

Foundations of Probabilistic Programming/Program Synthesis

- Introduction to seminar
- Summer Semester 2019; April 3, 2019
- Joost-Pieter Katoen, Thomas Noll et al.
- Software Modeling and Verification Group RWTH Aachen University
- https://moves.rwth-aachen.de/teaching/ss-19/fpp/ https://moves.rwth-aachen.de/teaching/ss-19/pgmsyn/

Overview

Aims of this Seminar

Important Dates

The Foundations of Probabilistic Programming Topics

The Program Synthesis Topics

Final Hints

3

Foundations of Probabilistic Programming

Probabilistic Programs

Probabilistic programs extend sequential programs with **random sampling** and (hard and soft) **conditioning**. They are used in machine learning, robotics, computer vision, etc. Almost every programming language (C, Python, Prolog, etc.) has a probabilistic extension.

def pulls(strength real):
 normal(strength, 1)

def winner(a real, b real):
 a_pull <~ pulls(a)
 b_pull <~ pulls(b)
 return (a_pull > b_pull)

alice <~ normal(0,1) bob <~ normal(0,1) carol <~ normal(0,1)

match1 <~ winner(alice, bob)
match2 <~ winner(bob, carol)
match3 <~ winner(alice, carol)</pre>

Tug of War

4

Foundations of Probabilistic Programs

 What do probabilistic programs exactly mean? 	Semantics.
 How to reason about probabilistic programs? 	Correctness.
 When does a probabilistic program terminate? 	Termination.
 How long does a probabilistic program run? 	Complexity.
 When do two programs behave (almost) the same ? 	Equivalence.

5

Program Synthesis

Program Synthesis

Program synthesis is the task of **automatically finding a program** in the underlying programming language that **satisfies the user intent** expressed in the form of some specification.

Overview

6

Dream of Program Synthesis

Overview

Dream of Program Synthesis

Challenges

6

• Intractability of program space

• Diversity of user intent

Applications of Program Synthesis

Data wrangling: cleaning, transforming, and/or preparing data for analysis and presentation

- often using programming-by-example (e.g., john.doe@rwth.de \rightarrow John Doe)
- Graphics: synthesis of programs for constructing graphical objects to enable interactive editing experiences and efficient animations
- Code Repair: given buggy program *P* that violates specification φ , find new *P'* that satisfies φ
- Code Suggestions: advanced form of "autocompletion"
- Probabilistic modelling: learning of probabilistic programs that explain empirical evidence Superoptimisation: synthesising an optimal sequence of instructions
 - e.g., computing average of unsigned integers x and y without conditionals: (x + y)/2 can overflow, but $(x | y) ((x \oplus y) \gg 1)$ works

Concurrent Programming: determine placement of minimal synchronisation constructs to avoid data races

Overview

Aims of this Seminar

Important Dates

The Foundations of Probabilistic Programming Topics

The Program Synthesis Topics

Final Hints

Goals

9

Aims of this seminar

- Independent understanding of a scientific topic
- Acquiring, reading and understanding scientific literature
 - given references sufficient in most cases
- Writing of your own report on this topic
 - far more that just a translation/rewording
 - usually an "extended subset" of paper
 - · "subset": present core ideas and omit too specific details
 - "extended": more extensive explanations, examples, ...
 - · discuss with supervisor!
- Oral presentation of your results
 - can be "proper subset" of report
 - generally: less (detailed) definitions/proofs and more examples

Requirements on Report

Your report

- Independent writing of a report of 10–15 pages
- First milestone: detailed outline
 - not: "1. Introduction/2. Main part/3. Conclusions"
 - but: overview of structure (section headers, main definitions/theorems) and initial part of main section (one page)
- Complete set of references to all consulted literature
- Correct citation of important literature
- Plagiarism: taking text blocks (from literature or web) without source indication causes immediate exclusion from this seminar
- Font size **12pt** with "standard" page layout
- Language: German or English
- We expect the correct usage of spelling and grammar
 - \geq 10 errors per page \Longrightarrow abortion of correction
- LATEX template will be made available on seminar web page

