
Static Program Analysis
Lecture 11: Abstract Interpretation II (Safe Approximation)

Summer Semester 2018

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-18/spa/

https://moves.rwth-aachen.de/teaching/ss-18/spa/

Process Science and Data Science:
A Match Made in Heaven!
Prof. Dr. Wil van der Aalst

Freitag | 08. Juni 2018 | 15.30 - 16.45 Uhr | Aula 2 der RWTH | Ahornstr. 55

Eintritt frei. Anmeldung nicht erforderlich. Der Vortrag findet im Rahmen des Sommerfests der Informatik der RWTH
statt. Bitte pünktlich erscheinen.

The Process and Data Science
(PADS) group, headed by prof.dr.ir.
 Wil van der Aalst, is a new research
unit in RWTH’s Department of Com-
puter Science. The scope of PADS
includes all activities where discrete
processes are analyzed, reenginee-
red, and/or supported in a data-
driven manner. Process-centricity
is combined with an array of Data
Science techniques.

This talk will introduce Process
Mining as a novel way to turn event
data into valuable insights, predic-
tions, and decisions. Events refer to

activities executed by resources at
particular times and for particular
cases. Such event data are collected
everywhere; in logistics, manufactu-
ring, finance, healthcare, customer
relationship management, e-learning,
e-government, and many other do-
mains. Process Mining can be used
to discover the real processes, to
detect deviations from normative pro-
cesses, and to analyze bottlenecks
and waste.

The interplay between Process
Science and Data Science generates
many interesting research problems.

For example, how to deal with ter-
abytes of event data scattered over
dozens of database tables? How to
use process mining responsibly (e.g.,
ensure fairness and confidentiality)?
How to amalgamate Process Mining
with Operations Research approa-
ches (optimization, simulation, etc.)?
These questions are scientifically
interesting and practically relevant.
This is illustrated by the 25+ commer-
cial Process Mining tools based on
the ideas developed by prof. van der
Aalst and his colleagues. His talk will
show different tools and their use in a
variety of domains.

Vortrag und Diskussion

© Bart van Overbeeke Fotografie

In Kooperation mit Fachgruppe Informatik, der Regionalgruppe der Gesellschaft für Informatik (RIA)
und des Regionalen Industrieclubs Informatik Aachen (Regina e.V.)

Recap: Galois Connections

Galois Connections

Definition (Galois connection)

Let (L,vL) and (M,vM) be complete lattices. A pair (α, γ) of
monotonic functions

α : L→ M and γ : M → L

is called a Galois connection if

∀l ∈ L : l vL γ(α(l)) and ∀m ∈ M : α(γ(m)) vM m

Interpretation:
• L = {sets of concrete values}, M = {sets of abstract values}
• α = abstraction function, γ = concretisation function
• l vL γ(α(l)): α yields over-approximation
• α(γ(m)) vM m: no loss of precision by abstraction after concretisation
• Usually: l 6= γ(α(l)), α(γ(m)) = m (“Galois insertion”)

Evariste Galois
(1811–1832)

4 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Recap: Galois Connections

Properties of Galois Connections

Lemma

Let (α, γ) be a Galois connection with α : L→ M and γ : M → L, and let l ∈ L,
m ∈ M, L′ ⊆ L, M ′ ⊆ M.
1. α(l) vM m ⇐⇒ l vL γ(m)

2. γ is uniquely determined by α as follows: γ(m) =
⊔
{l ∈ L | α(l) vM m}

3. α is uniquely determined by γ as follows: α(l) =
d
{m ∈ M | l vL γ(m)}

4. α is completely distributive: for every L′ ⊆ L, α(
⊔

L′) =
⊔
{α(l) | l ∈ L′}

5. γ is completely multiplicative: for every M ′ ⊆ M, γ(
d

M ′) =
d
{γ(m) | m ∈ M ′}

Proof.

on the board

5 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Recap: Concrete Semantics of WHILE Programs

Execution of Statements I

Definition (Execution relation for statements)

If c ∈ Cmd↓ for TCmd := Cmd ∪ {↓} and σ ∈ Σ, then 〈c, σ〉 is called a
configuration. The execution relation

→⊆ (Cmd × Σ)× (Cmd↓ × Σ)

is defined by the following rules:
(skip)

〈skip, σ〉 → 〈↓, σ〉
(asgn)

〈x := a, σ〉 → 〈↓, σ[x 7→ valσ(a)]〉

(seq1)

〈c1, σ〉 → 〈c′1, σ′〉 c′1 6= ↓
〈c1;c2, σ〉 → 〈c′1;c2, σ

′〉

(seq2)

〈c1, σ〉 → 〈↓, σ′〉
〈c1;c2, σ〉 → 〈c2, σ

′〉

7 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Recap: Concrete Semantics of WHILE Programs

Execution of Statements II

Definition (Execution relation for statements; continued)

