'1':"-*_

- =17 g- =.‘. M:' [L

Static Program Analysis

Lecture 11: Abstract Interpretation Il (Safe Approximation)

e
kel

Summer Semester 2018

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-18/spa/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ss-18/spa/

£ !
Vortrag und Diskussion

Process Science and Data Science:
A NMatch Made in Heaven!

Prof. Dr. Wil van der Aalst

Freitag | 08. Juni 2018 | 15.30 - 16.45 Uhr | Aula 2 der RWTH | Ahornstr. 55

Eintritt frei. Anmeldung nicht erforderlich. Der Vortrag findet im Rahmen des Sommerfests der Informatik der RWTH

statt. Bitte plnktlich erscheinen.

The Process and Data Science
(PADS) group, headed by prof.dr.ir.
Wil van der Aalst, is a new research
unit in RWTH’s Department of Com-
puter Science. The scope of PADS
includes all activities where discrete
processes are analyzed, reenginee-
red, and/or supported in a data-
driven manner. Process-centricity
is combined with an array of Data
Science techniques.

This talk will introduce Process
Mining as a novel way to turn event
data into valuable insights, predic-
tions, and decisions. Events refer to

activities executed by resources at
particular times and for particular
cases. Such event data are collected
everywhere; in logistics, manufactu-
ring, finance, healthcare, customer
relationship management, e-learning,
e-government, and many other do-
mains. Process Mining can be used
to discover the real processes, to
detect deviations from normative pro-
cesses, and to analyze bottlenecks
and waste.

The interplay between Process
Science and Data Science generates
many interesting research problems.

For example, how to deal with ter-
abytes of event data scattered over
dozens of database tables? How to
use process mining responsibly (e.g.,
ensure fairness and confidentiality)?
How to amalgamate Process Mining
with Operations Research approa-
ches (optimization, simulation, etc.)?
These questions are scientifically
interesting and practically relevant.
This is illustrated by the 25+ commer-
cial Process Mining tools based on
the ideas developed by prof. van der
Aalst and his colleagues. His talk will
show different tools and their use in a
variety of domains.

In Kooperation mit Fachgruppe Informatik, der Regionalgruppe der Gesellschaft fir Informatik (RIA)
und des Regionalen Industrieclubs Informatik Aachen (Regina e.V.)

RWTH

Recap: Galois Connections

Outline of Lecture 11

Recap: Galois Connections

RWTH

3 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ B and Verification Chair

Recap: Galois Connections

Galois Connections

Definition (Galois connection)

Let (L,C,) and (M, =) be complete lattices. A pair (v,) of
monotonic functions

a:L—-M and v: M — L
is called a Galois connection if
VieL:1C,v(a(l)) and Vme M: a(y(m)) Sy m

Interpretation: Evariste Galois

1811-1832
e [= {sets of concrete values}, M = {sets of abstract values} |)
e o = abstraction function, v = concretisation function
o | C; v(a(l)): o yields over-approximation
e o(y(m)) =y m: no loss of precision by abstraction after concretisation
e Usually: / # v(«a(/)), a(~v(m)) = m (“Galois insertion”)

RWTH

4 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Recap: Galois Connections

Properties of Galois Connections

Lemma

Let («v,) be a Galois connection with v : L — M and~ : M — L, andlet| € L,
meM, L' CLMCM.

1.a()Cym <= IC;v(m)

2. 7y Iis uniquely determined by « as follows: v(m) = | |[{l € L | a(l) Ty m}

« is uniquely determined by ~ as follows: o(l) = [[{me M | I T, v(m)}

« is completely distributive: forevery L' C L, o| |L') = | [{a(!) | I € L'}

v is completely multiplicative: for every M' C M, ([|M') =[{~v(m) | m e M’}

S

Proof.
on the board

RWTH

5 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Recap: Concrete Semantics of WHILE Programs

Outline of Lecture 11

Recap: Concrete Semantics of WHILE Programs

RWTH

6 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Recap: Concrete Semantics of WHILE Programs

Execution of Statements |
Definition (Execution relation for statements)

If c € Cmd| for TCmd := Cmd U {|} and 0 € ¥, then (c, o) is called a
configuration. The execution relation

— C (Cmd x X) x (Cmd| X ¥)
is defined by the following rules:

™ (skip,0) = (I,0)

(asgn)

(x :=a,0) = (|,0[x — val,(a)])

(01,0) = (c], o) & #1

<C1 ; Co, O'> — <C€;Cg, OJ>

(¢1,0) = (,9')

<C1 ; Co, O'> — <Cg7 O'/>

(seql)

