'1':"-*_

- =17 g- =.‘. M:' [L

Static Program Analysis
Lecture 20: Pointer & Shape Analysis Il

e
kel

Summer Semester 2018

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-18/spa/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ss-18/spa/

Recap: Shape Analysis using Hyperedge Replacement Grammars

The Shape Analysis Approach

e Goal: determine the possible shapes of a dynamically allocated data structure at given
program point
¢ Interesting information:
— data types (to avoid type errors, such as dereferencing null)
— aliasing (different pointer variables having same value)
— sharing (different heap pointers referencing same location)
— reachability of nodes (garbage collection)
— disjointness of heap regions (parallelisability)
— shapes (lists, trees, absence of cycles, ...)
e Concrete questions:
— Does x.next point to a shared element?
— Does a variable p point to an allocated element every time p is dereferenced?
— Does a variable point to the head of an acyclic list?
— Does a variable point to the root of a tree?
— Can a loop or procedure cause a memory leak?

RWTH

3 0of 26 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 20: Pointer & Shape Analysis Il ‘ Bl and Verification Chair

Recap: Shape Analysis using Hyperedge Replacement Grammars

The Attestor' Approach

‘ (parameterised)

Graph Grammar(s) ‘ \
I BN

—¥

‘ g) Java Program

‘ LTL Formula ‘ /

'https://github.com/moves-rwth/attestor

Attestor

v v
Ve -

w |Abstract State Space

Proof Structure

4 of 26 Static Program Analysis
Summer Semester 2018
Lecture 20: Pointer & Shape Analysis Il

4

: Software Modeling

RWTH

Il and Verification Chair

https://github.com/moves-rwth/attestor

Recap: Shape Analysis using Hyperedge Replacement Grammars

Data Abstraction

Heap representation: hypergraph

ext

C?\
—e— <«——tail
2] tal

P

i

head

e Placeholders: nonterminal (labelled) hyperedges of rank n
e Pointers: terminal (labelled) hyperedges of rank 2
e Variables: hyperedges of rank 1

Specification of placeholder(s): Hyperedge Replacement Grammar (HRG)

H@é@ @5;@1 -G

RWTH

5 of 26 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 20: Pointer & Shape Analysis Il ‘ B and Verification Chair

Recap: Shape Analysis using Hyperedge Replacement Grammars

Abstract Execution R i
> QO | OCO+I:®
tmp := pos.next,

pOos
OO0 £+Q = Q+m+()

f conc/ P P

(7‘ @+®
conc ?ﬁ s
abstr OQ/V?;O/T;O
Principle

Concretise whenever necessary; abstract whenever possible.

RWTH

6 of 26 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 20: Pointer & Shape Analysis Il ‘ B and Verification Chair

Abstract Interpretation of Pointer Programs

Galois Connections

e Concrete domain L, ordered by C; (concrete heaps)
e Abstract domain M, ordered by C (heaps with placeholders)
e Concretisation function v : M — L (forward derivation)
e Abstraction function o : L — M (backward derivation)

Reminder: Galois connection (cf. Definition 10.1)

Let (M, Cy), (L, C,) be complete lattices with monotonic functions o : L — M,
2
vy:M— L L <—T> M is a Galois connection iff

Vie LIC, y(afl)) (overapproximation)

and
Vm € M.a(y(m)) £y m (preservation of precision).
8 of 26 Static Program Analysis
SLr;mer gemester 2yO1 8 o _ Rm
Lecture 20: Pointer & Shape Analysis Il ‘ | ggatvglri?ig(:ﬂﬁ:lgaair

Abstract Interpretation of Pointer Programs

Galois Connection for Pointer Programs

e HC/HC™ concrete/abstract heap configurations (without/possibly with nonterminals)
e HRG G with derivation relation = 5 C 2HC" x 2HC”
e Concrete domain: 2¢
— partially ordered by C
— concretisation function yg({H"}) := Lg(H*) = {H € HC | H" =% H}
e Abstract domain: 2H"
— partially ordered by = with my = my iff yg(my) C vg(my)
— abstraction function ag({H}) := {H" | H" =% H, }K" . K¥ =5 H"} (maximal abstraction)

Additional requirements on G

e Data Structure Normal Form (DSNF): ensures that vg/a g yield valid heap configurations
e Backward confluence: for all H, |ag({H})| = 1 (uniqueness of abstraction)

Theorem 20.1

If G is a backward confluent HRG in DSNF, then 2¢ % 2HC" forms a Galois

. G

connection.

