Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
Computation Tree Logic
syntax and semantics of CTL
expressiveness of CTL and LTL
CTL model checking
fairness, counterexamples/witnesses
CTL+ and CTL*
Equivalences and Abstraction

Equivalence of CTL and LTL formulas

Equivalence of CTL and LTL formulas

Let Φ be a CTL formula and φ an LTL formula.

Equivalence of CTL and LTL formulas

Let Φ be a CTL formula and φ an LTL formula.
$\Phi \equiv \varphi$ iff for all transition systems \mathcal{T} and all states s in \mathcal{T} :
$s \models$ CTL $\Phi \Longleftrightarrow s \models$ LTL φ

Equivalence of CTL and LTL formulas

Let Φ be a CTL formula and φ an LTL formula.
$\Phi \equiv \varphi$ iff for all transition systems \mathcal{T} and all states s in \mathcal{T} :
$s \models$ CTL $\Phi \Longleftrightarrow s \models$ LTL φ

e.g., CTL formula Φ LTL formula φ | a | a | $a, b \in A P$ |
| :---: | :---: | :---: |
| $\forall O a$ | $O a$ | |
| $\forall(a \cup b)$ | $a U b$ | |

More examples

CTL formula Φ	LTL formula φ
a	a
$\forall \bigcirc a$	$\bigcirc a$
$\forall(a \cup b)$	$a \cup b$
$\forall \square a$	$\square a$
$\forall \diamond a$	$\diamond a$

More examples

CTL formula Φ	LTL formula φ
a	a
$\forall \bigcirc a$	$\bigcirc a$
$\forall(a U b)$	$a U b$
$\forall \square a$	$\square a$
$\forall \diamond a$	$\diamond a$
$\forall(a W b)$	$a W b$

More examples

CTL formula Φ	$L T L$ formula φ
a	a
$\forall \bigcirc a$	$\bigcirc a$
$\forall(a \cup b)$	$a \cup b$
$\forall \square a$	$\square a$
$\forall \diamond a$	$\diamond a$
$\forall(a \mathbf{W} b)$	$a \mathbf{W} b$
$\forall \square \forall \diamond a$	$\square \diamond a$

More examples

CTL formula Φ	LTL formula φ
a	a
$\forall \bigcirc a$	$\bigcirc a$
$\forall(a \cup b)$	$a \cup b$
$\forall \square a$	$\square a$
$\forall \diamond a$	$\diamond a$
$\forall(a W b)$	$a W b$
$\forall \square \forall \diamond a$	$\square \diamond a$
infinitely often a	

More examples

The CTL formula $\forall \diamond \forall \square a$

The CTL formula $\forall \triangle \forall \square a$

$\boldsymbol{s} \models \forall \diamond \forall \square a$ iff on each path π from s there is a state t with $t \models \forall \square a$

The CTL formula $\forall \triangle \forall \square a$

$s \vDash \forall \diamond \forall \square a$ iff on each path π from s there is a state t with $t \models \forall \square a$ \uparrow
i.e., all states in the computation tree of t fulfill a

The CTL formula $\forall \triangle \forall \square a$

$\boldsymbol{s} \vDash \forall \diamond \forall \square a$ iff on each path π from s there is a state t with $t \models \forall \square a$

ie., all states in the computation tree of t fulfill a

The CTL formula $\forall \triangle \forall \square a$

$\boldsymbol{s} \vDash \forall \diamond \forall \square a$ iff on each path π from s there is a state t with $t \models \forall \square a$

ie., all states in the computation tree of t fulfill a

The CTL formula $\forall \triangle \forall \square a$

$s \vDash \forall \diamond \forall \square a$ iff on each path π from s there is a state t with $t \models \forall \square a$
ie., all states in the computation tree of t fulfill a

$\diamond \square a \not \equiv \forall \diamond \forall \square a$

$\diamond \square a \not \equiv \forall \diamond \forall \square a$

To prove that

$\forall \diamond \forall \square a \not \equiv \diamond \square a$

we provide an example for a TS \boldsymbol{T} s.t.