(seq?2)

7 of 21 Static Program Analysis Rm
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) Bl and Verification Chair

Recap: Concrete Semantics of WHILE Programs

Execution of Statements Il

Definition (Execution relation for statements; continued)

val,(b) = true
(if b then ¢y else ¢, end, o) — (cy,0)

(if1)

val,(b) = false
(if b then ¢y else ¢, end, o) — (2, 0)

(if2)

val,(b) = true
(while bdo c end,o) — (c;while bdo cend, o)

(wh1)

val,(b) = false
(while bdo cend,o) — ({,0)

(wh2)

Remark: | indicates successful termination of the program

RWTH

8 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) Bl and Verification Chair

Recap: Concrete Semantics of WHILE Programs

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever c € Cmd,
o € X and Ky, ka € Cmd| X ¥ such that (c,0) — Ky and (c,0) — Ky, then
K1 — Ko.

Proof.
omitted
9 of 21 Static Program Analysis Rm
Summer Semester 2018 Software Modeli
oftware voadelin
Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification cﬂai,

Safe Approximation of Functions

Outline of Lecture 11

Safe Approximation of Functions

RWTH

10 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ B and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions |

Definition 11.1 (Safe approximation)

Let («v,) be a Galois connection with o : L — Mand~ : M — L,andletf: L" — L
and f* : M" — M be functions of rank n € N. Then 7 is called a safe approximation
of f if, whenever my, ... , m, € M,

a(f(v(m), ..., v(my)) Tw FF(my, ..., mp).
Moreover, f is called most precise if the reverse inclusion is also true.

Abstract Concrete
m —5 (m)
N Lf

F(m) 3 a(f(y(m)) <— f(y(m))

RWTH

11 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation)

Il and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions |

Definition 11.1 (Safe approximation)

Let («v,) be a Galois connection with o : L — Mand~ : M — L,andletf: L" — L
and f* : M" — M be functions of rank n € N. Then 7 is called a safe approximation
of f if, whenever my, ... , m, € M,

a(f(v(m), ..., v(my)) Tw FF(my, ..., mp).
Moreover, f is called most precise if the reverse inclusion is also true.

Abstract Concrete
— (m)

N Lf

(M) 3 a(f(y(m))) «— f(y(m))

—

e Interpretation: the abstraction covers all concrete f-results
e Note: monotonicity of f or f* is not required (but usually given; see Lemma 11.3)

11 of 21 Static Program Analysis Rm
Summer Semester 2018

Lecture 11: Abstract Interpretation Il (Safe Approximation)

Software Modeling
Il and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions Il

Example 11.2 (Safeness: a(f(y(my), ..., v(my))) Ty 7 (my, ..., mp))

1. Parity abstraction (cf. Example 10.2): L = (27, C), M = (2feven-cdd} ()
—n=0:forf=one C2%: () — {1},
m one” () = {odd} is most precise: «({1}) = {odd} = one™()
m one”() = {even, odd} is (only) safe: «({1}) = {odd} C {even, odd} = one”()
m one”() = {even} is unsafe: a({1}) = {odd} Z {even} = one™()

RWTH

12 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ B and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions Il

Example 11.2 (Safeness: a(f(y(my), ..., v(my))) Ty 7 (my, ..., mp))

1. Parity abstraction (cf. Example 10.2): L = (27, C), M = (2feven-cdd} ()

—n=0:forf=one C2%: () — {1},

m one” () = {odd} is most precise: «({1}) = {odd} = one™()

m one”() = {even, odd} is (only) safe: «({1}) = {odd} C {even, odd} = one”()

m one”() = {even} is unsafe: a({1}) = {odd} Z {even} = one™()
~n=1:forf=dec:2* -2 .z {z—1]|z€ z},

m dec”({even}) = {odd} is most precise: o(dec(y({even}))) = {odd} = dec”({even})

m dec”({even}) = {odd, even} is (only) safe:

a(dec(v({even}))) = {odd} C {odd, even} = dec”({even})
m dec”({even}) = () is unsafe: a(dec(y({even}))) = {odd} & () = dec’({even})

RWTH

12 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) B and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions Il

Example 11.2 (Safeness: a(f(y(my), ..., v(my))) Ty 7 (my, ..., mp))

