
Static Program Analysis
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Summer Semester 2018

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-18/spa/

https://moves.rwth-aachen.de/teaching/ss-18/spa/

Recap: The MOP Solution

The MOP Solution I

• Other solution method for dataflow systems
• MOP = Meet Over all Paths
• Analysis information for block Bl

= least upper bound over all paths leading to l
= most precise information for l (“reference solution”)

Definition (Paths)

Let S = (Lab,E , F , (D,v), ι, ϕ) be a dataflow system. For every l ∈ Lab, the set of
paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E , (li, li+1) ∈ F for every 1 ≤ i < k , lk = l}.
For a path π = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function ϕπ : D → D
by

ϕπ := ϕlk−1 ◦ . . . ◦ ϕl1 ◦ idD

(and thus ϕ[] = idD).

3 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Recap: The MOP Solution

The MOP Solution II

Definition (MOP solution)

Let S = (Lab,E , F , (D,v), ι, ϕ) be a dataflow system where Lab = {l1, . . . , ln}.
The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ Lab,

mop(l) :=
⊔
{ϕπ(ι) | π ∈ Path(l)}.

Remark:
• Path(l) is generally infinite
⇒ not clear how to compute mop(l)
• In fact: MOP solution generally undecidable (later)

4 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Recap: Constant Propagation

Formalising Constant Propagation Analysis I

The dataflow system S = (Lab,E , F , (D,v), ι, ϕ) is given by
• set of labels Lab := Labc,
• extremal labels E := {init(c)} (forward problem)
• flow relation F := flow(c) (forward problem)
• complete lattice (D,v) where

– D := {δ | δ : Var c → Z ∪ {⊥,>}}
� δ(x) = z ∈ Z: x has constant value z (i.e., possible values in {z})
� δ(x) = ⊥: x undefined (i.e., possible values in ∅)
� δ(x) = >: x overdefined (i.e., possible values in Z)

– v ⊆ D × D defined by pointwise extension of⊥ v z v > (for every z ∈ Z)

Example

Var c = {w, x, y, z}, δ1 = (⊥︸︷︷︸
w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

), δ2 = (3︸︷︷︸
w

, 1︸︷︷︸
x

, 4︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ δ1 t δ2 = (3︸︷︷︸
w

, 1︸︷︷︸
x

, >︸︷︷︸
y

, >︸︷︷︸
z

)

6 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Recap: Constant Propagation

Formalising Constant Propagation Analysis II

Dataflow system S = (Lab,E , F , (D,v), ι, ϕ) (continued):
• extremal value ι := δ> ∈ D where δ>(x) := > for every x ∈ Var c

(i.e., every x has (unknown) default value)
• transfer functions {ϕl | l ∈ Lab} defined by

ϕl(δ) :=

{
δ if Bl = skip or Bl ∈ BExp
δ[x 7→ valδ(a)] if Bl = (x := a)

where

valδ(x) := δ(x)
valδ(z) := z

valδ(a1 op a2) :=

z1 op z2 if z1, z2 ∈ Z
⊥ if z1 = ⊥ or z2 = ⊥
> otherwise

for z1 := valδ(a1) and z2 := valδ(a2)

7 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

MOP vs. Fixpoint Solution

MOP vs. Fixpoint Solution I

Example 6.1 (Constant Propagation)

c := if [z > 0]1 then
[x := 2]2; [y := 3]3

else
[x := 3]4; [y := 2]5

end;
[z := x+y]6; [. . .]7

Transfer functions
(for δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1(a, b, c) = (a, b, c)
ϕ2(a, b, c) = (2, b, c)
ϕ3(a, b, c) = (a, 3, c)
ϕ4(a, b, c) = (3, b, c)
ϕ5(a, b, c) = (a, 2, c)
ϕ6(a, b, c) = (a, b, a + b)

1. Fixpoint solution:
CP1 = ι = (>,>,>)
CP2 = ϕ1(CP1) = (>,>,>)
CP3 = ϕ2(CP2) = (2,>,>)
CP4 = ϕ1(CP1) = (>,>,>)
CP5 = ϕ4(CP4) = (3,>,>)
CP6 = ϕ3(CP3) t ϕ5(CP5)

= (2, 3,>) t (3, 2,>) = (>,>,>)
CP7 = ϕ6(CP6) = (>,>,>)

2. MOP solution:
mop(7) = ϕ[1,2,3,6](>,>,>) t

ϕ[1,4,5,6](>,>,>)
= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)

9 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

MOP vs. Fixpoint Solution

MOP vs. Fixpoint Solution II

Theorem 6.2 (MOP vs. Fixpoint Solution)

Let S = (Lab,E , F , (D,v), ι, ϕ) be a dataflow system. Then

mop(S) v fix(ΦS)

Reminder: by Definition 4.3,

ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′1, . . . , d
′
n)

where Lab = {1, . . . , n} and, for each l ∈ Lab,

d ′l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Proof.

on the board

Remark: as Example 6.1 shows, mop(S) 6= fix(ΦS) is possible

10 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Coincidence of MOP and Fixpoint Solution

Distributivity of Transfer Functions I

A sufficient condition for the coincidence of MOP and Fixpoint Solution is the
distributivity of the transfer functions.

Definition 6.3 (Distributivity)

• Let (D,v) and (D′,v′) be complete lattices. Function F : D → D′ is called distributive (w.r.t.
(D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

F (d1 tD d2) = F (d1) tD′ F (d2).

• A dataflow system S = (Lab,E ,F , (D,v), ι, ϕ) is called distributive if every ϕl : D → D
(l ∈ Lab) is so.