(if1)

valσ(b) = true

〈if b then c1 else c2 end, σ〉 → 〈c1, σ〉

(if2)

valσ(b) = false

〈if b then c1 else c2 end, σ〉 → 〈c2, σ〉

(wh1)

valσ(b) = true

〈while b do c end, σ〉 → 〈c;while b do c end, σ〉

(wh2)

valσ(b) = false

〈while b do c end, σ〉 → 〈↓, σ〉

Remark: ↓ indicates successful termination of the program

8 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Recap: Concrete Semantics of WHILE Programs

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever c ∈ Cmd,
σ ∈ Σ and κ1, κ2 ∈ Cmd↓ × Σ such that 〈c, σ〉 → κ1 and 〈c, σ〉 → κ2, then
κ1 = κ2.

Proof.

omitted

More on formal semantics of programming languages:
Semantics and Verification of Software in next summer semester

9 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Functions

Safe Approximation of Functions I

Definition 11.1 (Safe approximation)

Let (α, γ) be a Galois connection with α : L→ M and γ : M → L, and let f : Ln → L
and f # : Mn → M be functions of rank n ∈ N. Then f # is called a safe approximation
of f if, whenever m1, . . . ,mn ∈ M,

α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn).

Moreover, f # is called most precise if the reverse inclusion is also true.

Abstract Concrete
~m

γ−→ γ(~m)
↓ f # ↓ f
f #(~m) w α(f (γ(~m)))

α←− f (γ(~m))

• Interpretation: the abstraction f # covers all concrete f -results
• Note: monotonicity of f or f # is not required (but usually given; see Lemma 11.3)

11 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Functions

Safe Approximation of Functions II

Example 11.2 (Safeness: α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn))

1. Parity abstraction (cf. Example 10.2): L = (2Z,⊆), M = (2{even,odd},⊆)
– n = 0: for f = one ⊆ 2Z : () 7→ {1},

� one#() = {odd} is most precise: α({1}) = {odd} = one#()
� one#() = {even, odd} is (only) safe: α({1}) = {odd} ({even, odd} = one#()
� one#() = {even} is unsafe: α({1}) = {odd} 6⊆ {even} = one#()

– n = 1: for f = dec : 2Z → 2Z : Z 7→ {z − 1 | z ∈ Z},
� dec#({even}) = {odd} is most precise: α(dec(γ({even}))) = {odd} = dec#({even})
� dec#({even}) = {odd, even} is (only) safe:
α(dec(γ({even}))) = {odd} ({odd, even} = dec#({even})

� dec#({even}) = ∅ is unsafe: α(dec(γ({even}))) = {odd} 6⊆ ∅ = dec#({even})
– n = 2: for f = + : 2Z × 2Z → 2Z : (z1, z2) 7→ z1 + z2,

� {even} +# {odd} = {odd} is m.p.: α(γ({even}) + γ({odd})) = {odd} = {even} +# {odd}
� {even} +# {odd} = {even, odd} is (only) safe:
α(γ({even}) + γ({odd})) = {odd} ({even, odd} = {even} +# {odd}

� {even} +# {odd} = {even} is unsafe:
α(γ({even}) + γ({odd})) = {odd} 6⊆ {even} = {even} +# {odd}

12 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Functions

Safe Approximation of Functions III

Reminder: α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn)

Example 11.2 (continued)

Most precise approximations (with L = (2Z,⊆)):
2. Sign abstraction (cf. Example 10.3): M = (2{+,−,0},⊆)

– n = 0: one#() = {+}
– n = 1: dec#({+}) = {+, 0}, −#({+}) = {−}
– n = 2: {+} +# {+} = {+}, {+} −# {+} = {+,−, 0}, {+} ·# {−} = {−}

3. Interval abstraction (cf. Example 10.4): M = ((Z ∪ {−∞})× (Z ∪ {+∞}) ∪ {∅},⊆)
– n = 0: one#() = [1, 1]
– n = 1: dec#([z1, z2]) = [z1 − 1, z2 − 1], −#([z1, z2]) = [−z2,−z1]
– n = 2: [y1, y2] +# [z1, z2] = [y1 + z1, y2 + z2]

[y1, y2]−# [z1, z2] = [y1 − z2, y2 − z1]
[y1, y2] ·# [z1, z2] = [

d
{y1z1, y1z2, y2z1, y2z2},

⊔
{y1z1, y1z2, y2z1, y2z2}]

(thus, +#/−#/·# =⊕/	/� from Slide 7.8)

13 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Functions

Safe Approximation of Functions IV

Lemma 11.3

If f : Ln → L and f # : Mn → M are monotonic, then f # is a safe approximation of f
iff, for all l1, . . . , ln ∈ L,

α(f (l1, . . . , ln)) vM f #(α(l1), . . . , α(ln)).