Requirements on Talk

Your talk

- Talk of 30 minutes
- Available: projector, presenter, [laptop]
- Focus your talk on the audience

• Descriptive slides:

- \leq 15 lines of text
- use (base) colors in a useful manner
- number your slides
- Language: German or English
- No spelling mistakes please!
- Finish in time. Overtime is bad
- Ask for questions

- Have backup slides ready for expected questions
- LATEX/beamer template will be made available on seminar web page

Overview

Aims of this Seminar

Important Dates

The Foundations of Probabilistic Programming Topics

The Program Synthesis Topics

Final Hints

Important Dates

Deadlines

- 6 May: Detailed outline of report due
- 3 June: Full report due
- 1 July: Presentation slides due
- 11 July (afternoon): Seminar

Important Dates

Deadlines

13

- 6 May: Detailed outline of report due
- 3 June: Full report due
- 1 July: Presentation slides due
- 11 July (afternoon): Seminar

Missing a deadline causes immediate exclusion from the seminar

Selecting Your Topic

Procedure

- You obtain(ed) a list of topics of this seminar.
- Indicate the preference of your topics (first, second, third).
- Return sheet here or by Friday (5 April) via e-mail (noll@cs.rwth-aachen.de) or to secretary.
- We do our best to find an adequate topic-student assignment.
 - disclaimer: no guarantee for an optimal solution
- Assignment will be published on web site next week.

Selecting Your Topic

Procedure

- You obtain(ed) a list of topics of this seminar.
- Indicate the preference of your topics (first, second, third).
- Return sheet here or by Friday (5 April) via e-mail (noll@cs.rwth-aachen.de) or to secretary.
- We do our best to find an adequate topic-student assignment.
 - disclaimer: no guarantee for an optimal solution
- Assignment will be published on web site next week.

Withdrawal

- You have up to three weeks to refrain from participating in this seminar.
- Later cancellation (by you or by us) causes a **not passed** for this seminar and reduces your (three) possibilities by one.

Overview

Aims of this Seminar

Important Dates

The Foundations of Probabilistic Programming Topics

The Program Synthesis Topics

Final Hints

Logical essentials of Bayesian reasoning

Book chapter: B. Jacobs and F. Zanasi: Logical essentials of Bayesian reasoning, 2019
 Goal: understanding the essence of Bayesian inference
 Programs: a uniform, structured and expressive language for describing Bayesian phenomena in terms of familiar programming concepts, like channel, predicate transformation and state transformation
 Approach: channel-based approach to Bayesian probability theory
 Example:

Probabilistic couplings

17

Book chapter: J. Hsu and G. Barthe: *Probabilistic Couplings from Program Logics*, 2019
Goal: Prove whether two probabilistic programs behave (almost) the same.
Programs: Probabilistic programs without conditioning
Approach: Probabilistic couplings. Relational Hoare logics.
Example:

k ← Flip;	k ← Flip;
$r \leftarrow k \oplus s$	$r \leftarrow k$

If the distribution of *r* is the same in both programs, then the XOR cipher is secure

Termination analysis with martingales

Book chapter: K. Chatterjee *et al.*: *Termination Analysis of Probabilistic Programs with Martingales*, 2019 Goal: How to check whether:

- A probabilistic program terminates with probability one?
- A probabilistic program terminates in finitely many expected number of steps?

Programs: finite/infinite probabilistic choice, non-determinism Approach: martingale theory, partial automation (algorithms) Example:

1:
$$x := 100$$
;
2: while $x \ge 0$ do
3: if prob(0.5) then
4: $x := x + 1$
else
5: $x := x - 1$
fi;
od

Improving program testing by probabilistic programming

Book chapter: L. Leonidas, B. Pierce et al.: Luck: A Probabilistic Language for Testing, 2019

Goal: How to efficiently generate test cases for random testing of programs?

