Overview

Introduction
Modelling parallel systems
Linear Time Properties
state-based and linear time view definition of linear time properties
invariants and safety
liveness and fairness
Regular Properties
Linear Temporal Logic
Computation-Tree Logic
Equivalences and Abstraction
"liveness: something good will happen."
"liveness: something good will happen."
"event a will occur eventually"

Liveness

"liveness: something good will happen."
"event a will occur eventually"
e.g., termination for sequential programs

Liveness

"liveness: something good will happen."
"event a will occur eventually"
e.g., termination for sequential programs
"event a will occur infinitely many times"
e.g., starvation freedom for dining philosophers

Liveness

"liveness: something good will happen."
"event a will occur eventually"
e.g., termination for sequential programs
"event a will occur infinitely many times" e.g., starvation freedom for dining philosophers
"whenever event b occurs then event \boldsymbol{a} will occur sometimes in the future"

Liveness

"liveness: something good will happen."

"event a will occur eventually"
e.g., termination for sequential programs
"event a will occur infinitely many times" e.g., starvation freedom for dining philosophers
"whenever event b occurs then event a will occur sometimes in the future"
e.g., every waiting process enters eventually its critical section

which property type?

- Each philosopher thinks infinitely often.

which property type?

- Each philosopher thinks infinitely often.

liveness

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.

which property type?

- Each philosopher thinks infinitely often.
liveness
- Two philosophers next to each other never eat at the same time.
invariant

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before.

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
invariant
- Whenever a philosopher eats then he has been thinking at some time before.
safety

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
invariant
- Whenever a philosopher eats then he has been thinking at some time before.
safety
- Whenever a philosopher eats then he will think some time afterwards.

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
invariant
- Whenever a philosopher eats then he has been thinking at some time before.
safety
- Whenever a philosopher eats then he will think some time afterwards.
liveness

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
invariant
- Whenever a philosopher eats then he has been thinking at some time before.
- Whenever a philosopher eats then he will think some time afterwards.
- Between two eating phases of philosopher i lies at least one eating phase of philosopher $i+1$.

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.

invariant

- Whenever a philosopher eats then he has been thinking at some time before.
- Whenever a philosopher eats then he will think some time afterwards.

liveness

- Between two eating phases of philosopher i lies at least one eating phase of philosopher $i+1$.
safety

many different formal definitions of liveness
 have been suggested in the literature

many different formal definitions of liveness
have been suggested in the literature
here: one just example for a formal definition of liveness

Definition of liveness properties

Definition of liveness properties

Let E be an LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a liveness property if each finite word over
$A P$ can be extended to an infinite word in E

Definition of liveness properties

Let E be an LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a liveness property if each finite word over $A P$ can be extended to an infinite word in E, i.e., if

$$
\operatorname{pref}(E)=\left(2^{A P}\right)^{+}
$$

recall: $\operatorname{pref}(E)=$ set of all finite, nonempty prefixes of words in E

Definition of liveness properties

Let E be an LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a liveness property if each finite word over
$A P$ can be extended to an infinite word in E, i.e., if

$$
\operatorname{pref}(E)=\left(2^{A P}\right)^{+}
$$

Examples:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often
- whenever a process has requested its critical section then it will eventually enter its critical section

Examples for liveness properties

An LT property E over $\boldsymbol{A P}$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{\right.$ crit $\left._{i}: i=1, \ldots, n\right\}$:

Examples for liveness properties

An LT property E over $A P$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{c r i t_{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section

Examples for liveness properties

An LT property E over $A P$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{c r i t_{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section

$$
\begin{aligned}
& E=\text { set of all infinite words } A_{0} A_{1} A_{2} \ldots \text { s.t. } \\
& \forall i \in\{\mathbf{1}, \ldots, n\} \exists k \geq 0 . \text { crit }_{i} \in A_{k}
\end{aligned}
$$

Examples for liveness properties

An LT property E over $A P$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{c r i t_{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

Examples for liveness properties

An LT property E over $A P$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{c r i t_{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often
$E=$ set of all infinite words $A_{0} A_{1} A_{2} \ldots$ s.t.

$$
\forall i \in\{1, \ldots, n\} \stackrel{\infty}{\exists} k \geq 0 . \text { crit }_{i} \in A_{k}
$$

Examples for liveness properties

An LT property E over $A P$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{\right.$ wait $_{i}$, crit $\left._{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

Examples for liveness properties

An LT property E over $\boldsymbol{A P}$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{\right.$ wait $_{i}$, crit $\left._{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

$$
\begin{aligned}
& E=\text { set of all infinite words } A_{0} A_{1} A_{2} \ldots \text { s.t. } \\
& \forall i \in\{1, \ldots, n\} \forall j \geq 0 . \text { wait }_{i} \in A_{j} \\
& \longrightarrow k>j . \text { crit }_{i} \in A_{k}
\end{aligned}
$$

Recall: safety properties, prefix closure

Let E be an LT-property, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$

Recall: safety properties, prefix closure

Let E be an LT-property, ie., $E \subseteq\left(2^{A P}\right)^{\omega}$
E is a safety property
iff $\forall \sigma \in\left(2^{A P}\right)^{\omega} \backslash E \exists A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}(\sigma)$ s.t.

$$
\left\{\sigma^{\prime} \in E: A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}\left(\sigma^{\prime}\right)\right\}=\varnothing
$$

Recall: safety properties, prefix closure

Let E be an LT-property, ie., $E \subseteq\left(2^{A P}\right)^{\omega}$
E is a safety property
iff $\forall \sigma \in\left(2^{A P}\right)^{\omega} \backslash E \exists A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}(\sigma)$ s.t.

$$
\left\{\sigma^{\prime} \in E: A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}\left(\sigma^{\prime}\right)\right\}=\varnothing
$$

remind:

$$
\begin{aligned}
& \operatorname{pref}(\sigma)=\text { set of all finite, nonempty prefixes of } \sigma \\
& \operatorname{pref}(E)=\bigcup_{\sigma \in E} \operatorname{pref}(\sigma)
\end{aligned}
$$