Proof.

on the board

14 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions I

• Reminder: concrete semantics of WHILE
– statements skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end ∈ Cmd
– states Σ := {σ | σ : Var → Z} (Definition 10.6)
– execution relation→⊆ (Cmd × Σ)× ((Cmd ∪ {↓})× Σ) (Definition 10.9)

• Yields concrete domain L := (2Σ,⊆) and concrete transition function:

Definition 11.4 (Concrete transition function)

The concrete transition function of WHILE is defined by the family of functions

nextc,c′ : 2Σ → 2Σ

where c ∈ Cmd , c′ ∈ Cmd ∪ {↓} and, for every S ⊆ Σ,

nextc,c′(S) := {σ′ ∈ Σ | ∃σ ∈ S : 〈c, σ〉 → 〈c′, σ′〉}.

16 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Execution Relations

Encoding Execution Relations by Transition Functions II

Remarks: next satisfies the following properties
• “Determinism” (cf. Theorem 10.11):

– for all c ∈ Cmd , c′ ∈ Cmd ∪ {↓} and σ ∈ Σ, |nextc,c′({σ})| ≤ 1
– for all c ∈ Cmd and σ ∈ Σ there exists exactly one c′ ∈ Cmd ∪ {↓} such that nextc,c′({σ}) 6= ∅

• When is nextc,c′(S) = ∅? Possible reasons:
1. S = ∅
2. c′ is not a possible successor statement of c, e.g.,

� c = (x := 0)
� c′ = skip

3. c′ is unreachable for all σ ∈ S, e.g.,
� c = (if x = 0 then x := 1 else skip end)
� c′ = skip
� σ(x) = 0 for each σ ∈ S

17 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Safe Approximation of Execution Relations

Safe Approximation of Execution Relations

Reminder: abstraction determined by Galois connection (α, γ) with α : L→ M,
γ : M → L
• here: L := 2Σ, M not fixed
• often M = Var → . . . (more efficient) or M = 2Var→... (more precise)
• write Abs in place of M
• thus α : 2Σ → Abs and γ : Abs → 2Σ

Definition 11.5 (Abstract semantics of WHILE)

Given α : 2Σ → Abs, an abstract semantics is defined by a family of functions

next#c,c′ : Abs → Abs

where c ∈ Cmd , c′ ∈ Cmd ∪ {↓}, and each next#c,c′ is a safe approximation of
nextc,c′, i.e.,

α(nextc,c′(γ(abs))) vAbs next#c,c′(abs)

for every abs ∈ Abs (notation: 〈c, abs〉 ⇒ 〈c′, abs′〉 for next#c,c′(abs) = abs′).

18 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Examples

Example: Parity Abstraction

Example 11.6 (Parity abstraction (cf. Example 10.2))

• Var = {n}
• Abs = 2Var→{even,odd}

• Notation: [n 7→ p] ∈ abs ∈ Abs for p ∈ {even, odd}
• Some abstract transitions:

〈n := 3 * n + 1, {[n 7→ odd]}〉 ⇒ 〈↓, {[n 7→ even]}〉

〈n := 2 * n + 1, {[n 7→ even], [n 7→ odd]}〉 ⇒ 〈↓, {[n 7→ odd]}〉

〈while ¬(n=1) do c end, {[n 7→ odd]}〉 ⇒ 〈↓, {[n 7→ odd]}〉

〈while ¬(n=1) do c end, {[n 7→ odd]}〉 ⇒ 〈c; while ¬(n=1) do c end, {[n 7→ odd]}〉

〈while ¬(n=1) do c end, {[n 7→ even]}〉 ⇒ 〈↓, ∅〉

〈while ¬(n=1) do c end, {[n 7→ even]}〉 ⇒ 〈c; while ¬(n=1) do c end, {[n 7→ even]}〉

20 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

Examples

Example: Hailstone Sequences

Example 11.7 (Hailstone Sequences)
[skip]1;
while [¬(n = 1)]2 do
if [even(n)]3 then

[n := n / 2]4;[skip]5

else
[n := 3 * n + 1]6;[skip]7

end
end

• skip statements only for labels
• abstract transition system for σ(n) ∈ Zodd:

on the board
• formal derivation later

• Collatz Conjecture: given any n > 0, the program finally returns 1
(that is, every Hailstone Sequence terminates)
• aka 3n + 1 Conjecture, Ulam Conjecture, Kakutani’s Problem, Thwaites’ Conjecture,

Hasse’s Algorithm, or Syracuse Problem
• Generally assumed to be true (experimental evidence, heuristic arguments)
• Latest (faulty) proof attempt by Gerhard Opfer from Hamburg University (2011)

21 of 21 Static Program Analysis
Summer Semester 2018
Lecture 11: Abstract Interpretation II (Safe Approximation)

http://en.wikipedia.org/wiki/Collatz_conjecture
http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf

	Recap: Galois Connections
	Recap: Concrete Semantics of WHILE Programs
	Safe Approximation of Functions
	Safe Approximation of Execution Relations
	Examples