Programs: the probabilistic domain-specific language Luck in which test generators are conveniently expressed.

Predicates with lightweight annotations to control the distribution of generated values and the amount of constraint solving needed.

Approach: • formal semantics to the language Luck

- soundness and completeness of random generation w.r.t. a standard predicate semantics
- case studies showing effectiveness of bug-finding in programs

Example:

Concentration measures

- Book chapter: S. Sankaranarayanan: *Quantitative Analysis of Programs with Probabilities and Concentration of Measure Inequalities*, 2019
 - Goal: Quantitative analysis of probabilistic programs, in particular concentration of measure inequalities to reason about bounds on the probabilities of assertions.
- Technique: measure inequalities, i.e., a set of mathematical ideas that characterize how functions of random variables deviate from their expected value.

Overview

Aims of this Seminar

Important Dates

The Foundations of Probabilistic Programming Topics

The Program Synthesis Topics

Final Hints

Syntax-guided synthesis

Paper: R. Alur et al.: Syntax-guided synthesis, FMCAD 2013

Goal: synthesizing implementations given by grammar template from declarative specifications

Specification: background theory, semantic correctness specification given by logical formula, syntactic set of candidate implementations given by grammar

Output: implementation satisfying the specification in the theory Technique: counter-example-guided-inductive-synthesis (CEGIS)

Example: specification

22

$$\max(x,y) \ge x \land \max(x,y) \ge y \land (\max(x,y) = x \lor \max(x,y) = y)$$

with candidate grammar

$$E \rightarrow E + E \mid E - E \mid E \leq E \mid E?E:E \mid 0 \mid 1$$

(interpreted over integers) yields implementation

$$x \leq y$$
? $y : x$

Synthesis of pointer programs

Paper: N. Polikarpova, I. Sergey: *Structuring the synthesis of heap-manipulating programs*, POPL 2019 Goal: synthesizing imperative programs with pointers from declarative specifications Programming language: simple pointer-manipulating language Specification: pair of assertions (φ , ψ) (pre- and postcondition) from Separation Logic (= Hoare Logic + pointers) Output: program that transforms any heap state satisfying φ into one satisfying ψ Technique: deductive search Example: specification

$$\{\mathrm{x}\mapsto a*\mathrm{y}\mapsto b\}P\{\mathrm{x}\mapsto b*\mathrm{y}\mapsto a\}$$

yields program

$$a1 = *x; letb1 = *y; *y = a1; *x = b1$$

Synthesis of probabilistic programs

Paper: A.V. Nori, S. Ozair, S.K. Rajamani, D. Vijaykeerthy: *Efficient synthesis of probabilistic programs*, PLDI 2015
Goal: synthesising probabilistic programs from real-world datasets
Programming language: imperative programs with sampling and conditioning
Specification: data set and "sketch" of probabilistic program with "holes"
Output: replacement of holes with program fragments such that execution is consistent with data
Technique: Markov Chain Monte Carlo based synthesis
Example: sketch

$$c = ??(a, b)$$

may be replaced by

24

c = (a > b)

Overview

Aims of this Seminar

Important Dates

The Foundations of Probabilistic Programming Topics

The Program Synthesis Topics

Final Hints

Some Final Hints

Hints

- Take your time to understand your literature.
- Be **proactive**! Look for **additional** literature and information.
- Discuss the content of your report with other students.
- Be proactive! Contact your supervisor on time.
- Prepare the meeting(s) with your supervisor.
- Forget the idea that you can prepare a talk in a day or two.

Some Final Hints

Hints

26

- Take your time to understand your literature.
- Be **proactive**! Look for **additional** literature and information.
- Discuss the content of your report with other students.
- Be proactive! Contact your supervisor on time.
- Prepare the meeting(s) with your supervisor.
- Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!