9 of 26 Static Program Analysis Rm
Summer Semester 2018 Soft Modeli
Lecture 20: Pointer & Shape Analysis Il ‘] aﬁd \',"::ﬁica?io?,'gﬂair

Abstract Interpretation of Pointer Programs

Soundness of Abstract Interpretation

e Concrete semantics f : 2"¢ — 2HC (pointer operation)
o Abstract semantics f# : 2HC" — oHC" (1. concretisation, 2. f, 3. abstraction)

Reminder: Safe approximation of functions (cf. Definition 11.1)

Abstract Concrete
m — y(m)
L7 Lf
f#(m) I a(f(y(m))) <— f(y(m))

RWTH

10 of 26 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 20: Pointer & Shape Analysis Il ‘ Bl and Verification Chair

Abstract Interpretation of Pointer Programs

Abstract Execution of Pointer Programs

Wanted: most precise safe approximation
Forall f : HC — HC and H" € HC',
i (H") = ag(f(ve(H")))

Problem
va(H™) generally infinite (or too large)

Solution

Stepwise local concretisation (only “as much as necessary”)

RWTH

11 of 26 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 20: Pointer & Shape Analysis Il Bl and Verification Chair

Abstract Interpretation of Pointer Programs

Local Concretisability n n
L5 @O | @ 0+0:@
tmp := pos.next;

/F F
abstr

kPLTP‘ OO0 — Q+m+©
lﬁ/l. cmi//
U“ @+® - _
?ﬁ abstr, W
tmp := pos.prev,
Om+0

RWTH

tmp| |pos
12 of 26 Stanc Program Aralysi concr. o
er Se ter
Software Modeling
?0 ‘ t?’ pe Ana'YS|5 I ‘ Il and Verification Chair

tmp| |pOS

Abstract Interpretation of Pointer Programs

Visualisation of State Spaces in Attestor?

Attestor Report ~ State Space | Search state space Help GitHub
Attestor R

Selected State
Sel

Qe L

No s

State Space Last Selected Heap Sta

Focus selected state

’https://github.com/moves-rwth/attestor

13 of 26 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 20: Pointer & Shape Analysis Il ‘ B and Verification Chair

2

RWTH

https://github.com/moves-rwth/attestor

Modular Reasoning About Procedures

Handling of Procedure Calls

Analysing procedure calls

e At call:

1. truncate to reachable fragment and
identify cutpoinis (i.e., nodes referenced
by local variables of caller)

2. rename actual —> formal parameters

3. apply (intraprocedural) semantics of body

e On return:

1. discard local variables
2. merge heap at call site with procedure

main: prepend(nodel)

[head1] [node1]
next next

prev prev
next

prev

head2

Example 20.2 (List prepend)

prepend (node) :

result oext y next next next
. OWOPOWO
e Yields (part of) procedure summary pov_ P O e @
pgev
0@ (i0)
head2
15 of 26 Static Program Analysis o Rm

Summer Semester 2018
Lecture 20: Pointer & Shape Analysis Il

Software Modeling
Il and Verification Chair

Modular Reasoning About Procedures

Modularity via Procedure Summaries

Goal

e Determine abstract graph-based procedure summaries (“contracts”)

e Summary = set of (precondition, postcondition)
— precondition = abstract reachable heap fragment upon call
— postcondition = set of possible resulting abstract heaps

e Demand-driven computation (only consider preconditions that actually occur in symbolic
execution)