1. Parity abstraction (cf. Example 10.2): L = (27, C), M = (2feven-cdd} ()
—n=0:forf=one C2%: () — {1},
m one” () = {odd} is most precise: «({1}) = {odd} = one™()
m one”() = {even, odd} is (only) safe: «({1}) = {odd} C {even, odd} = one”()
m one”() = {even} is unsafe: a({1}) = {odd} Z {even} = one™()
~n=1:forf=dec:2* -2 .z {z—1]|z€ z},
m dec”({even}) = {odd} is most precise: o(dec(y({even}))) = {odd} = dec”({even})
m dec”({even}) = {odd, even} is (only) safe:
a(dec(v({even}))) = {odd} C {odd, even} = dec”({even})
m dec”({even}) = () is unsafe: a(dec(y({even}))) = {odd} & () = dec’({even})
—n=2:forf=+:22x2% = 2% : (z1,2) > z; + 2,
m {even} +7 {odd} = {odd} is m.p.: a(y({even}) + v({odd})) = {odd} = {even} +* {odd}
m {even} +7 {odd} = {even, odd} is (only) safe:
a(y({even}) + v({odd})) = {odd} C {even,odd} = {even} +* {odd}
m {even} +7 {odd} = {even} is unsafe:

a(y({even}) + v({odd})) = {odd} Z {even} = {even} +7 {odd}

12 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation)

RWTH

Il and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions lli

Reminder: o(f(v(my),...,v(m,))) Ey 7 (my, ..., m,)
Example 11.2 (continued)

Most precise approximations (with L = (2%, C)):

2. Sign abstraction (cf. Example 10.3): M = (2{+~9} C)
—n=0:0ne”() = {+}
- n=1:dec”({+}) = {+,0}, —"({+})={—

)={-}
-n=2{+} +* {+} ={+}, {+}F{+}={+ -0} {+}7{-}={-}

RWTH

13 of 21 Static Program Analysis
Summer Semester 2018

Lecture 11: Abstract Interpretation Il (Safe Approximation)

Software Modeling
Il and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions lli
Reminder: o(f(v(my),...,v(m,))) Ey 7 (my, ..., m,)
Example 11.2 (continued)

Most precise approximations (with L = (2%, C)):
2. Sign abstraction (cf. Example 10.3): M = (2{+~9} C)

—n=0:o0ne”() = {+}

- n=1:dec”({+}) = {+,0}, —"({+})={-}

—n=2{+}+*{+}={+}, {(+}F{+}={+ -0}, {+}#{-}={-}
3. Interval abstraction (cf. Example 10.4): M = ((Z U {—o0}) x (Z U {+o0c}) U {0}, ©)

—n=0: one”() = [1,1]

—-n=1:dec”([z,z]) = [zs — 1,z — 1], —7([z1, 2]) = [~ 2, —z]

—n=2: [y, yo| +7 [z1, 2] = [+ 21, Y2 + 2]

[Yh}’z] —7 [21722] = [}’1 — 22,)2 — Z1]
[}/1;}/2] A [21722] — [|—|{}/1Z17}/1227Y2Z17}/222}7 U{Y1Z17Y1227YQZ1;Y222}]
(thus, +7/—7/-7 = (B/O/ from Slide 7.8)

RWTH

13 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) Bl and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions IV

Lemma 11.3

Iff: L" — L and " : M" — M are monotonic, then ™ is a safe approximation of f
iff, forall I,, € L,

af(h, ..., 1) Cu f(alh),. .., a(l)).

RWTH

14 of 21 Static Program Analysis
Summer Semester 2018

Lecture 11: Abstract Interpretation Il (Safe Approximation)

Software Modeling
Il and Verification Chair

Safe Approximation of Functions

Safe Approximation of Functions IV

Lemma 11.3

Iff: L" — L and " : M" — M are monotonic, then ™ is a safe approximation of f
iff forall ly, ... I, € L,

af(h, ..., 1) Cu f(alh),. .., a(l)).

Proof.

on the board

RWTH

14 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) Bl and Verification Chair

Safe Approximation of Execution Relations

Outline of Lecture 11

Safe Approximation of Execution Relations

RWTH

15 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions |

e Reminder: concrete semantics of WHILE
— statements skip | x :=a| ¢;;¢ | 1f bthen ¢, else ¢; end | while bdo c end € Cmd
— states ¥ := {0 | 0 : Var — Z} (Definition 10.6)
— execution relation — C (Cmd x ¥) x ((Cmd U {]}) x X) (Definition 10.9)

RWTH

16 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions |

e Reminder: concrete semantics of WHILE

— statements skip | x :=a| ¢;;¢ | 1f bthen ¢, else ¢; end | while bdo c end € Cmd
— states ¥ := {0 | 0 : Var — 7} (Definition 10.6)
— execution relation — C (Cmd x ¥) x ((Cmd U {]}) x X) (Definition 10.9)

e Yields concrete domain L := (2%, C) and concrete transition function:

Definition 11.4 (Concrete transition function)

The concrete transition function of WHILE is defined by the family of functions
nexte o : o _y o
where ¢ € Cmd, ¢’ € Cmd U {|} and, forevery S C ¥,
nexte«(S) :={o' €L |Jo € S:{c,0) — (c',0)}.