$\mathcal{T} \vDash$ ить $\Delta \square a$ $\tau \nmid=$ ctı $\forall \triangle \forall \square a$

$\diamond \square a \not \equiv \forall \diamond \forall \square a$

transition system $\boldsymbol{\mathcal { T }}$

$\diamond \square a \not \equiv \forall \diamond \forall \square a$

transition system \mathcal{T}

$\mathcal{T} \models$ ltl $\diamond \square a$

$\diamond \square a \not \equiv \forall \diamond \forall \square a$

transition system \mathcal{T}

$\mathcal{T} \models \mathrm{LTL} \Delta \square a$
$\mathcal{T} \not \models \mathrm{CTL} \forall \forall \forall \square a$

computation tree

$\diamond \square a \not \equiv \forall \diamond \forall \square a$

transition system \mathcal{T}

$\mathcal{T} \models$ ить $\Delta \square a$

$\mathcal{T} \not \models \mathrm{CTL} \forall \forall \forall \square a$
$\operatorname{Sat}(\forall \square a)=\{\ominus\}$

computation tree

From CTL to LTL, if possible

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or ...
without proof

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof
$\Phi=\forall \Delta \forall \square a$

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof
$\Phi=\forall \diamond \forall \square a$
\downarrow
$\varphi=\diamond \square a$

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof
$\Phi=\forall \Delta \forall \square a$
\downarrow
$\varphi=\diamond \square a \not \equiv$

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof

$$
\begin{aligned}
& \Phi=\forall \diamond \forall \square a \\
& \downarrow \\
& \varphi=\diamond \square a \not \equiv
\end{aligned}
$$

hence: there is no LTL formula equivalent to

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof
$\Phi=\forall \square \forall \Delta a$

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof

$$
\begin{aligned}
& \Phi=\forall \square \forall \Delta a \\
& \downarrow \\
& \varphi=\square \diamond a
\end{aligned}
$$

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof
$\Phi=\forall \square \forall \Delta a$
\downarrow
$\varphi=\square \diamond a \equiv \Phi \quad$ "infinitely often $a "$

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof

$$
\Phi=\forall \diamond(a \wedge \forall \bigcirc a)
$$

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof

$$
\begin{aligned}
& \phi=\forall \diamond(a \wedge \forall \bigcirc a) \\
& \downarrow \\
& \varphi=\diamond(a \wedge \bigcirc a)
\end{aligned}
$$

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof

$$
\begin{aligned}
& \Phi=\forall \diamond(a \wedge \forall \bigcirc a) \\
& \downarrow \\
& \varphi=\diamond(a \wedge \bigcirc a) \not \equiv
\end{aligned}
$$

From CTL to LTL, if possible

For each CTL formula Φ the following holds:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$
where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall
without proof

$$
\begin{aligned}
& \Phi=\forall \diamond(a \wedge \forall \bigcirc a) \\
& \downarrow \\
& \varphi=\diamond(a \wedge \bigcirc a) \not \equiv
\end{aligned}
$$

hence: there is no LTL formula equivalent to

$\diamond(a \wedge \bigcirc a) \not \equiv \forall \diamond(a \wedge \forall \bigcirc a)$

$\diamond(a \wedge \bigcirc a) \not \equiv \forall \diamond(a \wedge \forall \bigcirc a)$

To prove that

$$
\diamond(a \wedge \bigcirc a) \not \equiv \forall \diamond(a \wedge \forall \bigcirc a)
$$

we provide an example for a $\mathrm{TS} \mathcal{T}$ s.t.
$\mathcal{T} \models$ LtL $\diamond(a \wedge \bigcirc a)$
$\mathcal{T} \not \vDash$ CTL $\quad \forall \diamond(a \wedge \forall \bigcirc a)$

$\diamond(a \wedge \bigcirc a) \not \equiv \forall \diamond(a \wedge \forall \bigcirc a)$

$$
\begin{aligned}
O & =\varnothing \\
O & =\{a\}
\end{aligned}
$$

$\diamond(a \wedge \bigcirc a) \not \equiv \forall \diamond(a \wedge \forall \bigcirc a)$

$$
O=\varnothing
$$

$$
O=\{a\}
$$

$\mathcal{T} \models$ LtL $\diamond(a \wedge \bigcirc a)$

$\diamond(a \wedge \bigcirc a) \not \equiv \forall \diamond(a \wedge \forall \bigcirc a)$

$$
\begin{aligned}
& O=\varnothing \\
& O=\{a\}
\end{aligned}
$$

$\diamond(a \wedge \bigcirc a) \not \equiv \forall \diamond(a \wedge \forall \bigcirc a)$

$$
\begin{aligned}
O & =\varnothing \\
O & =\{a\}
\end{aligned}
$$

$\mathcal{T} \not \vDash \mathrm{ct}\llcorner\forall \diamond(a \wedge \forall \bigcirc a)$