Recall: safety properties, prefix closure

Let E be an LT-property, ie., $E \subseteq\left(2^{A P}\right)^{\omega}$
E is a safety property
iff $\forall \sigma \in\left(2^{A P}\right)^{\omega} \backslash E \exists A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}(\sigma)$ s.t.

$$
\left\{\sigma^{\prime} \in E: A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}\left(\sigma^{\prime}\right)\right\}=\varnothing
$$

iff $c l(E)=E$
remind: $c l(E)=\left\{\sigma \in\left(2^{A P}\right)^{\omega}: \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(E)\right\}$
$\operatorname{pref}(\sigma)=$ set of all finite, nonempty prefixes of σ

$$
\operatorname{pref}(E)=\bigcup_{\sigma \in E} \operatorname{pref}(\sigma)
$$

Decomposition theorem

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof:

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c l(E)$

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c l(E)$
remind: $c l(E)=\left\{\sigma \in\left(2^{A P}\right)^{\omega}: \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(E)\right\}$
$\operatorname{pref}(\sigma)=$ set of all finite, nonempty prefixes of σ
$\operatorname{pref}(E)=\bigcup^{\operatorname{pref}}(\sigma)$
$\sigma \in E$

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c l(E)$

$$
\text { LIVE } \stackrel{\text { def }}{=} E \cup\left(\left(2^{A P}\right)^{\omega} \backslash c l(E)\right)
$$

remind: $c l(E)=\left\{\sigma \in\left(2^{A P}\right)^{\omega}: \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(E)\right\}$
$\operatorname{pref}(\sigma)=$ set of all finite, nonempty prefixes of σ
$\operatorname{pref}(E)=\bigcup^{\operatorname{pref}}(\sigma)$
$\sigma \in E$

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c I(E)$

$$
\text { LIVE } \stackrel{\text { def }}{=} E \cup\left(\left(2^{A P}\right)^{\omega} \backslash c l(E)\right)
$$

Show that:

- $E=S A F E \cap$ LIVE
- SAFE is a safety property
- LIVE is a liveness property

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c I(E)$

$$
\text { LIVE } \stackrel{\text { def }}{=} E \cup\left(\left(2^{A P}\right)^{\omega} \backslash c l(E)\right)
$$

Show that:

- $E=S A F E \cap$ LIVE
- SAFE is a safety property
- LIVE is a liveness property

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c I(E)$

$$
\text { LIVE } \stackrel{\text { def }}{=} E \cup\left(\left(2^{A P}\right)^{\omega} \backslash c l(E)\right)
$$

Show that:

- $E=S A F E \cap$ LIVE
- SAFE is a safety property as $c l(S A F E)=$ SAFE
- LIVE is a liveness property

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c I(E)$

$$
\text { LIVE } \stackrel{\text { def }}{=} E \cup\left(\left(2^{A P}\right)^{\omega} \backslash c l(E)\right)
$$

Show that:

- $E=S A F E \cap$ LIVE
- SAFE is a safety property as $c((S A F E)=$ SAFE
- LIVE is a liveness property, i.e., $\operatorname{pref}($ LIVE $)=\left(2^{A P}\right)^{+}$

Being safe and live

Which LT properties are both a safety and a liveness property?

Being safe and live

Which LT properties are both a safety and a liveness property?

answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

Being safe and live

Which LT properties are both a safety and a liveness property?

answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

- $\left(2^{A P}\right)^{\omega}$ is a safety and a liveness property: $\sqrt{ }$

Being safe and live

> Which LT properties are both a safety and a liveness property?
answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

- $\left(2^{A P}\right)^{\omega}$ is a safety and a liveness property: $\sqrt{ }$
- If E is a liveness property then

$$
\operatorname{pref}(E)=\left(2^{A P}\right)^{+}
$$

Being safe and live

> Which LT properties are both a safety and a liveness property?
answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

- $\left(2^{A P}\right)^{\omega}$ is a safety and a liveness property: $\sqrt{ }$
- If E is a liveness property then

$$
\begin{aligned}
\operatorname{pref}(E) & =\left(2^{A P}\right)^{+} \\
\Longrightarrow \quad c l(E) & =\left(2^{A P}\right)^{\omega}
\end{aligned}
$$

Being safe and live

Which LT properties are both a safety and a liveness property?

answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

- $\left(2^{A P}\right)^{\omega}$ is a safety and a liveness property: $\sqrt{ }$
- If E is a liveness property then

$$
\begin{aligned}
\quad \operatorname{pref}(E) & =\left(2^{A P}\right)^{+} \\
\Rightarrow \quad c l(E) & =\left(2^{A P}\right)^{\omega}
\end{aligned}
$$

If E is a safety property too, then $c l(E)=E$.

Being safe and live

Which LT properties are both a safety and a liveness property?

answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

- $\left(2^{A P}\right)^{\omega}$ is a safety and a liveness property: $\sqrt{ }$
- If E is a liveness property then

$$
\begin{aligned}
\operatorname{pref}(E) & =\left(2^{A P}\right)^{+} \\
\Longrightarrow \quad c l(E) & =\left(2^{A P}\right)^{\omega}
\end{aligned}
$$

If E is a safety property too, then $c l(E)=E$.
Hence $E=c l(E)=\left(2^{A P}\right)^{\omega}$.

Observation

liveness properties are often violated although we expect them to hold

Two independent traffic lights

Two independent traffic lights

light 2

light 1 ||| light 2

Two independent traffic lights

light 1 ||| light 2

light 1 ||| light $2 \nmid=$ "infinitely often green $_{1} "$

Two independent traffic lights

light 1 ||| light 2

light 1 ||| light $2 \nmid=$ "infinitely often green $_{1} "$

Two independent traffic lights

light 1 ||| light 2

light 1 ||| light $2 \nmid=$ "infinitely often green $_{1} "$ although light $1 \quad \vDash$ "infinitely often green $_{1} "$

Two independent traffic lights

light 1 ||| light $2 \nmid=$ "infinitely often green $_{1} "$
interleaving is completely time abstract !