RWTH

16 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions Il

Remarks: next satisfies the following properties
e “Determinism” (cf. Theorem 10.11):

—forallc € Cmd,c € Cmd U {]}ando € ¥, |next.o({c})| <1
—forallc € Cmd and o € ¥ there exists exactly one ¢ € Cmd U {|} such that next, »({c}) # ()

RWTH

17 of 21 Static Program Analysis
Summer Semester 2018 .
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ B and Verification Chair

Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions Il

Remarks: next satisfies the following properties
e “Determinism” (cf. Theorem 10.11):
—forallc € Cmd,c € Cmd U {]}ando € ¥, |next.o({c})| <1
—forallc € Cmd and o € ¥ there exists exactly one ¢ € Cmd U {|} such that next, »({c}) # ()
e When is next, »(S) = ()? Possible reasons:
1.85=10
2. ¢’ is not a possible successor statement of ¢, e.g.,
mc=(x :=0)
m ¢ = skip
3. ¢’ is unreachable for all 0 € S, e.g.,
mc=(if x = 0 then x := 1 else skip end)
m ¢ = skip
mo(x)=0foreacho € S

RWTH

17 of 21 Static Program Analysis
Summer Semester 2018 .
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Safe Approximation of Execution Relations

Safe Approximation of Execution Relations

Reminder: abstraction determined by Galois connection (v, v) with v : L — M,
v :M—= L

e here: L := 2>, M not fixed

e often M = Var — ... (more efficient) or M = 2Y¥~ (more precise)

e write Abs in place of M

e thus o : 2- — Abs and vy : Abs — 2%

RWTH

18 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Safe Approximation of Execution Relations

Safe Approximation of Execution Relations

Reminder: abstraction determined by Galois connection (v, v) with v : L — M,
v :M—= L

e here: L := 2>, M not fixed

e often M = Var — ... (more efficient) or M = 2Y¥~ (more precise)

e write Abs in place of M

e thus o : 2- — Abs and vy : Abs — 2%

Definition 11.5 (Abstract semantics of WHILE)

Given o : 2> — Abs, an abstract semantics is defined by a family of functions
nextfc, . Abs — Abs

where ¢ € Cmd, ¢’ € Cmd U {] }, and each nextfc, is a safe approximation of
next; ¢, i.e., ’

a(nexte.c(7(abs))) Caps next?,(abs)

for every abs € Abs (notation: (c, abs) = (c’, abs’) for nextfc,(abs) — abs’).

RWTH

18 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Examples

Outline of Lecture 11

Examples

19 of 21 Static Program Analysis Rm
Summer Semester 2018 Software Modeli
Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ = ar(:d ‘\"I':rri(feica(;iozlgﬂair

Examples

Example: Parity Abstraction
Example 11.6 (Parity abstraction (cf. Example 10.2))

e Var = {n}
e Abs = 2Var—>{even,odd}

e Notation: [n — p| € abs € Abs for p € {even, odd}

RWTH

20 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Examples

Example: Parity Abstraction
Example 11.6 (Parity abstraction (cf. Example 10.2))

e Var = {n}
e Abs = 2Var—>{even,odd}

e Notation: [n — p| € abs € Abs for p € {even, odd}
e Some abstract transitions:

(n :=3xn+ 1 {[n—odd]})= (,{[n+ even]})

RWTH

20 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Examples

Example: Parity Abstraction
Example 11.6 (Parity abstraction (cf. Example 10.2))

e Var = {n}
e Abs = 2Var—>{even,odd}

e Notation: [n — p| € abs € Abs for p € {even, odd}
e Some abstract transitions:

(n :=3xn+ 1 {[n—odd]})= (,{[n+ even]})
(n := 2 *n + 1, {[n~ even],[n+— odd]}) = (|,{[n — odd]})

RWTH

20 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Examples

Example: Parity Abstraction
Example 11.6 (Parity abstraction (cf. Example 10.2))

e Var = {n}
e Abs = 2Var—>{even,odd}

e Notation: [n — p| € abs € Abs for p € {even, odd}
e Some abstract transitions:

(n :=3xn+ 1 {[n—odd]})= (,{[n+ even]})
(n := 2 *n + 1, {[n~ even],[n+— odd]}) = (|,{[n — odd]})
(while —(n=1) do ¢ end,{[n+ odd]}) = ({,{[n — odd]|})

