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I nvaria nt 182.5-DEF-INVARIANT

Let E be an LT property over AP.

E is called an invariant if there exists a propositional
formula ® over AP such that

E={AAA.. €2®) :Vi20.AE®}
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I nvaria nt 182.5-DEF-INVARIANT

Let E be an LT property over AP.

E is called an invariant if there exists a propositional
formula ® over AP such that

E={AAA.. €2®) :Vi20.AE®}

® is called the invariant condition of E.
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Safety properties 152.5-10

state that “nothing bad will happen”
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Safety properties 152.5-10

state that “nothing bad will happen”

e mutual exclusion: never crity A crity

e deadlock freedom: e.g., for dining philosophers

never N\ wait;
0<i<n
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Safety properties 152.5-10

state that “nothing bad will happen”

e mutual exclusion: never crity A crity
e deadlock freedom: e.g., for dining philosophers
never N\ wait;

e German traffic lights: 0<i<n

every red phase is preceded by a yellow phase
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Safety properties 152.5-10

state that “nothing bad will happen”

e mutual exclusion: never crity A crity
e deadlock freedom: e.g., for dining philosophers
never N\ wait;

e German traffic lights: 0<i<n

every red phase is preceded by a yellow phase

e beverage machine:
no drink must be released if the user did not
enter a coin before

the total number of entered coins is never less
than the total number of released drinks
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Safety properties 152.5-10

state that “nothing bad will happen”

Invariants:

e mutual exclusion: never crity A crity

e deadlock freedom: never A wait;
0<i<n

other safety properties:
e German traffic lights:
every red phase is preceded by a yellow phase
e beverage machine:

the total number of entered coins is never less
than the total number of released drinks
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Safety properties 152.5-10

state that “nothing bad will happen”

invariants: «——| "“no bad state will be reached”

e mutual exclusion: never crity A crity

e deadlock freedom: never A wait;
0<i<n

other safety properties:
e German traffic lights:
every red phase is preceded by a yellow phase
e beverage machine:

the total number of entered coins is never less
than the total number of released drinks
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Safety properties 152.5-10

state that “nothing bad will happen”

invariants: «——| "“no bad state will be reached”

e mutual exclusion: never crity A crity

e deadlock freedom: never A wait;
0<i<n

other safety properties: «—— “no bad prefix”
e German traffic lights:
every red phase is preceded by a yellow phase

e beverage machine:
the total number of entered coins is never less
than the total number of released drinks
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Bad prefixes of safety properties 152.5-108

e traffic lights:
every red phase is preceded by a yellow phase
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Bad prefixes of safety properties 152.5-108

e traffic lights:
every red phase is preceded by a yellow phase
T

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

eg., ... {0}{®}
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Bad prefixes of safety properties 152.5-108

e traffic lights:
every red phase is preceded by a yellow phase
T

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

eg., ... {0}{®}

e beverage machine:

the total number of entered coins is never less
than the total number of released drinks
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Bad prefixes of safety properties 152.5-108

e traffic lights:
every red phase is preceded by a yellow phase
T

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

eg., ... {0}{®}

e beverage machine:

the total number of entered coins is never less
than the total number of released drinks

T
bad prefix, e.g., {pay} {drink} {drink}
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 Bn+3...
belongs to E
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 Bn+3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 Bn+3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 Bn+3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

E = set of all infinite words that
do not have a bad prefix
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

BadPrefg % set of bad prefixes for E
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

BadPrefe def set of bad prefixes for E C (2AP )+
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

BadPrefe def set of bad prefixes for E C (2AP )+

T
briefly: BadPref
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

minimal bad prefixes: any word Ag ... A; ... A, € BadPref
s.t. no proper prefix Ag... A; is a bad prefix for E
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Safety property for a traffic light 192,512
AP = {red, }

red /yellow

%]
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Safety property for a traffic light 192,512

“every red phase is
preceded by a
yellow phase”

red /yellow

%]
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Safety property for a traffic light

1852.5-12

red /yellow) & yellow phase”
Z hence: T E E

E =

set of all infinite words Ag A; A, .

over 2P such that for all i € N:
red e A = i>1 and

€ Aia

“every red phase is
preceded by a
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Safety property for a traffic light

1852.5-12

red /yellow) & yellow phase”
Z hence: T E E

E =

set of all infinite words Ag A; A, .

over 2P such that for all i € N:
red e A = i>1 and

€ Aia

red /yellow

“every red phase is
preceded by a
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Safety property for a traffic light

red /yellow

%]

1852.5-12

“every red phase is

preceded by a
yellow phase”

hence: T E E

E =

set of all infinite words Ay

over 2P such that for all i € N:

red e Ai — i>1 and

AA...