Mutual exclusion (semaphore)

Mutual exclusion (semaphore)

liveness $\widehat{\underline{~ " e a c h ~ w a i t i n g ~ p r o c e s s ~ w i l l ~ e v e n t u a l l y ~}}$ enter its critical section"

Mutual exclusion (semaphore)

$\mathcal{T}_{\text {sem }} \not \vDash$
"each waiting process will eventually enter its critical section"

Mutual exclusion (semaphore)

$\tau_{\text {sem }} \not \vDash$
"each waiting process will eventually enter its critical section"

Mutual exclusion (semaphore)

$\tau_{\text {sem }} \not \vDash \quad$ "each waiting process will eventually enter its critical section"
level of abstraction is too coarse!

Process fairness

Process fairness

two independent non-communicating processes $P_{1}| | \mid P_{2}$

possible interleavings:

$$
\begin{aligned}
& P_{1} P_{2} P_{2} P_{1} P_{1} P_{1} P_{2} P_{1} P_{2} P_{2} P_{2} P_{1} P_{1} \ldots \\
& P_{1} P_{1} P_{2} P_{1} P_{1} P_{2} P_{1} P_{1} P_{2} P_{1} P_{1} P_{2} P_{1} \ldots
\end{aligned}
$$

Process fairness

two independent non-communicating processes $P_{1}| | \mid P_{2}$

possible interleavings:

$$
\begin{aligned}
& P_{1} P_{2} P_{2} P_{1} P_{1} P_{1} P_{2} P_{1} P_{2} P_{2} P_{2} P_{1} P_{1} \ldots \\
& P_{1} P_{1} P_{2} P_{1} P_{1} P_{2} P_{1} P_{1} P_{2} P_{1} P_{1} P_{2} P_{1} \ldots \\
& P_{1} \ldots
\end{aligned}
$$

Process fairness

two independent non-communicating processes $P_{1}| | \mid P_{2}$

possible interleavings:
$\begin{array}{lllllllllllllll}P_{1} & P_{2} & P_{2} & P_{1} & P_{1} & P_{1} & P_{2} & P_{1} & P_{2} & P_{2} & P_{2} & P_{1} & P_{1} & \ldots & \text { fair } \\ P_{1} & P_{1} & P_{2} & P_{1} & \ldots & \text { fair } \\ P_{1} & \ldots & \text { unfair }\end{array}$

Process fairness

two independent
non-communicating processes $P_{1}| | \mid P_{2}$

possible interleavings:
$P_{1} P_{2} P_{2} P_{1} P_{1} P_{1} P_{2} P_{1} P_{2} P_{2} P_{2} P_{1} P_{1} \ldots$ fair $P_{1} P_{1} P_{2} P_{1} P_{1} P_{2} P_{1} P_{1} P_{2} P_{1} P_{1} P_{2} P_{1} \ldots$ fair $P_{1} P_{1} \ldots$ unfair
process fairness assumes an appropriate resolution of the nondeterminism resulting from interleaving and competitions

Nuances of fairness

- unconditional fairness
- strong fairness
- weak fairness

Nuances of fairness

- unconditional fairness, e.g., every process enters gets its turn infinitely often.
- strong fairness
- weak fairness

Nuances of fairness

- unconditional fairness, e.g., every process enters gets its turn infinitely often.
- strong fairness, e.g., every process that is enabled infinitely often gets its turn infinitely often.
- weak fairness

Nuances of fairness

- unconditional fairness, e.g., every process enters gets its turn infinitely often.
- strong fairness, e.g., every process that is enabled infinitely often gets its turn infinitely often.
- weak fairness, e.g.,
every process that is continuously enabled from a certain time instance on, gets its turn infinitely often.

Fairness for action-set

Fairness for action-set

Let $\boldsymbol{\mathcal { T }}$ be a TS with action-set $\boldsymbol{A c t}, A \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment

Fairness for action-set

Let $\boldsymbol{\mathcal { T }}$ be a TS with action-set $\boldsymbol{A c t}, \boldsymbol{A} \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment
we will provide conditions for

- unconditional \boldsymbol{A}-fairness of ρ
- strong A-fairness of ρ
- weak A-fairness of ρ

Fairness for action-set

Let $\boldsymbol{\mathcal { T }}$ be a TS with action-set $\boldsymbol{A c t}, \boldsymbol{A} \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment
we will provide conditions for

- unconditional \boldsymbol{A}-fairness of ρ
- strong A-fairness of ρ
- weak A-fairness of ρ
using the following notations:

$$
\operatorname{Act}\left(s_{i}\right)=\left\{\beta \in \operatorname{Act}: \exists s^{\prime} \text { s.t. } s_{i} \xrightarrow{\beta} s^{\prime}\right\}
$$

Fairness for action-set

Let $\boldsymbol{\mathcal { T }}$ be a TS with action-set $\boldsymbol{A c t}, \boldsymbol{A} \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment
we will provide conditions for

- unconditional \boldsymbol{A}-fairness of ρ
- strong A-fairness of ρ
- weak A-fairness of ρ
using the following notations:

$$
\begin{aligned}
\operatorname{Act}\left(s_{i}\right) & =\left\{\beta \in A c t: \exists s^{\prime} \text { s.t. } s_{i} \xrightarrow{\beta} s^{\prime}\right\} \\
\exists & \widehat{=} \text { "there exists infinitely many } \ldots \text { ". }
\end{aligned}
$$

Fairness for action-set

Let $\boldsymbol{\mathcal { T }}$ be a TS with action-set $\boldsymbol{A c t}, \boldsymbol{A} \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment
we will provide conditions for

- unconditional \boldsymbol{A}-fairness of ρ
- strong A-fairness of ρ
- weak A-fairness of ρ
using the following notations:

$$
\begin{aligned}
\text { Act }\left(s_{i}\right) & =\left\{\beta \in \text { Act }: \exists s^{\prime} \text { s.t. } s_{i} \xrightarrow{\beta} s^{\prime}\right\} \\
\exists & \widehat{=} \text { "there exists infinitely many ..." } \\
\neq & \widehat{=} \text { "for all, but finitely many ..." }
\end{aligned}
$$