RWTH

20 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Examples

Example: Parity Abstraction
Example 11.6 (Parity abstraction (cf. Example 10.2))

e Var = {n}
e Abs = 2Var—>{even,odd}

e Notation: [n — p| € abs € Abs for p € {even, odd}
e Some abstract transitions:

(n :=3*n+ 1 {[n—oddl})= (|,{[n+— even]})

(n :=2xn+ 1 {[n— even],[n+— odd]}) = (I, {[n — odd]})

(while —(n=1) do ¢ end,{[n+ odd]}) = ({,{[n — odd]|})
(while —(n=1) do ¢ end,{[n+ odd]}) = (c; while —(n=1) do c end,{[n~— odd|})

RWTH

20 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Examples

Example: Parity Abstraction
Example 11.6 (Parity abstraction (cf. Example 10.2))

e Var = {n}
e Abs = 2Var—>{even,odd}

e Notation: [n — p| € abs € Abs for p € {even, odd}
e Some abstract transitions:

(n := 3 xn + 1 {[n~— odd]} 1, {[n > even]})

) =
(n := 2 *n + 1, {[n~ even],[n+— odd]}) = (|,{[n — odd]})
(while —(n=1) do ¢ end,{[n — odd|}) = (|, {[n — odd]})
) =
) = {

(while —(n=1) do c¢ end, {[n — odd|} c; while —(n=1) do ¢ end,{[n — odd]})

1 0)

(while —(n=1) do c¢ end, {[n > even|}

RWTH

20 of 21 Static Program Analysis
Summer Semester 2018
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

Examples

Example: Parity Abstraction
Example 11.6 (Parity abstraction (cf. Example 10.2))

e Var = {n}
e Abs = 2Var—>{even,odd}

e Notation: [n — p| € abs € Abs for p € {even, odd}
e Some abstract transitions:

(n :=3*n+ 1 {[n—oddl})= (|,{[n+— even]})

(n := 2 *n + 1, {[n~ even],[n+— odd]}) = (|,{[n — odd]})

(while —(n=1) do ¢ end, {[n+— odd]}) = (|, {[n — odd]})

(while —(n=1) do c¢ end, {[n+> odd]}) = (c; while —(n=1) do c end,{[n — odd]})

(while —(n=1) do ¢ end,{[n+ even|}) = (], 0)

(while —(n=1) do c¢ end, {[n+ even|}) = (c; while —(n=1) do c¢ end, {[n > even|})
S e f)_ .. |RWIH

Lecture 11: Abstract Interpretation Il (Safe Approximation) M i VeicationGhai

Examples

Example: Hailstone Sequences

Example 11.7 (Hailstone Sequences)

[skip]';
while [-(n = 1)]?do
if [even(n)]® then e skip statements only for labels

g 4, - 115
[n :=n / 2]";[skip] e abstract transition system for o(n) € Zoq:

else
. - on the board
[n := 3 * n + 1]°;[skip] o
e formal derivation later
end
end
21 of 21 Static Program Analysis
Summer Semester 2018 o " Rm
X X X Software Modeling
Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ B and Verification Chair

http://en.wikipedia.org/wiki/Collatz_conjecture
http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf

Examples

Example: Hailstone Sequences

Example 11.7 (Hailstone Sequences)

[skip]';
while [-(n = 1)]?do
if [even(n)]’ t?en ; e skip statements only for labels
1[n =/ 2%[skip) e abstract transition system for o(n) € Zoqq:
else
[n := 3 * n + 1]%;[skip|’ on the boa_rd _
end e formal derivation later
end

e Collatz Conjecture: given any n > 0, the program finally returns 1
(that is, every Hailstone Sequence terminates)

e aka 3n + 1 Conjecture, Ulam Conjecture, Kakutani’s Problem, Thwaites’ Conjecture,
Hasse’s Algorithm, or Syracuse Problem

e Generally assumed to be true (experimental evidence, heuristic arguments)
e Latest (faulty) proof attempt by Gerhard Opfer from Hamburg University (2011)

RWTH

21 of 21 Static Program Analysis
Summer Semester 2018 .
Software Modeling

Lecture 11: Abstract Interpretation Il (Safe Approximation) ‘ Bl and Verification Chair

http://en.wikipedia.org/wiki/Collatz_conjecture
http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf

	Recap: Galois Connections
	Recap: Concrete Semantics of WHILE Programs
	Safe Approximation of Functions
	Safe Approximation of Execution Relations
	Examples