Algorithm: interprocedural data-flow analysis

1. Compute program’s control flow graph
2. Set up data-flow equations for each basic block:
— collect summary information of predecessor blocks
— apply abstract semantics of present block to update postcondition

3. Solve equation system via fixed-point iteration

RWTH

16 of 26 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 20: Pointer & Shape Analysis Il ‘ B and Verification Chair

Modular Reasoning About Procedures

An Example

Example 20.3 (List reversal)

main (head, tail: elem){
var tmp: elem;
reverse (head, tail);

reverse summary (excerpt):

cur tail

cur

tail

tmp := head; —>
head := tail;
tail := tmp; <:> <:>
} cur| |tail cur| |tail
reverse (cur, tail: elem){ ‘ p ‘ — \h\‘
var tmp: elem; “ i) < f ()
if (cur != tail){ <:>75' D
tmp := cur.prev;
cur.prev := cur.next; - :
cur.next := tmp; cur tail | B
reverse (cur.prev, tail); ‘ p ‘ —
. OLO+I:0 | Oz IO
17 of 26 Static Program Analysis

Summer Semester 2018
Lecture 20: Pointer & Shape Analysis Il

)

4

Software Modeling
Il and Verification Chair

RWTH

Adding Permissions for Concurrency

Adding Threads with fork/join Concurrency

Example 20.4 (Concurrent list copy)

main(head: elem, tail: elem){
thread t1, t2;
var headil, head2: elem;
head1 := new(elem);
head2 := new(elem);
t1 := fork copy(head, tail, headl);
t2 := fork copy(head, tail , head2);
join t1;
join t2;
}
type elem{
prev: elem;
next: elem

}

copy (cur, tail, curl: elem){

}

var tmp, tmp1: elem;
tmp := cur.next;
tmp1 := new(elem);
curl.next := tmp1l;
tmp1.prev := curl;
if (tmp != tail){

copy (tmp, tail , tmp1l);

}

19 of 26 Static Program Analysis
Summer Semester 2018
Lecture 20: Pointer & Shape Analysis Il

: Software Modeling

‘ Il and Verification Chair

Adding Permissions for Concurrency

Data Races
main Thread t: p(x) Thread u: q(x)

1
x.next =y| /

x.next =z v

x.next := ww := x.next| 4

join t

join u

x.next =y| /
v

RWTH

20 of 26 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 20: Pointer & Shape Analysis Il ‘ Bl and Verification Chair

Adding Permissions for Concurrency

Access Permissions
Idea

e Threads acquire/release read and write permissions
e Read permission for shared read access
e Write permissions for exclusive write access

Observations

e Permission not available — potential data race

e Permissions can always be acquired — data-race freedom
Goal

e Automatically distribute permissions
e Static analysis: no runtime representation!

21 of 26 Static Program Analysis
Summer Semester 2018

Lecture 20: Pointer & Shape Analysis Il ‘

Software Modeling
Il and Verification Chair

RWTH

Adding Permissions for Concurrency

Ensuring Data Race Freedom

main Thread t: p(x) Thread u: q(x)
T
x.next .=y /
t := fork p(x) X.next := z|(x.next,wt)

return fork p(x) w
t:(x.next,wt) 0

u := fork q(x) _/—\

t:(x.next,wt) ()

return fork q(x)

u: (x.next,rd)

W ;= X.next |(x.next, rd)

jOin f| t:(x.next,wt),u: (x.next,rd)

u: (x.next,rd) é
joinu

0 v
v

22 of 26 Static Program Analysis

Summer Semester 2018 ’ Soft Modeli
ortware vodelin
Lecture 20: Pointer & Shape Analysis Il ‘ B and Verification cgair