Fairness for action-set

Let $\boldsymbol{\mathcal { T }}$ be a TS with action-set $\boldsymbol{A c t}, \boldsymbol{A} \subseteq \boldsymbol{A c t}$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment

- ρ is unconditionally \boldsymbol{A}-fair, if

Fairness for action-set

Let \mathcal{T} be a TS with action-set $\boldsymbol{A c t}, \boldsymbol{A} \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A$
"actions in A will be taken infinitely many times"

Fairness for action-set

Let $\boldsymbol{\mathcal { T }}$ be a TS with action-set $\boldsymbol{A c t}, \boldsymbol{A} \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A$
- ρ is strongly \boldsymbol{A}-fair, if

Fairness for action-set

Let \mathcal{T} be a TS with action-set $\boldsymbol{A c t}, \boldsymbol{A} \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A$
- ρ is strongly A-fair, if

$$
\stackrel{\infty}{\exists} i \geq 0 . A \cap \operatorname{Act}\left(s_{i}\right) \neq \varnothing \quad \Longrightarrow \quad \stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A
$$

"If infinitely many times some action in \boldsymbol{A} is enabled, then actions in A will be taken infinitely many times."

Fairness for action-set

Let \mathcal{T} be a TS with action-set $\boldsymbol{A c t}, \boldsymbol{A} \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A$
- ρ is strongly A-fair, if

$$
\stackrel{\infty}{\exists} i \geq 0 . A \cap \operatorname{Act}\left(s_{i}\right) \neq \varnothing \quad \Longrightarrow \quad \stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A
$$

- ρ is weakly A-fair, if

Fairness for action-set

Let \mathcal{T} be a TS with action-set $\boldsymbol{A c t}, \boldsymbol{A} \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A$
- ρ is strongly A-fair, if

$$
\stackrel{\infty}{\exists} i \geq 0 . A \cap \operatorname{Act}\left(s_{i}\right) \neq \varnothing \quad \Longrightarrow \quad \stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A
$$

- ρ is weakly A-fair, if

$$
\forall i \geq 0 . A \cap \operatorname{Act}\left(s_{i}\right) \neq \varnothing \quad \Longrightarrow \quad \nexists i \geq 0 . \alpha_{i} \in A
$$

"If from some moment, actions in A are enabled, then actions in \boldsymbol{A} will be taken infinitely many times."

Fairness for action-set

Let \mathcal{T} be a TS with action-set $\boldsymbol{A c t}, \boldsymbol{A} \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ infinite execution fragment

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A$
- ρ is strongly A-fair, if

$$
\stackrel{\infty}{\exists} i \geq 0 . A \cap \operatorname{Act}\left(s_{i}\right) \neq \varnothing \quad \Longrightarrow \quad \stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A
$$

- ρ is weakly A-fair, if

$$
\stackrel{\infty}{\forall} i \geq 0 . A \cap \operatorname{Act}\left(s_{i}\right) \neq \varnothing \quad \Longrightarrow \quad \stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A
$$

unconditionally A-fair \Longrightarrow strongly A-fair \Longrightarrow weakly A-fair

Fairness for action-set

Let \mathcal{T} be a TS with action-set $A c t, A \subseteq A c t$ and
$\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} s_{2} \xrightarrow{\alpha_{2}} \ldots$ an infinite execution fragment

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A$
- ρ is strongly A-fair, if

$$
\stackrel{\infty}{\exists} i \geq 0 . A \cap \operatorname{Act}\left(s_{i}\right) \neq \varnothing \quad \Longrightarrow \quad \stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A
$$

- ρ is weakly A-fair, if

$$
\stackrel{\infty}{\forall} i \geq 0 . A \cap \operatorname{Act}\left(s_{i}\right) \neq \varnothing \quad \Longrightarrow \quad \stackrel{\infty}{\exists} i \geq 0 . \alpha_{i} \in A
$$

$$
\text { unconditionally } \begin{aligned}
A \text {-fair } & \Longrightarrow \text { strongly } A \text {-fair } \\
& \Longrightarrow \text { weakly } A \text {-fair }
\end{aligned}
$$

Strong and weak action fairness

strong A-fairness is violated if

- no A-actions are executed from a certain moment
- A-actions are enabled infinitely many times

Strong and weak action fairness

strong A-fairness is violated if

- no A-actions are executed from a certain moment
- A-actions are enabled infinitely many times
weak A-fairness is violated if

- no A-actions are executed from a certain moment
- A-actions are continuously enabled from some moment on

Mutual exclusion with arbiter

Mutual exclusion with arbiter

Mutual exclusion with arbiter

Unconditional, strongly or weakly fair?

$\mathcal{T}_{1} \|$ Arbiter $\| \mathcal{T}_{2}$

Unconditional, strongly or weakly fair?

$\mathcal{T}_{1} \|$ Arbiter $\| \mathcal{T}_{2}$

fairness for action set $\boldsymbol{A}=\left\{\right.$ enter $\left._{1}\right\}$:

$$
\left\langle n_{1}, u, n_{2}\right\rangle \rightarrow\left(\left\langle n_{1}, u, w_{2}\right\rangle \rightarrow\left\langle w_{1}, u, w_{2}\right\rangle \rightarrow\left\langle\operatorname{crit}_{1}, I, w_{2}\right\rangle\right)^{\omega}
$$

- unconditional A-fairness:
- strong A-fairness:
- weak A-fairness:

Unconditional, strongly or weakly fair?

$\mathcal{T}_{1} \|$ Arbiter $\| \mathcal{T}_{2}$

fairness for action set $\boldsymbol{A}=\left\{\right.$ enter $\left._{1}\right\}$:

$$
\left\langle n_{1}, u, n_{2}\right\rangle \rightarrow\left(\left\langle n_{1}, u, w_{2}\right\rangle \rightarrow\left\langle w_{1}, u, w_{2}\right\rangle \rightarrow\left\langle\operatorname{crit}_{1}, I, w_{2}\right\rangle\right)^{\omega}
$$

- unconditional A-fairness: yes
- strong A-fairness: \quad yes \leftarrow unconditionally fair
- weak A-fairness: yes \leftarrow unconditionally fair ${\underset{9 Q / 189}{ },}^{2}$

Unconditional, strongly or weakly fair?

