sigma \rangle \to}$$

$$\overline{\langle x+3, \sigma \rangle \to 6} \quad \overline{\langle y-2, \sigma \rangle \to}$$

$$\overline{\langle (x+3)*(y-2), \sigma \rangle \to}$$

$$\frac{\overline{\langle a_1, \sigma \rangle \to z_1} \quad \overline{\langle a_2, \sigma \rangle \to z_2}}{\overline{\langle a_1-a_2, \sigma \rangle \to z}} \quad \text{where } z := z_1 - z_2$$

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9:$$

$$\frac{\overline{\langle x, \sigma \rangle \to 3} \quad \overline{\langle 3, \sigma \rangle \to 3}}{\overline{\langle x+3, \sigma \rangle \to 6}} \quad \overline{\langle y, \sigma \rangle \to 9} \quad \overline{\langle 2, \sigma \rangle \to}$$

$$\overline{\langle x+3, \sigma \rangle \to 6} \quad \overline{\langle y-2, \sigma \rangle \to}$$

$$\overline{\langle (x+3)*(y-2), \sigma \rangle \to}$$

$$\overline{\langle x, \sigma \rangle \to \sigma(x)}$$

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9:$$

$$\frac{\overline{\langle x, \sigma \rangle \to 3} \quad \overline{\langle 3, \sigma \rangle \to 3}}{\overline{\langle x+3, \sigma \rangle \to 6}} \quad \overline{\overline{\langle y, \sigma \rangle \to 9}} \quad \overline{\langle 2, \sigma \rangle \to 2}$$

$$\overline{\langle x+3, \sigma \rangle \to 6} \quad \overline{\langle y-2, \sigma \rangle \to}$$

$$\overline{\langle (x+3)*(y-2), \sigma \rangle \to}$$

$$\overline{\langle z, \sigma \rangle \to z}$$

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9:$$

$$\frac{\overline{\langle x, \sigma \rangle \to 3} \quad \overline{\langle 3, \sigma \rangle \to 3}}{\overline{\langle x+3, \sigma \rangle \to 6}} \quad \overline{\overline{\langle y, \sigma \rangle \to 9}} \quad \overline{\langle 2, \sigma \rangle \to 2}$$

$$\overline{\langle x+3, \sigma \rangle \to 6} \quad \overline{\langle y-2, \sigma \rangle \to 7}$$

$$\overline{\langle (x+3)*(y-2), \sigma \rangle \to}$$

$$\frac{\overline{\langle a_1, \sigma \rangle \to z_1} \quad \overline{\langle a_2, \sigma \rangle \to z_2}}{\overline{\langle a_1-a_2, \sigma \rangle \to z}} \quad \text{where } z := z_1 - z_2$$

Evaluation of Arithmetic Expressions II

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9:$$

$$\frac{\overline{\langle x, \sigma \rangle \to 3} \quad \overline{\langle 3, \sigma \rangle \to 3}}{\langle x+3, \sigma \rangle \to 6} \quad \overline{\langle y, \sigma \rangle \to 9} \quad \overline{\langle 2, \sigma \rangle \to 2}$$

$$\overline{\langle x+3, \sigma \rangle \to 6} \quad \overline{\langle y-2, \sigma \rangle \to 7}$$

$$\overline{\langle (x+3)*(y-2), \sigma \rangle \to 42}$$

$$\overline{\langle a_1, \sigma \rangle \to z_1 \quad \langle a_2, \sigma \rangle \to z_2} \quad \text{where } z := z_1 \cdot z_2$$

Evaluation of Arithmetic Expressions II

Example 2.3

$$a = (x+3)*(y-2), \sigma(x) = 3, \sigma(y) = 9:$$

$$\frac{\overline{\langle x, \sigma \rangle \to 3} \quad \overline{\langle 3, \sigma \rangle \to 3}}{\langle x+3, \sigma \rangle \to 6} \quad \overline{\langle y-2, \sigma \rangle \to 7}$$

$$\overline{\langle (x+3)*(y-2), \sigma \rangle \to 42}$$

Here: structure of derivation tree = structure of program fragment (not generally true)

Free Variables I

First formal result: value of an expression only depends on valuation of variables which occur (freely) in the expression

Free Variables I

First formal result: value of an expression only depends on valuation of variables which occur (freely) in the expression

Definition 2.4 (Free variables)

The set of free variables of an expression is given by the function

$$FV: AExp \rightarrow 2^{Var}$$

where

11 of 22

$$FV(z) := \emptyset$$
 $FV(a_1 + a_2) := FV(a_1) \cup FV(a_2)$
 $FV(x) := \{x\}$ $FV(a_1 - a_2) := FV(a_1) \cup FV(a_2)$
 $FV(a_1 * a_2) := FV(a_1) \cup FV(a_2)$