12 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Coincidence of MOP and Fixpoint Solution

Distributivity of Transfer Functions II

Example 6.4

1. The Available Expressions dataflow system is distributive:

ϕl(A1 t A2) = ((A1 ∩ A2) \ killAE(Bl)) ∪ genAE(Bl)
= ((A1 \ killAE(Bl)) ∪ genAE(Bl))∩

((A2 \ killAE(Bl)) ∪ genAE(Bl))
= ϕl(A1) t ϕl(A2)

2. The Live Variables dataflow system is distributive: similarly
3. The Constant Propagation dataflow system is not distributive (cf. Example 6.1):

(>,>,>) = ϕz:=x+y((2, 3,>) t (3, 2,>))
6= ϕz:=x+y(2, 3,>) t ϕz:=x+y(3, 2,>)
= (>,>, 5)

13 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Coincidence of MOP and Fixpoint Solution

Coincidence of MOP and Fixpoint Solution

Theorem 6.5 (MOP vs. Fixpoint Solution)

Let S = (Lab,E , F , (D,v), ι, ϕ) be a distributive dataflow system. Then

mop(S) = fix(ΦS)

Proof.

• mop(S) v fix(ΦS): Theorem 6.2
• fix(ΦS) v mop(S): as fix(ΦS) is the least fixpoint of ΦS, it suffices to show that

ΦS(mop(S)) = mop(S) (on the board)

14 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Undecidability of the MOP Solution

Undecidability of the MOP Solution I

Theorem 6.6 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let Γ be some alphabet, n ∈ N, and u1, . . . , un, v1, . . . , vn ∈ Γ+.
Do there exist i1, . . . , im ∈ {1, . . . , n} with m ≥ 1 and i1 = 1 such that
ui1ui2 . . . uim = vi1vi2 . . . vim?

Given a MPCP, we construct a WHILE program (with strings and Booleans) whose
MOP analysis detects a constant property iff the MPCP has no solution (see next
slide).

16 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Undecidability of the MOP Solution

Undecidability of the MOP Solution II

Proof (continued).
x := u1;y := v1;
while ... do
if ... then
x := x ++ u1;
y := y ++ v1

else if ... then
...

else
x := x ++ un;
y := y ++ vn

end . . . end
end;
z := (x = y);
[skip]l

Then: mop(l)(z) = false

⇐⇒ x 6= y at the end of every path to l

⇐⇒ the MPCP has no solution

17 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Dataflow Analysis with Non-ACC Domains

Dataflow Analysis with Non-ACC Domains

• Reminder: (D,v) satisfies ACC if each ascending chain d0 v d1 v . . . eventually
stabilises, i.e., there exists n ∈ N such that dn = dn+1 = . . .

• If height (= maximal chain size) of (D,v) is m, then fixpoint computation terminates after at
most |Lab| ·m iterations
• But: if (D,v) has non-stabilising ascending chains

=⇒ algorithm may not terminate
• Solution: use widening operators to enforce termination

19 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Dataflow Analysis with Non-ACC Domains

Example: Interval Analysis

Interval Analysis

The goal of Interval Analysis is to determine, for each (interesting) program point, a
safe interval for the values of the (interesting) program variables.

Interval analysis is actually a generalisation of constant propagation
(≈ interval analysis with one-element intervals)

Example 6.7 (Interval Analysis)
var a[100]: int;
i := 0;
while i <= 42 do
if i >= 0 ∧ i < 100 then ⇐= redundant array bounds check
a[i] := i

end;
i := i + 1;

end;

20 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Dataflow Analysis with Non-ACC Domains

The Domain of Interval Analysis

• The domain (Int ,⊆) of intervals over Z is defined by

Int := {[z1, z2] | z1 ∈ Z ∪ {−∞}, z2 ∈ Z ∪ {+∞}}, z1 ≤ z2} ∪ {∅}
where
– −∞ ≤ z ≤ +∞ (for all z ∈ Z)
– ∅ ⊆ J (for all J ∈ Int)
– [y1, y2] ⊆ [z1, z2] iff z1 ≤ y1 and y2 ≤ z2

• (Int ,⊆) is a complete lattice with (for every I ⊆ Int)⊔
I =

{
∅ if I = ∅ or I = {∅}
[Z1,Z2] otherwise

where
Z1 :=

d
Z∪{−∞}{z1 | [z1, z2] ∈ I}

Z2 :=
⊔

Z∪{+∞}{z2 | [z1, z2] ∈ I}
(and thus ⊥ = ∅, > = [−∞,+∞])
• Clearly (Int ,⊆) has infinite ascending chains, such as

∅ ⊆ [1, 1] ⊆ [1, 2] ⊆ [1, 3] ⊆ . . .

21 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

Dataflow Analysis with Non-ACC Domains

The Complete Lattice of Interval Analysis

∅

[−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2]

[−2,−1] [−1, 0] [0, 1] [1, 2]

[−2, 0] [−1, 1] [0, 2]

[−2, 1] [−1, 2]

[−2, 2]

[−∞,−1]

[−∞, 0]

[−∞, 1] [−1,+∞]

[0,+∞]

[1,+∞]

[−∞,+∞]

22 of 22 Static Program Analysis
Summer Semester 2018
Lecture 6: Dataflow Analysis V (MOP vs. Fixpoint Solution)

	Recap: The MOP Solution
	Recap: Constant Propagation
	MOP vs. Fixpoint Solution
	Coincidence of MOP and Fixpoint Solution
	Undecidability of the MOP Solution
	Dataflow Analysis with Non-ACC Domains