$\mathcal{T}_{1} \|$ Arbiter $\| \mathcal{T}_{2}$

fairness for action-set $A=\left\{\right.$ enter $\left._{1}\right\}$:

$$
\left(\left\langle n_{1}, u, n_{2}\right\rangle \rightarrow\left\langle n_{1}, u, w_{2}\right\rangle \rightarrow\left\langle n_{1}, l, \text { crit }_{2}\right\rangle\right)^{\omega}
$$

- unconditional A-fairness:
- strong A-fairness:
- weak A-fairness:

Unconditional, strongly or weakly fair?

$\mathcal{T}_{1} \|$ Arbiter $\| \mathcal{T}_{2}$

fairness for action-set $A=\left\{\right.$ enter $\left._{1}\right\}$:

$$
\left(\left\langle n_{1}, u, n_{2}\right\rangle \rightarrow\left\langle n_{1}, u, w_{2}\right\rangle \rightarrow\left\langle n_{1}, I, \text { crit }_{2}\right\rangle\right)^{\omega}
$$

- unconditional A-fairness: no
- strong A-fairness:
- weak A-fairness:
yes $\leftarrow A$ never enabled yes \leftarrow strongly A-fair

Unconditional, strongly or weakly fair?

$\mathcal{T}_{1} \|$ Arbiter $\| \mathcal{T}_{2}$

fairness for action-set $\boldsymbol{A}=\left\{\right.$ enter $\left._{1}\right\}$:
$\left\langle n_{1}, u, n_{2}\right\rangle \rightarrow\left(\left\langle w_{1}, u, n_{2}\right\rangle \rightarrow\left\langle w_{1}, u, w_{2}\right\rangle \rightarrow\left\langle n_{1}, l, \text { crit }_{2}\right\rangle\right)^{\omega}$

- unconditional A-fairness:
- strong A-fairness:
- weak A-fairness:

Unconditional, strongly or weakly fair?

$\mathcal{T}_{1} \|$ Arbiter $\| \mathcal{T}_{2}$

fairness for action-set $\boldsymbol{A}=\left\{\right.$ enter $\left._{1}\right\}$:
$\left\langle n_{1}, u, n_{2}\right\rangle \rightarrow\left(\left\langle w_{1}, u, n_{2}\right\rangle \rightarrow\left\langle w_{1}, u, w_{2}\right\rangle \rightarrow\left\langle n_{1}, l, \text { crit }_{2}\right\rangle\right)^{\omega}$

- unconditional A-fairness: no
- strong A-fairness: no
- weak A-fairness:
yes

Unconditional, strongly or weakly fair?

$\mathcal{T}_{1} \|$ Arbiter $\| \mathcal{T}_{2}$

fairness for action set $\boldsymbol{A}=\left\{\right.$ enter $_{1}$, enter $\left.{ }_{2}\right\}$:

$$
\left(\left\langle n_{1}, u, n_{2}\right\rangle \rightarrow\left\langle n_{1}, u, w_{2}\right\rangle \rightarrow\left\langle n_{1}, u, c r i t_{2}\right\rangle\right)^{\omega}
$$

- unconditional A-fairness:
- strong A-fairness:
- weak A-fairness:

Unconditional, strongly or weakly fair?

$\mathcal{T}_{1} \|$ Arbiter $\| \mathcal{T}_{2}$

fairness for action set $\boldsymbol{A}=\left\{\right.$ enter $_{1}$, enter $\left.{ }_{2}\right\}$:

$$
\left(\left\langle n_{1}, u, n_{2}\right\rangle \rightarrow\left\langle n_{1}, u, w_{2}\right\rangle \rightarrow\left\langle n_{1}, u, \text { crit } t_{2}\right\rangle\right)^{\omega}
$$

- unconditional A-fairness: yes
- strong A-fairness: yes
- weak A-fairness: yes

Action-based fairness assumptions

Action-based fairness assumptions

Let \mathcal{T} be a transition system with action-set Act.
A fairness assumption for \mathcal{T} is a triple

$$
\mathcal{F}=\left(\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }}\right)
$$

where $\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }} \subseteq 2^{\text {Act }}$.

Action-based fairness assumptions

Let \mathcal{T} be a transition system with action-set $\boldsymbol{A c t}$.
A fairness assumption for \mathcal{T} is a triple

$$
\mathcal{F}=\left(\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }}\right)
$$

where $\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }} \subseteq 2^{\text {Act }}$.

An execution ρ is called \mathcal{F}-fair iff

- ρ is unconditionally A-fair for all $A \in \mathcal{F}_{\text {ucond }}$
- ρ is strongly A-fair for all $A \in \mathcal{F}_{\text {strong }}$
- $\boldsymbol{\rho}$ is weakly A-fair for all $A \in \mathcal{F}_{\text {weak }}$

Action-based fairness assumptions

Let \mathcal{T} be a transition system with action-set $\boldsymbol{A c t}$.
A fairness assumption for \mathcal{T} is a triple

$$
\mathcal{F}=\left(\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }}\right)
$$

where $\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }} \subseteq 2^{\text {Act }}$.