Free Variables I

First formal result: value of an expression only depends on valuation of variables which occur (freely) in the expression

Definition 2.4 (Free variables)

The set of free variables of an expression is given by the function

$$FV: AExp \rightarrow 2^{Var}$$

where

$$FV(z) := \emptyset$$
 $FV(a_1 + a_2) := FV(a_1) \cup FV(a_2)$
 $FV(x) := \{x\}$ $FV(a_1 - a_2) := FV(a_1) \cup FV(a_2)$
 $FV(a_1 * a_2) := FV(a_1) \cup FV(a_2)$

Result will be shown by structural induction on the expression

Outline of Lecture 2

Recap: Syntax of WHILE

Operational Semantics of WHILE

Evaluation of Arithmetic Expressions

Excursus: Proof by Structural Induction

Evaluation of Boolean Expressions

Excursus: Proof by Structural Induction I

Proof principle

Given: an inductive set, i.e., a set S whose elements are either

- atomic or
- obtained from atomic elements by (finite) application of certain operations

To show: property P(s) applies to every $s \in S$

Proof: we verify:

Induction base: P(s) holds for every atomic element s

Induction hypothesis: assume that $P(s_1)$, $P(s_2)$ etc.

Induction step: then also $P(f(s_1, \ldots, s_n))$ holds for every operation f of arity

n

Excursus: Proof by Structural Induction I

Proof principle

Given: an inductive set, i.e., a set S whose elements are either

- atomic or
- obtained from atomic elements by (finite) application of certain operations

To show: property P(s) applies to every $s \in S$

Proof: we verify:

Induction base: P(s) holds for every atomic element s

Induction hypothesis: assume that $P(s_1)$, $P(s_2)$ etc.

Induction step: then also $P(f(s_1, \ldots, s_n))$ holds for every operation f of arity

n

Remark: structural induction is a special case of well-founded induction

Excursus: Proof by Structural Induction II

Application: natural numbers ("mathematical induction")

Definition: N is the least set which

contains 0 and

• contains n+1 whenever $n \in \mathbb{N}$

Induction base: P(0) holds

Induction hypothesis: P(n) holds

Induction step: P(n+1) holds

Excursus: Proof by Structural Induction II

Application: natural numbers ("mathematical induction")

Definition: \mathbb{N} is the least set which

contains 0 and

• contains n+1 whenever $n \in \mathbb{N}$

Induction base: P(0) holds

Induction hypothesis: P(n) holds

Induction step: P(n + 1) holds

Generalisation: complete (strong, course-of-values) induction

- induction step: $P(0), P(1), \dots, P(n) \Rightarrow P(n+1)$
- corresponds to well-founded induction over natural numbers

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that P(n): $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ holds for every $n \in \mathbb{N}$.

Lecture 2: Operational Semantics of WHILE I (Evaluation of Expressions)

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that $P(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ holds for every $n \in \mathbb{N}$.

$$P(0)$$
 holds: $\sum_{i=1}^{0} i = 0 = \frac{0(0+1)}{2} \checkmark$

Lecture 2: Operational Semantics of WHILE I (Evaluation of Expressions)

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that $P(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ holds for every $n \in \mathbb{N}$.

$$P(0)$$
 holds: $\sum_{i=1}^{0} i = 0 = \frac{0(0+1)}{2} \checkmark$

Assume
$$P(n)$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that $P(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ holds for every $n \in \mathbb{N}$.

$$P(0)$$
 holds: $\sum_{i=1}^{0} i = 0 = \frac{0(0+1)}{2} \checkmark$

Assume
$$P(n)$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Show
$$P(n+1)$$
: $\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that $P(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ holds for every $n \in \mathbb{N}$.

$$P(0)$$
 holds: $\sum_{i=1}^{0} i = 0 = \frac{0(0+1)}{2} \checkmark$

Assume
$$P(n)$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Show
$$P(n+1)$$
: $\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$
= $\frac{n(n+1)}{2} + (n+1)$

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that $P(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ holds for every $n \in \mathbb{N}$.

$$P(0)$$
 holds: $\sum_{i=1}^{0} i = 0 = \frac{0(0+1)}{2} \checkmark$

Assume
$$P(n)$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Show
$$P(n+1)$$
: $\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$
= $\frac{n(n+1)}{2} + (n+1)$
= $\frac{n(n+1)}{2} + \frac{2(n+1)}{2}$

15 of 22

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that
$$P(n)$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ holds for every $n \in \mathbb{N}$.

$$P(0)$$
 holds: $\sum_{i=1}^{0} i = 0 = \frac{0(0+1)}{2} \checkmark$

Assume
$$P(n)$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Show
$$P(n+1)$$
: $\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$
= $\frac{n(n+1)}{2} + (n+1)$
= $\frac{n(n+1)}{2} + \frac{2(n+1)}{2}$
= $\frac{(n+2)(n+1)}{2}$