€ Aia

1%

red /yellow| &

by a yellow phase”

“there is a red phase
that is not preceded
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Safety property for a traffic light

1852.5-12

red /yellow) & yellow phase”
Z hence: T E E

E =

set of all infinite words Ag A; A, .

over 2P such that for all i € N:
red e A = i>1 and

€ Aia

1%

red /yellow| &

“every red phase is
preceded by a

“there is a red phase
that is not preceded
by a yellow phase”

hence: T £ E
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Safety property for a traffic light 192,512

“every red phase is
preceded by a

red /yellow| & yellow phase”
Z hence: T E E

E = set of all infinite words Ay A; As ...
over 24P such that for all i € N:
red e A = i>1 and € A

TWE

bad prefix, e.g.,
o {red} & { }
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Safety property for a traffic light 192,512

“every red phase is
preceded by a

red /yellow) & yellow phase”
Z hence: T E E

E = set of all infinite words Ay A; As ...
over 24P such that for all i € N:
red e A = i>1 and € A

TWE

minimal bad prefix:

o {red}

%]

red /yellow
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Safety property for a traffic light 152,512

“every red phase is
preceded by a

red /yellow) & yellow phase”
Z hence: T E E

E = set of all infinite words Ay A; As ...
over 24P such that for all i € N:
red e A = i>1 and € A

is a safety property over AP = {red, } with

BadPref = set of all finite words AgA; ... A,
over 24P s t. for some i € {0,...,n}:
red € A; A (i=0 \Y ¢ A,'_l)
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Satisfaction of safety properties
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Satisfaction of safety properties

Let E C (24P)“ be a safety property, 7 a TS over AP.

T EE iff Traces(T)C E

Traces(T) = set of traces of T
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Satisfaction of safety properties

Let E C (24P)“ be a safety property, 7 a TS over AP.

T EE iff Traces(T)C E
iff  Tracesgn(7) N BadPref = &

BadPref = set of all bad prefixes of E
Traces(T) = set of traces of T
Tracesgn(T) = set of finite traces of 7

= { trace(T) : T is an initial, finite path fragment of 7'}
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Satisfaction of safety properties

Let E C (24P)“ be a safety property, 7 a TS over AP.

Traces(T) C E
Traces;,(T) N BadPref = &
Tracesgin(T) N MinBadPref = &

TEE iff
iff
iff

BadPref =
MinBadPref =
Traces(T) =
Tracesgn(T) =

set of all bad prefixes of E

set of all minimal bad prefixes of E
set of traces of T

set of finite traces of 7

= { trace(T) : T is an initial, finite path fragment of 7'}
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Correct or wrong? 192513

Every invariant is a safety property.
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Correct or wrong? 192513

Every invariant is a safety property.

correct.
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Correct or wrong? 192513

Every invariant is a safety property.

correct.

Let E be an invariant with invariant condition ®.
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Correct or wrong? 192513

Every invariant is a safety property.

correct.
Let E be an invariant with invariant condition ®.

e bad prefixes for E: finite words Ay ... A ... A, s.t.
A; £ @ for some i € {0,1,...,n}
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Correct or wrong? 192513

Every invariant is a safety property.

correct.
Let E be an invariant with invariant condition ®.
e bad prefixes for E: finite words Ay ... A ... A, s.t.
A; £ @ for some i € {0,1,...,n}

e minimal bad prefixes for E:
finite words Ag Ay ...A,—1 A, such that

A E®fori=0,1,...,n—1, and A, £ ®
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Correct or wrong? 152.5-36

J is a safety property
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Correct or wrong? 152.5-36

J is a safety property

correct
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)

(24P)« is a safety property
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)

(24P)« is a safety property

correct
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)