An execution ρ is called \mathcal{F}-fair iff

- ρ is unconditionally A-fair for all $A \in \mathcal{F}_{\text {ucond }}$
- ρ is strongly A-fair for all $A \in \mathcal{F}_{\text {strong }}$
- $\boldsymbol{\rho}$ is weakly A-fair for all $A \in \mathcal{F}_{\text {weak }}$
$\operatorname{Fair}_{\operatorname{Traces}}^{\mathcal{F}}(\mathcal{T}) \stackrel{\text { def }}{=}\{\operatorname{trace}(\rho): \rho$ is a \mathcal{F}-fair execution of $\mathcal{T}\}$

Fair satisfaction relation

Fair satisfaction relation

A fairness assumption for $\boldsymbol{\mathcal { T }}$ is a triple

$$
\mathcal{F}=\left(\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }}\right)
$$

where $\mathcal{F}_{\text {ucond, }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }} \subseteq 2^{\text {Act }}$.
An execution ρ is called \mathcal{F}-fair iff

- ρ is unconditionally A-fair for all $A \in \mathcal{F}_{\text {ucond }}$
- ρ is strongly A-fair for all $\boldsymbol{A} \in \mathcal{F}_{\text {strong }}$
- ρ is weakly A-fair for all $A \in \mathcal{F}_{\text {weak }}$

If \mathcal{T} is a TS and E a LT property over $\boldsymbol{A P}$ then:

$$
\mathcal{T} \models_{\mathcal{F}} E \quad \stackrel{\text { def }}{\Longleftrightarrow} \operatorname{FairTraces}_{\mathcal{F}}(\mathcal{T}) \subseteq E
$$

Example: fair satisfaction relation

fairness assumption \mathcal{F}

- no unconditional fairness condition
- strong fairness for $\{\alpha, \beta\}$
- no weak fairness condition

Example: fair satisfaction relation

fairness assumption \mathcal{F}

- no unconditional fairness condition $\leftarrow \mathcal{F}_{\text {ucond }}=\varnothing$
- strong fairness for $\{\alpha, \beta\} \leftarrow \mathcal{F}_{\text {strong }}=\{\{\alpha, \beta\}\}$
- no weak fairness condition

$$
\leftarrow \mathcal{F}_{\text {weak }}=\varnothing
$$

Example: fair satisfaction relation

$\boldsymbol{T} \models_{\mathcal{F}}$ "infinitely often $b "$?

fairness assumption \mathcal{F}

- no unconditional fairness condition $\leftarrow \mathcal{F}_{\text {ucond }}=\varnothing$
- strong fairness for $\{\alpha, \beta\} \leftarrow \mathcal{F}_{\text {strong }}=\{\{\alpha, \beta\}\}$
- no weak fairness condition

$$
\leftarrow \mathcal{F}_{\text {weak }}=\varnothing
$$

Example: fair satisfaction relation

$\mathcal{T} \not \models_{\mathcal{F}}$ "infinitely often b " ?

 answer: nofairness assumption \mathcal{F}

- no unconditional fairness condition $\leftarrow \mathcal{F}_{\text {ucond }}=\varnothing$
- strong fairness for $\{\alpha, \beta\} \leftarrow \mathcal{F}_{\text {strong }}=\{\{\alpha, \beta\}\}$
- no weak fairness condition

$$
\leftarrow \mathcal{F}_{\text {weak }}=\varnothing
$$

Example: fair satisfaction relation

$\mathcal{T} \not \models_{\mathcal{F}}$ "infinitely often $b "$? answer: no
fairness assumption \mathcal{F}

- no unconditional fairness condition $\leftarrow \mathcal{F}_{u c o n d}=\varnothing$
- strong fairness for $\{\alpha, \beta\} \leftarrow \mathcal{F}_{\text {strong }}=\{\{\alpha, \beta\}\}$
- no weak fairness condition

$$
\leftarrow \mathcal{F}_{\text {weak }}=\varnothing
$$

actions in $\{\alpha, \beta\}$ are executed infinitely many times

Example: fair satisfaction relation

fairness assumption \mathcal{F}

- strong fairness for α
- weak fairness for β

$$
\begin{aligned}
\leftarrow \mathcal{F}_{\text {strong }} & =\{\{\alpha\}\} \\
\leftarrow \mathcal{F}_{\text {weak }} & =\{\{\beta\}\}
\end{aligned}
$$

- no unconditional fairness assumption

Example: fair satisfaction relation

$\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b " ?

fairness assumption \mathcal{F}

- strong fairness for α
- weak fairness for β
$\leftarrow \mathcal{F}_{\text {strong }}=\{\{\alpha\}\}$ $\leftarrow \mathcal{F}_{\text {weak }}=\{\{\beta\}\}$
- no unconditional fairness assumption

Example: fair satisfaction relation

$\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b " ? answer: no
fairness assumption \mathcal{F}

- strong fairness for α
- weak fairness for β

$$
\begin{aligned}
\leftarrow \mathcal{F}_{\text {strong }} & =\{\{\alpha\}\} \\
\leftarrow \mathcal{F}_{\text {weak }} & =\{\{\beta\}\}
\end{aligned}
$$

- no unconditional fairness assumption

Example: fair satisfaction relation

$\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b " ? answer: no
fairness assumption \mathcal{F}

- strong fairness for α
- weak fairness for β

$$
\begin{aligned}
\leftarrow \mathcal{F}_{\text {strong }} & =\{\{\alpha\}\} \\
\leftarrow \mathcal{F}_{\text {weak }} & =\{\{\beta\}\}
\end{aligned}
$$

- no unconditional fairness assumption

Example: fair satisfaction relation

$\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b "

fairness assumption \mathcal{F}

- strong fairness for β

$$
\leftarrow \mathcal{F}_{\text {strong }}=\{\{\beta\}\}
$$

- no weak fairness assumption
- no unconditional fairness assumption

Example: fair satisfaction relation

$\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b "

fairness assumption \mathcal{F}

- strong fairness for β

$$
\leftarrow \mathcal{F}_{\text {strong }}=\{\{\beta\}\}
$$

- no weak fairness assumption
- no unconditional fairness assumption

Which type of fairness?