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that
$$P(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
 holds for every $n \in \mathbb{N}$. $P(0)$ holds: $\sum_{i=1}^{0} i = 0 = \frac{0(0+1)}{2}$ \checkmark Assume $P(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ Show $P(n+1): \sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$ $= \frac{n(n+1)}{2} + (n+1)$ $= \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$ $= \frac{(n+2)(n+1)}{2}$

Excursus: Proof by Structural Induction IV

Application: arithmetic expressions (Def. 2.1)

Definition: AExp is the least set which

- contains all integers $z \in \mathbb{Z}$ and all variables $x \in Var$ and
- contains a_1+a_2 , a_1-a_2 and a_1*a_2 whenever $a_1, a_2 \in AExp$

Induction base: P(z) and P(x) holds (for every $z \in \mathbb{Z}$ and $x \in Var$)

Induction hypothesis: $P(a_1)$ and $P(a_2)$ holds

Induction step: $P(a_1+a_2)$, $P(a_1-a_2)$ and $P(a_1*a_2)$ holds

Free Variables II

Lemma 2.6

Let $a \in AExp$ and $\sigma, \sigma' \in \Sigma$ such that $\sigma(x) = \sigma'(x)$ for every $x \in FV(a)$. Then, for every $z \in \mathbb{Z}$,

$$\langle \mathbf{a}, \sigma \rangle \to \mathbf{z} \iff \langle \mathbf{a}, \sigma' \rangle \to \mathbf{z}.$$

Free Variables II

Lemma 2.6

Let $a \in AExp$ and $\sigma, \sigma' \in \Sigma$ such that $\sigma(x) = \sigma'(x)$ for every $x \in FV(a)$. Then, for every $z \in \mathbb{Z}$,

$$\langle \mathbf{a}, \sigma \rangle \to \mathbf{z} \iff \langle \mathbf{a}, \sigma' \rangle \to \mathbf{z}.$$

Proof.

17 of 22

by structural induction on a (on the board)

Outline of Lecture 2

Recap: Syntax of WHILE

Operational Semantics of WHILE

Evaluation of Arithmetic Expressions

Excursus: Proof by Structural Induction

Evaluation of Boolean Expressions

Evaluation of Boolean Expressions I

Definition 2.7 ((Strict) evaluation relation for Boolean expressions)

For $b \in BExp$, $\sigma \in \Sigma$, and $t \in \mathbb{B}$, the evaluation relation $\langle b, \sigma \rangle \to t$ is defined by:

19 of 22

Evaluation of Boolean Expressions II

Remarks:

 Binary Boolean operators ∧ and ∨ are interpreted as strict, i.e., always evaluate both arguments.

Important in situations like

```
while p <> nil and p^.key < val do ...!
```

(see following slides for alternatives)

Evaluation of Boolean Expressions II

Remarks:

 Binary Boolean operators ∧ and ∨ are interpreted as strict, i.e., always evaluate both arguments.

Important in situations like

(see following slides for alternatives)

• $FV : BExp \rightarrow 2^{Var}$ can be defined in analogy to Def. 2.4.

Evaluation of Boolean Expressions II

Remarks:

 Binary Boolean operators ∧ and ∨ are interpreted as strict, i.e., always evaluate both arguments.

Important in situations like

```
while p <> nil and p^.key < val do ...!
```

(see following slides for alternatives)

- $FV: BExp \rightarrow 2^{Var}$ can be defined in analogy to Def. 2.4.
- Lemma 2.6 holds analogously for Boolean expressions, i.e., the value of $b \in BExp$ does not depend on variables in $Var \setminus FV(b)$.

Evaluation of Boolean Expressions III

Definition 2.8 (Sequential evaluation of Boolean expressions)

For $b \in BExp$, $\sigma \in \Sigma$, and $t \in \mathbb{B}$, the sequential evaluation relation $\langle b, \sigma \rangle \to t$ is defined by the following rules (truth values/relational expressions/negation as before):

Evaluation of Boolean Expressions III

Definition 2.8 (Sequential evaluation of Boolean expressions)

For $b \in BExp$, $\sigma \in \Sigma$, and $t \in \mathbb{B}$, the sequential evaluation relation $\langle b, \sigma \rangle \to t$ is defined by the following rules (truth values/relational expressions/negation as before):

Remarks: yields same result as strict evaluation for our simple language

- (Boolean) expressions have no side effects (assignments, exceptions, ...)
- evaluation always terminates

Evaluation of Boolean Expressions IV

Definition 2.9 (Parallel evaluation of Boolean expressions)

For $b \in BExp$, $\sigma \in \Sigma$, and $t \in \mathbb{B}$, the parallel evaluation relation $\langle b, \sigma \rangle \to t$ is defined by the following rules (truth values/relational expressions/negation as before):