(24P)« is a safety property

correct

“For all words € £2AP)“’ \ (2AP)“:
=0
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P refix CIOSU re 182.5-PREFIX-CLOSURE
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P refix CIOSU re 182.5-PREFIX-CLOSURE

For a given infinite word 0 = Ag A1 A ..., let

pref (o) % set of all nonempty, finite prefixes of o
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Prefix closure

182.5-PREFIX-CLOSURE

For a given infinite word 0 = Ag A1 A ..., let

def

pref(o) = set of all nonempty, finite prefixes of o

= {AoAl...An:nZO}

52/174




Prefix closure

182.5-PREFIX-CLOSURE

For a given infinite word 0 = Ag A1 A ..., let

def

pref(o) = set of all nonempty, finite prefixes of o

= {AoAl...An:nZO}
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P refix CIOSU re 182.5-PREFIX-CLOSURE

For a given infinite word 0 = Ag A1 A ..., let

pref (o) % set of all nonempty, finite prefixes of o

= {AoAl...An:nZO}

For E C (24P)”, let pref(E) U pref(o)
oc€E
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P refix CIOSU re 182.5-PREFIX-CLOSURE

For a given infinite word 0 = Ag A1 A ..., let

pref (o) % set of all nonempty, finite prefixes of o

{AOA1 A,, : n20}

For E C (24P)”, let pref(E) U pref(o)
oc€E

Given an LT property E, the prefix closure of E is:
cl(E) = {a € (24P) : pref (o) C pref(E)}
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Prefix closure and safety S

w
|

For any infinite word o € (2AP) et

pref(o) = set of all nonempty, finite prefixes of &
For any LT property E C (2Ap)w, let

pref(E) = |J pref(o) and

o€k

cd(E) = {o€ (2%P) : pref(c) C pref(E)}
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Prefix closure and safety S

w
|

For any infinite word o € (2AP) et

pref(o) = set of all nonempty, finite prefixes of &
For any LT property E C (2Ap)w, let
pref(E) = |J pref(o) and

o€k

cd(E) = {o€ (2%P) : pref(c) C pref(E)}

Theorem:

E is a safety property iff cl(E)=E
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safety and finite trace inCIUSion 182.5-SAFETY-TRACEFIN

remind: LT properties and trace inclusion:

If 71 and 75 are TS over AP then:
Traces(Ty) C Traces(T)
iff for all LT properties E: b E = T EE
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safety and finite trace inCIUSion 182.5-SAFETY-TRACEFIN

remind: LT properties and trace inclusion:

If 71 and 75 are TS over AP then:
Traces(Ty) C Traces(T)
iff for all LT properties E: b E = T EE

safety properties and finite trace inclusion:

If 71 and 75 are TS over AP then:
Tracessin(T1) C Tracesgin(72)
iff for all safety properties E: ThEE = T EE
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof “=": obvious, as for safety property E:
T = E iff Tracess,(T) N BadPref = &
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof “=": obvious, as for safety property E:
T = E iff Tracess,(T) N BadPref = &

Hence:
If T, = E and Tracesg,(T1) C Tracesg,(7T2) then:
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof “=": obvious, as for safety property E:
T = E iff Tracess,(T) N BadPref = &

Hence:
If T, = E and Tracesg,(T1) C Tracesg,(7T2) then:

Tracesgin(7T1) N BadPref
C Tracessn(T2) N BadPref = &
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof “=": obvious, as for safety property E:
T = E iff Tracess,(T) N BadPref = &

Hence:
If T, = E and Tracesg,(T1) C Tracesg,(7T2) then:

Tracesgin(7T1) N BadPref
C Tracessn(T2) N BadPref = &

and therefore 71 = E
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(73))
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
1

for each transition system 7 :
pref (Traces(T)) = Tracessin(T)
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property

68/174



s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property
T

ascl(E)=E
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property
T

ascl(E)=E
set of bad prefixes: (24P )+\ Tracesgin(7T2)
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property

E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; = E
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property

E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property

E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
C pref(E)
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
C pref(E) = pref(cl( Traces(712)))
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
C pref(E) = pref(cl( Traces(712)))
= Tracesfn(T2)
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S afety a n d fi n ite t ra Ce eq Uiva I ence 152.5-SAFETY-TRACEEQUIV
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safety and finite trace equivalence 152.5-SAFETY-TRACEEQUIV

safety properties and finite trace inclusion:

If 71 and 75 are TS over AP then:
Tracessin(T1) C Tracesgin(72)
iff for all safety properties E: ThEFE = T EE
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safety and finite trace equivalence 152.5-SAFETY-TRACEEQUIV

safety properties and finite trace inclusion:

If 71 and 75 are TS over AP then:
Tracessin(T1) C Tracesgin(72)
iff for all safety properties E: ThEFE = T EE

safety properties and finite trace equivalence:
If 7; and 75 are TS over AP then:

Tracessin(T1) = Tracesgn(732)
iff 73 and 75 satisfy the same safety properties
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Summary: trace relations and properties 152.5-30

trace inclusion
Traces(T) C Traces(T") iff
for all LT properties E: T'EE=T [EE

finite trace inclusion
Tracesgin(T) C Tracesg,(T') iff
for all safety properties E: T'"EE=T E E
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Summary: trace relations and properties 152.5-30

trace equivalence
Traces(T) = Traces(T") iff
T and 7' satisfy the same LT properties

finite trace equivalence
Tracesg,(T) = Tracesg,(T") iff
T and 7" satisfy the same safety properties
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correct or wrong? 152.5-31

If Traces(T) C Traces(T")
then Tracesf,(T) C Tracessn(7").
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correct or wrong? 152.5-31

If Traces(T) C Traces(T")
then Tracesf,(T) C Tracessn(7").

correct, since

Tracesg,(T) = set of all finite nonempty prefixes
of words in Traces(7T)

= pref(Traces(T))
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correct or wrong? 152.5-31

If Traces(T) C Traces(T")
then Tracesf,(T) C Tracessn(7").

correct, since

Tracesg,(T) = set of all finite nonempty prefixes
of words in Traces(7T)

= pref(Traces(T))

Tracesin(T) = {{a}" : n>1}

Traces(T = al¥
B{a} (T) {{a}}
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Finite trace relations versus trace relations 152.5-32

Is trace equivalence the same as
finite trace equivalence 7
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Finite trace relations versus trace relations 152.5-32

Is trace equivalence the same as
finite trace equivalence 7

answer: no
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Finite trace relations versus trace relations 152.5-32

T 0

TI

O =g @={b}

set of propositions

AP = {b}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}

O =g @={b}

set of propositions

AP = {b}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}
Tracesin(T) = {@": n> 0}

O =g @={b}

set of propositions

AP = {b}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}
Tracesin(T) = {@": n> 0}
Traces(T') = {@"{b}¥:n>2}

O =g @={b}

set of propositions

AP = {b}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}

Tracesin(T) = {@": n> 0}

Traces(T') = {@"{b}*:n>2}

Traces;n(T') = {@":n>0} U
{2"{b}™:n>2Am2>1}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}

Tracesin(T) = {@": n> 0}

Traces(T') = {@"{b}*:n>2}

Traces;n(T') = {@":n>0} U
{2"{b}™:n>2Am2>1}

Traces(T) € Traces(T"), but
Tracesgin(T) C Tracessi,(T")
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}

Tracesin(T) = {@": n> 0}

Traces(T') = {@"{b}*:n>2}

Traces;n(T') = {@":n>0} U
{@"{b}™:n>2Am>1}

LT property
E = “eventually b"

TWE TEE

Traces(T) € Traces(T"), but
Tracesgin(T) C Tracessi,(T")

947174



F i n ite trace a nd trace i n C I USion 182.5-TRACE-VS-TRACEFIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,

(2) T'is finite.
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F i n ite trace a nd trace i n C I USion 182.5-TRACE-VS-TRACEFIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T'is finite.
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T'is finite.

Then: Traces(T) C Traces(T")
iff  Tracesgn(7T) C Tracessn(7T")
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T'is finite.

Then: Traces(T) C Traces(T")
iff  Tracesgn(7T) C Tracessn(7T")

“=—=>": holds for all transition systems,
no matter whether (1) and (2) hold
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T'is finite.