Which type of fairness?

fairness assumptions should be as weak as possible

Two independent traffic lights

light 2

Two independent traffic lights

light 1

light 2

light 1 ||| light $2 \models_{\mathcal{F}} E$
$E \widehat{=}$ "both lights are infinitely often green"

Two independent traffic lights

light 1

light 2

$\boldsymbol{A}_{\mathbf{1}}=$ actions of light 1
$\boldsymbol{A}_{\mathbf{2}}=$ actions of light 2
fairness assumption \mathcal{F} :
$\mathcal{F}_{\text {ucond }}=$?
$\mathcal{F}_{\text {strong }}=$?
$\mathcal{F}_{\text {weak }}=$?

light $1\left|\left|\mid\right.\right.$ light $2 \not \models_{\mathcal{F}} E$
$E \widehat{=}$ "both lights are infinitely often green"

Two independent traffic lights

light 1

light 2

$\boldsymbol{A}_{\mathbf{1}}=$ actions of light 1
$\boldsymbol{A}_{\mathbf{2}}=$ actions of light 2
fairness assumption \mathcal{F} :
$\mathcal{F}_{\text {ucond }}=\varnothing$
$\mathcal{F}_{\text {strong }}=\varnothing$
$\mathcal{F}_{\text {weak }}=\left\{A_{1}, A_{2}\right\}$

light $1\left|\left|\mid\right.\right.$ light $2 \not \models_{\mathcal{F}} E$
$E \widehat{=}$ "both lights are infinitely often green"

Example: MUTEX with fair arbiter

$\mathcal{T}=\mathcal{T}_{1} \|$ Arbiter $\| \mathcal{T}_{2}$

Example: MUTEX with fair arbiter

$$
\mathcal{T}=\mathcal{T}_{1} \| \text { Arbiter } \| \mathcal{T}_{2}
$$

Example: MUTEX with fair arbiter

$$
\mathcal{T}=\mathcal{T}_{1} \| \text { Arbiter } \| \mathcal{T}_{2}
$$

\mathcal{T}_{1}

\mathcal{T}_{1} and \mathcal{T}_{2} compete to communicate with the arbiter by means of the actions enter r_{1} and enter ${ }_{2}$, respectively

Example: MUTEX with fair arbiter

LT property E : each waiting process eventually enters its critical section
$\mathcal{T} \not \not \neq E$

Example: MUTEX with fair arbiter

LT property E : each waiting process eventually enters its critical section
fairness assumption \mathcal{F}
$\mathcal{F}_{\text {ucond }}=\mathcal{F}_{\text {strong }}=\varnothing$

$$
\text { does } \mathcal{T} \models_{\mathcal{F}} E \text { hold ? }
$$

Example: MUTEX with fair arbiter

LT property E : each waiting process eventually enters its critical section
fairness assumption \mathcal{F}
$\mathcal{F}_{\text {ucond }}=\mathcal{F}_{\text {strong }}=\varnothing$
$\mathcal{F}_{\text {weak }}=\left\{\left\{\right.\right.$ enter $\left._{1}\right\},\left\{\right.$ enter $\left.\left._{2}\right\}\right\}$
does $\mathcal{T} \models_{\mathcal{F}} E$ hold ? answer: no

Example: MUTEX with fair arbiter

LT property E : each waiting process eventually enters its critical section
fairness assumption \mathcal{F}
$\mathcal{F}_{\text {ucond }}=\mathcal{F}_{\text {strong }}=\varnothing$
$\mathcal{F}_{\text {weak }}=\left\{\left\{\right.\right.$ enter $\left._{1}\right\},\left\{\right.$ enter $\left.\left._{2}\right\}\right\}$
$\mathcal{T} \nexists_{\mathcal{F}} E$
as enter ${ }_{2}$ is not enabled in $\left\langle\right.$ crit $\left._{1}, I, w_{2}\right\rangle$

Example: MUTEX with fair arbiter

E : each waiting process eventually enters its crit. section

$$
\begin{aligned}
& \mathcal{F}_{\text {ucond }}=? \\
& \mathcal{F}_{\text {strong }}=? \\
& \mathcal{F}_{\text {weak }}=?
\end{aligned}
$$

$\mathcal{T} \not \models E$,
but $\mathcal{T} \vDash_{\mathcal{F}} E$

Example: MUTEX with fair arbiter

E : each waiting process eventually enters its crit. section
$\mathcal{F}_{\text {ucond }}=\varnothing$
$\mathcal{F}_{\text {strong }}=\left\{\left\{\right.\right.$ enter $\left._{1}\right\},\left\{\right.$ enter $\left.\left._{2}\right\}\right\}$
$\mathcal{F}_{\text {weak }}=\varnothing$
$\mathcal{T} \not \models E$,
but $\mathcal{T} \quad \models_{\mathcal{F}} E$

Example: MUTEX with fair arbiter

E: each waiting process eventually enters its crit. section
D : each process enters its critical section infinitely often
$\mathcal{F}_{\text {ucond }}=\varnothing$
$\mathcal{F}_{\text {strong }}=\left\{\left\{\right.\right.$ enter $\left._{1}\right\},\left\{\right.$ enter $\left.\left._{2}\right\}\right\}$
$\mathcal{F}_{\text {weak }}=\varnothing$
$\mathcal{T} \not \models_{\mathcal{F}} E$,
$\mathcal{T} \not \forall_{\mathcal{F}} D$

Example: MUTEX with fair arbiter

E: each waiting process eventually enters its crit. section
D : each process enters its critical section infinitely often
$\mathcal{F}_{\text {ucond }}=\varnothing$
$\mathcal{F}_{\text {strong }}=\left\{\left\{\right.\right.$ enter $\left._{1}\right\},\left\{\right.$ enter $\left.\left._{2}\right\}\right\}$
$\mathcal{F}_{\text {weak }}=\varnothing$
$\mathcal{T} \not \models_{\mathcal{F}} E$,
$\mathcal{T} \not \not \models \mathcal{F} \quad D$

Example: MUTEX with fair arbiter

E: each waiting process eventually enters its crit. section
D : each process enters its critical section infinitely often
$\mathcal{F}_{\text {ucond }}=\varnothing$
$\mathcal{F}_{\text {strong }}=\left\{\left\{\right.\right.$ enter $\left._{1}\right\},\left\{\right.$ enter $\left.\left._{2}\right\}\right\}$
$\mathcal{F}_{\text {weak }}=\left\{\left\{r e q_{1}\right\},\left\{r e q_{2}\right\}\right\}$

$$
\begin{aligned}
& \mathcal{T} \models_{\mathcal{F}} E, \\
& \mathcal{T} \models_{\mathcal{F}} D
\end{aligned}
$$