RWTH

Adding Permissions for Concurrency

Analysing Concurrent Pointer Programs

Observation

Data race freedom ——> deterministic results = consider only one interleaving

Algorithm

1. Treat forks just like procedure calls

2. Allocate permissions greedily

3. Keep track of permissions until join

4. Report permission error when conflicts detected

5. Fork without subsequent join —> lost permissions to be remembered

Example 20.5 (Part of thread contract for list reversal)

cur,wt tail,rd cur,wt||tail,rd

‘ p,wit ‘ n,wt
om0 o 5 Lot Cl“\f@

n,wt 1

RWTH

23 of 26 Static Program Analysis
Summer Semester 2018 .
Software Modeling

Lecture 20: Pointer & Shape Analysis Il ‘ B and Verification Chair

Experimental Results & Literature

Experimental Results

Program Property | Rules| States Time
ReverselList | (1, 2) 3 192| 0.23s
ReverselList | (3) 3| 5,615 0.447s
Reverselist |(4) 3| 5,107 0.399s
TreeFlatten | (1, 2) 14| 2,887 0.622 s
TreeFlatten | (3) 14| 77,373| 1.446s
TreeFlatten | (4) 141423,525| 5.61s
Lindstrom (1, 2) 12| 4,520| 0.506 s
Lindstrom (3) 12/160,855| 1.537 s
Lindstrom (4) 121983,680| 6.536 s
AVL rotate (1,2, 5) 16 190| 0.192 s
AVL search |(1, 2, 5) 16 216| 0.172s
AVL insert (1,2, 5) 16| 15,202|11.032 s
BiMap search | (1, 2, 6) 4 266| 0.160s
BiMap insert | (1, 2, 6) 4 128| 0.144 s
BiMap search | (1, 2, 6) 4 274 0.159s

Properties

1. Pointer safety
2. Structure preservation
3. “Bag” property (for lists):

Vx : head —* x
— OU tail —* x
4. Correctness (for list reversal):
Vx,y :head =" x AN x — y
— Oy — x

5. Balancedness (with indices)
6. Equal length (with indices)

25 of 26

Static Program Analysis

Summer Semester 2018
Lecture 20: Pointer & Shape Analysis Il

: Software Modeling

‘ Il and Verification Chair

Experimental Results & Literature

Literature on Attestor

(available from Attestor web page®)

Gentle introduction: J. Heinen, C. Jansen, J.-P. Katoen, T. Noll: Verifying Pointer
Programs using Graph Grammars, Sci. Comp. Progr. 97, 157—162, 2015*

General framework: J. Heinen, C. Jansen, J.-P. Katoen, T. Noll: Juggrnaut: Using
Graph Grammars for Abstracting Unbounded Heap Structures, Formal
Methods in System Design 47(2), 159-203, 2015°

Procedure summaries: C. Jansen, T. Noll: Generating Abstract Graph-Based
Procedure Summaries for Pointer Programs, ICGT 2014, LNCS 8571, 49-64°

Extension to relational properties (balancedness): H. Arndt, C. Jansen, C. Matheja,
T. Noll. Heap Abstraction Beyond Context-Freeness’. SEFM 2018, LNCS
10886, 271-286

*https://github.com/moves-rwth/attestor
*https://doi.org/10.1016/j.scico.2013.11.012
5https ://dx.doi.org/10.1007/s10703-015-0236-1
®https://dx.doi.org/10.1007/978-3-319-09108-2_4
"http://dx.doi.org/10.1007/978-3-319-92970-5_17

26 of 26 Static Program Analysis
Summer Semester 2018 .
Software Modeling

Lecture 20: Pointer & Shape Analysis Il B and Verification Chair

RWTH

https://github.com/moves-rwth/attestor
https://doi.org/10.1016/j.scico.2013.11.012
https://dx.doi.org/10.1007/s10703-015-0236-1
https://dx.doi.org/10.1007/978-3-319-09108-2_4
http://dx.doi.org/10.1007/978-3-319-92970-5_17

	Recap: Shape Analysis using Hyperedge Replacement Grammars
	Abstract Interpretation of Pointer Programs
	Modular Reasoning About Procedures
	Adding Permissions for Concurrency
	Experimental Results & Literature