Then: Traces(T) C Traces(T")
iff  Tracesgn(7T) C Tracessn(7T")

“=": holds for all transition systems
“«<=": suppose that (1) and (2) hold and that
(3) Tracessin(T) C Tracessi,(T")
Show that Traces(7) C Traces(7T")
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T'is finite
(3) Tracesgin(T) C Tracessi,(T")

Then Traces(T) C Traces(T")

Proof:
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T'is finite
(3) Tracesgin(T) C Tracessi,(T")

Then Traces(T) C Traces(T")

Proof: Pick some path 1 =598 5 ... in 7 and show
that there exists a path

' =tyty ty... in T’
such that trace(w) = trace(n’)
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Tracesfin versus traces 152.5-33

finite TS 77

paths from state tg
(unfolded into a tree)
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Tracesfin versus traces

finite TS 77

paths from state tg
(unfolded into a tree)

ATRRTAIRA

182.5-33

finite until
depth < n



Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments

paths from state t, with trace Ag A; ... A,

(unfolded into a tree)

finite until
depth < n

Pl
KYARS AT R
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Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments
paths from state t with trace Ag A; ... A,

(unfolded into a tree) . in particular: oty ... t,

finite until
depth < n

f(:‘r /?'I':‘t\? 4(?3! :}\
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Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments
paths from state tg with trace Ag A; ... A,
(unfolded into a tree) in particular: foty...t,

/6 }\ finite until
\ depth < n

M/ﬁ‘w ?\\}\

contains infinitely

many path fragments

m m
tn sn_|_1 eee Sm
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Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments
paths from state t with trace Ag A; ... A,
(unfolded into a tree) in particular: oty ... t,

1)

}t\ finite until
I LY. }\ depth < n

A

contains infinitely _
many path fragments there exists t,.1 € Post(t,)
m s.t. thy1 = S5y, for

thSpq--- S,
n ol o infinitely many m
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient

image-finiteness of T = (§', Act, —, Sy, AP, L):
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient

image-finiteness of T = (§', Act, —, Sy, AP, L):
o for each A € 24P and state s € S":
{t € Post(s) : L'(t) = A} is finite
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient

image-finiteness of T = (§', Act, —, Sy, AP, L):
o for each A € 24P and state s € S":
{t € Post(s) : L'(t) = A} is finite
e for each A € 2%: {5y € S} : L'(s0) = A} is finite
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Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Traces;in(T) = Tracesgn(T")
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Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Traces;in(T) = Tracesgn(T")

while the reverse direction does not hold in general
(even not for finite transition systems)
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Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Traces;in(T) = Tracesgn(T")

while the reverse direction does not hold in general
(even not for finite transition systems)
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Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Traces;in(T) = Tracesgn(T")

while the reverse direction does not hold in general
(even not for finite transition systems)

finite trace equivalent,

but not trace equivalent
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Trace equivalence vs. finite trace equivalence 2531,

Whenever Traces(7) = Traces(7") then
Traces;in(T) = Tracesgn(T")

The reverse implication holds under additional
assumptions, e.g.,

e if T and 77 are finite and have no terminal states

e or, if T and 7' are AP-deterministic
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OverView OVERVIEW3.4

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view
definition of linear time properties

invariants and safety
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction
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Liveness LE2.6-1

“liveness: something good will happen.”
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Liveness LE2.6-1

“liveness: something good will happen.”

“event a will occur eventually”
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Liveness LE2.6-1

“liveness: something good will happen.”

“event a will occur eventually”

e.g., termination for sequential programs
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Liveness LE2.6-1

“liveness: something good will happen.”

“event a will occur eventually”

e.g., termination for sequential programs

“event a will occur infinitely many times”

e.g., starvation freedom for dining philosophers
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Liveness LE2.6-1

“liveness: something good will happen.”

“event a will occur eventually”

e.g., termination for sequential programs

“event a will occur infinitely many times”

e.g., starvation freedom for dining philosophers

“whenever event b occurs then event a
will occur sometimes in the future”
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Liveness LE2.6-1

“liveness: something good will happen.”