Process fairness

Process fairness

For asynchronous systems:

$$
\text { parallelism }=\text { interleaving }+ \text { fairness }
$$

Process fairness

For asynchronous systems:

parallelism $=$ interleaving + fairness

should be as weak as possible

Process fairness

For asynchronous systems:

parallelism $=$ interleaving + fairness

should be as weak as possible
rule of thumb:

- strong fairness for the
* choice between dependent actions
* resolution of competitions

Process fairness

For asynchronous systems:

$$
\text { parallelism }=\text { interleaving }+ \text { fairness }
$$

should be as weak as possible
rule of thumb:

- strong fairness for the
* choice between dependent actions
* resolution of competitions
- weak fairness for the nondetermism obtained from the interleaving of independent actions

Process fairness

For asynchronous systems:

$$
\text { parallelism }=\text { interleaving }+ \text { fairness }
$$

should be as weak as possible
rule of thumb:

- strong fairness for the
* choice between dependent actions
* resolution of competitions
- weak fairness for the nondetermism obtained from the interleaving of independent actions
- unconditional fairness: only of theoretical interest

Purpose of fairness conditions

parallelism $=$ interleaving + fairness

Process fairness and other fairness conditions

- can compensate information loss due to interleaving or rule out other unrealistic pathological cases
- can be requirements for a scheduler
or requirements for environment
- can be verifiable system properties

Purpose of fairness conditions

parallelism $=$ interleaving + fairness

Process fairness and other fairness conditions

- can compensate information loss due to interleaving or rule out other unrealistic pathological cases
- can be requirements for a scheduler
or requirements for environment
- can be verifiable system properties

liveness properties: fairness can be essential safety properties: fairness is irrelevant

Fairness

fairness assumption \mathcal{F} : unconditional fairness for action set $\{\alpha\}$

does $\boldsymbol{T} \models_{\mathcal{F}}$ "infinitely often \boldsymbol{a}^{\prime} hold ?

Fairness

fairness assumption \mathcal{F} : unconditional fairness for action set $\{\alpha\}$

does $\mathcal{T} \not \models_{\mathcal{F}}$ "infinitely often \boldsymbol{a} " hold ?
answer. yes as there is no fair path

Fairness

fairness assumption \mathcal{F} : unconditional fairness for action set $\{\alpha\}$

not realizable

does $\mathcal{T} \quad \models_{\mathcal{F}}$ "infinitely often $\boldsymbol{a}^{\prime \prime}$ hold ?
answer. yes as there is no fair path

Realizability of fairness assumptions

fairness assumption \mathcal{F} : unconditional fairness for action set $\{\alpha\}$

not realizable

does $\mathcal{T} \quad \models_{\mathcal{F}}$ "infinitely often \boldsymbol{a}^{\prime} hold ?
answer. yes as there is no fair path
Realizability requires that each initial finite path fragment can be extended to a \mathcal{F}-fair path

Realizability of fairness assumptions

fairness assumption \mathcal{F} : unconditional fairness for action set $\{\alpha\}$
not realizable
does $\mathcal{T} \quad \models_{\mathcal{F}}$ "infinitely often \boldsymbol{a}^{\prime} hold ?
answer. yes as there is no fair path
Fairness assumption \mathcal{F} is said to be realizable for a transition system \mathcal{T} if for each reachable state \boldsymbol{s} in $\boldsymbol{\mathcal { T }}$ there exists a \mathcal{F}-fair path starting in \boldsymbol{s}

Realizability of fairness assumptions

fairness assumption $\mathcal{F}=\left(\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }}\right)$ for TS \mathcal{T}

Realizability of fairness assumptions

fairness assumption $\mathcal{F}=\left(\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }}\right)$ for TS \mathcal{T}

- unconditional fairness for $A \in \mathcal{F}_{u c o n d}$
- strong fairness for $A \in \mathcal{F}_{\text {strong }}$
- weak fairness for $A \in \mathcal{F}_{\text {weak }}$

Realizability of fairness assumptions

fairness assumption $\mathcal{F}=\left(\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }}\right)$ for TS \mathcal{T}

- unconditional fairness for $A \in \mathcal{F}_{\text {ucond }}$ \leadsto might not be realizable
- strong fairness for $\boldsymbol{A} \in \mathcal{F}_{\text {strong }}$
- weak fairness for $\boldsymbol{A} \in \mathcal{F}_{\text {weak }}$

Realizability of fairness assumptions

fairness assumption $\mathcal{F}=\left(\mathcal{F}_{\text {ucond }}, \mathcal{F}_{\text {strong }}, \mathcal{F}_{\text {weak }}\right)$ for TS \mathcal{T}

- unconditional fairness for $A \in \mathcal{F}_{\text {ucond }}$ \leadsto might not be realizable
- strong fairness for $A \in \mathcal{F}_{\text {strong }}$
- weak fairness for $A \in \mathcal{F}_{\text {weak }}$
can always be guaranteed by a scheduler, i.e., an instance that resolves the nondeterminism in \mathcal{T}

Safety and realizable fairness

Safety and realizable fairness

Realizable fairness assumptions are irrelevant for safety properties

Safety and realizable fairness

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and E a safety property then:

$$
\mathcal{T} \models E \quad \text { iff } \quad \mathcal{T} \models_{\mathcal{F}} E
$$

Safety and realizable fairness

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and E a safety property then:

$$
\mathcal{T} \models E \quad \text { iff } \quad \mathcal{T} \models_{\mathcal{F}} E
$$

... wrong for non-realizable fairness assumptions

Safety and realizable fairness

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and E a safety property then:

$$
\mathcal{T} \models E \quad \text { iff } \quad \mathcal{T} \models_{\mathcal{F}} E
$$

... wrong for non-realizable fairness assumptions

\mathcal{F} : unconditional fairness for $\{\alpha\}$

Safety and realizable fairness

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and E a safety property then:

$$
\mathcal{T} \models E \quad \text { iff } \quad \mathcal{T} \models_{\mathcal{F}} E
$$

... wrong for non-realizable fairness assumptions

\mathcal{F} : unconditional fairness for $\{\alpha\}$
$E=$ invariant "always a"
$\mathcal{T} \notin E$, but $\mathcal{T} \models_{\mathcal{F}} E$