“event a will occur eventually”

e.g., termination for sequential programs

“event a will occur infinitely many times”

e.g., starvation freedom for dining philosophers

“whenever event b occurs then event a
will occur sometimes in the future”
e.g., every waiting process enters eventually
its critical section

123 /174



which property type? LF2.6-2

e Each philosopher thinks infinitely often.
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness

e Two philosophers next to each other never eat at
the same time.
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which property type? LF2.6-2
e Each philosopher thinks infinitely often.
liveness

e Two philosophers next to each other never eat at

the same time. ) )
invariant
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which property type? LF2.6-2
e Each philosopher thinks infinitely often.
liveness

e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been
thinking at some time before.
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been

thinking at some time before. safety
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been

thinking at some time before. safety

e Whenever a philosopher eats then he will think
some time afterwards.

130 /174



which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been

thinking at some time before. safety

e Whenever a philosopher eats then he will think

some time afterwards. .
liveness
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been

thinking at some time before. safety

e Whenever a philosopher eats then he will think

some time afterwards. .
liveness

e Between two eating phases of philosopher i lies at
least one eating phase of philosopher i+1.
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been

thinking at some time before. safety

e Whenever a philosopher eats then he will think

some time afterwards. .
liveness

e Between two eating phases of philosopher i lies at
least one eating phase of philosopher i+1.
safety
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Liveness LF2.6-FORMAL

many different formal definitions of liveness
have been suggested in the literature
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Liveness LF2.6-FORMAL

many different formal definitions of liveness
have been suggested in the literature

here: one just example for a formal definition
of liveness
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Definition of liveness properties
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Definition of liveness properties

Let E be an LT property over AP, i.e., E C (2AP)w.

E is called a liveness property if each finite word over
AP can be extended to an infinite word in E
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Definition of liveness properties

Let E be an LT property over AP, i.e., E C (2AP)w.

E is called a liveness property if each finite word over
AP can be extended to an infinite word in E, i.e., if

pref(E) = (2AP)+

recall: pref(E) = set of all finite, nonempty
prefixes of words in E

138 /174



Definition of liveness properties

Let E be an LT property over AP, i.e., E C (2AP)w.

E is called a liveness property if each finite word over
AP can be extended to an infinite word in E, i.e., if

pref(E) = (2AP)+

Examples:
e each process will eventually enter its critical section
e each process will enter its critical section

infinitely often

e whenever a process has requested its critical section
then it will eventually enter its critical section
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Examples for liveness properties P

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {crit; : i =1,...,n}:
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Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {crit; : i =1,...,n}:
e each process will eventually enter its critical section
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Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {crit; : i =1,...,n}:
e each process will eventually enter its critical section

E = set of all infinite words Ap A1 A>. .. s.t.
Vie{1,...,n} Ik > 0. crit; € A,
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Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {crit; : i =1,...,n}:
e each process will eventually enter its critical section

e each process will enter its critical section
infinitely often
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Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {crit; : i =1,...,n}:
e each process will eventually enter its critical section

e each process will enter its critical section
infinitely often

E = set of all infinite words Apg A1 A>. .. s.t.
Vie{l,...,n} 3 k > 0. crit; € Ay
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Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {wait;, crit; : i = 1,..., n}:
e each process will eventually enter its critical section
e each process will enter its crit. section inf. often

e whenever a process is waiting then it will eventually
enter its critical section
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Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {wait;, crit; : i = 1,..., n}:
e each process will eventually enter its critical section
e each process will enter its crit. section inf. often

e whenever a process is waiting then it will eventually
enter its critical section

E = set of all infinite words Ap A1 A>. .. s.t.
Vie{l,...,n} Vj > 0.wait; € A
— dk > j.crit; € Ay
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Recall: safety properties, prefix closure

Let E be an LT-property, i.e., E C (2AP)w
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Recall: safety properties, prefix closure

Let E be an LT-property, i.e., E C (2AP)w

E is a safety property
iff Vo€ (2P)\E JAyAi...A, € pref(o) s.t.
{o’ € E:AyA ... A, € pref(d’)} = @
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Recall: safety properties, prefix closure

Let E be an LT-property, i.e., E C (2AP)w

E is a safety property
iff Vo€ (2P)\E JAyAi...A, € pref(o) s.t.
{o’ € E:AyA ... A, € pref(d’)} = @

remind:

pref(o) = set of all finite, nonempty prefixes of o

pref(E) = |J pref(o)
o€k
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Recall: safety properties, prefix closure

Let E be an LT-property, i.e., E C (2AP)w

E is a safety property
iff Vo€ (2P)\E JAyAi...A, € pref(o) s.t.
{o’ € E:AyA ... A, € pref(d’)} = @
iff cl(E)=E

remind: cl(E) = {o € (24P)“ : pref(c) C pref(E)}
pref(o) = set of all finite, nonempty prefixes of o

pref(E) = |J pref(o)
o€k
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DecomPOSition theorem LF2.6-DECOMP-THM
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof:
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof Let SAFE % cI(E)
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof Let SAFE % cI(E)

remind: cl(E) = {o € (22P)* : pref(c) C pref(E)}
pref(o) = set of all finite, nonempty prefixes of o

pref(E) = |J pref(o)
o€E
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof: Let SAFE = cl(E)
LIVE ¥ Eu ((2*P)“\ d(E))

remind: cl(E) = {o € (22P)* : pref(c) C pref(E)}
pref(o) = set of all finite, nonempty prefixes of o

pref(E) = |J pref(o)
o€E
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof: Let SAFE = cl(E)

LIVE ¥ Eu ((2*P)“\ d(E))
Show that:

e E=SAFENLIVE
e SAFE is a safety property

e LIVE is a liveness property
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof: Let SAFE = cl(E)

LIVE ¥ Eu ((2*P)“\ d(E))
Show that:

e E=SAFENLIVE /
e SAFE is a safety property

e LIVE is a liveness property
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof: Let SAFE = cl(E)

LIVE ¥ Eu ((2*P)“\ d(E))
Show that:

e E=SAFENLIVE /
e SAFE is a safety property as c/(SAFE) = SAFE

e LIVE is a liveness property
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof: Let SAFE = cl(E)
LIVE ¥ Eu ((2*P)“\ d(E))
Show that:

e E=SAFENLIVE /
e SAFE is a safety property as c/(SAFE) = SAFE

e LIVE is a liveness property, i.e., pref (LIVE) = (2AP)+
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Being Safe and Iive LF2.6-SAFE-AND-LIVE

Which LT properties are both
a safety and a liveness property?
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Being Safe and Iive LF2.6-SAFE-AND-LIVE

Which LT properties are both
a safety and a liveness property?

answer: The set (2Ap)w is the only LT property which
is a safety property and a liveness property
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Being Safe and Iive LF2.6-SAFE-AND-LIVE

Which LT properties are both
a safety and a liveness property?

answer: The set (2Ap)w is the only LT property which
is a safety property and a liveness property

° (2Ap)w is a safety and a liveness property: /
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Being Safe and Iive LF2.6-SAFE-AND-LIVE

Which LT properties are both
a safety and a liveness property?

answer: The set (2Ap)w is the only LT property which
is a safety property and a liveness property

° (2Ap)w is a safety and a liveness property: /

e If E is a liveness property then
pref(E) = (24P)*
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Being Safe and Iive LF2.6-SAFE-AND-LIVE

Which LT properties are both
a safety and a liveness property?

answer: The set (2Ap)w is the only LT property which
is a safety property and a liveness property

° (2Ap)w is a safety and a liveness property: /

e If E is a liveness property then
pref(E) = (24P)*
—  d(E) = (2P)°
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Being Safe and Iive LF2.6-SAFE-AND-LIVE

Which LT properties are both
a safety and a liveness property?

answer: The set (2Ap)w is the only LT property which
is a safety property and a liveness property

° (2Ap)w is a safety and a liveness property: /

e If E is a liveness property then
pref(E) = (24P)*
= d(E) = (24F)”

If E is a safety property too, then c/(E) = E.
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Being Safe and Iive LF2.6-SAFE-AND-LIVE

Which LT properties are both
a safety and a liveness property?

answer: The set (2Ap)w is the only LT property which
is a safety property and a liveness property
° (2Ap)w is a safety and a liveness property: /
e If E is a liveness property then
pref(E) = (24P)*
—  d(E) = (2*°)"

If E is a safety property too, then c/(E) = E.
Hence E = cl(E) = (24P)”.
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