$\diamond(a \wedge \bigcirc a) \not \equiv \forall \diamond(a \wedge \forall \bigcirc a)$

$$
\bigcirc=\varnothing
$$

$$
\boldsymbol{O}=\{a\}
$$

$\mathcal{T} \models \operatorname{LTL} \diamond(a \wedge \bigcirc a) \quad \leftarrow \begin{aligned} & \operatorname{trace}\left(s_{0} s_{1} s_{2}{ }^{\omega}\right)=\{a\}\{a\} \varnothing^{\omega} \\ & \operatorname{trace}\left(s_{0} s_{3} s_{4}{ }^{\omega}\right)=\{a\} \varnothing\{a\}^{\omega}\end{aligned}$
$\mathcal{T} \not \vDash \mathrm{CTL} \forall \diamond(a \wedge \forall \bigcirc a) \leftarrow$
$\operatorname{Sat}(a \wedge \forall \bigcirc a)=\left\{s_{4}\right\}$

$\diamond(a \wedge \bigcirc a) \not \equiv \forall \diamond(a \wedge \forall \bigcirc a)$

$$
\bigcirc=\varnothing
$$

$$
\boldsymbol{O}=\{a\}
$$

$\mathcal{T} \models \operatorname{LTL} \diamond(a \wedge \bigcirc a) \quad \leftarrow \begin{aligned} & \operatorname{trace}\left(s_{0} s_{1} s_{2}{ }^{\omega}\right)=\{a\}\{a\} \varnothing^{\omega} \\ & \operatorname{trace}\left(s_{0} s_{3} s_{4}{ }^{\omega}\right)=\{a\} \varnothing\{a\}^{\omega}\end{aligned}$
$\mathcal{T} \not \models \mathrm{CTL} \forall \diamond(a \wedge \forall \bigcirc a) \leftarrow \begin{aligned} & \operatorname{Sat}(a \wedge \forall \mathrm{O} a)=\left\{s_{4}\right\} \\ & s_{0} s_{1} s_{2}{ }^{\omega} \not \models \mathrm{CTL} \diamond(a \wedge \forall \bigcirc a)\end{aligned}$

Expressiveness of LTL and CTL

The expressive powers of LTL and CTL are incomparable

Expressiveness of LTL and CTL

The expressive powers of LTL and CTL are incomparable

- The CTL formulas $\forall \diamond(a \wedge \forall \bigcirc a), \forall \diamond \forall \square a$ and $\forall \square \exists \diamond$ a have no equivalent LTL formula

Expressiveness of LTL and CTL

The expressive powers of LTL and CTL are incomparable

- The CTL formulas $\forall \diamond(a \wedge \forall \bigcirc a), \forall \diamond \forall \square a$ and $\forall \square \exists \bigotimes$ a have no equivalent LTL formula
- The LTL formula $\diamond \square a$ has no equivalent CTL formula

Expressiveness of LTL and CTL

The expressive powers of LTL and CTL are incomparable

- The CTL formulas $\forall \diamond(a \wedge \forall \bigcirc a), \forall \diamond \forall \square a$ and $\forall \square \exists \diamond$ a have no equivalent LTL formula
- The LTL formula $\diamond \square a$ has no equivalent CTL formula

LTL

Expressiveness of LTL and CTL

The expressive powers of LTL and CTL are incomparable

- The CTL formulas $\forall \diamond(a \wedge \forall \bigcirc a), \forall \diamond \forall \square a$ and $\forall \square \exists \diamond$ a have no equivalent LTL formula
- The LTL formula $\diamond \square a$ has no equivalent CTL formula

Expressiveness of LTL and CTL

The expressive powers of LTL and CTL are incomparable

- The CTL formulas $\forall \diamond(a \wedge \forall \bigcirc a), \forall \diamond \forall \square a$ and $\forall \square \exists \diamond$ a have no equivalent LTL formula
- The LTL formula $\diamond \square a$ has no equivalent CTL formula

Expressiveness of LTL and CTL

The expressive powers of LTL and CTL are incomparable

- The CTL formulas $\forall \diamond(a \wedge \forall \bigcirc a), \forall \diamond \forall \square a$ and $\forall \square \exists \diamond$ a have no equivalent LTL formula
- The LTL formula $\diamond \square a$ has no equivalent CTL formula

Expressiveness of LTL and CTL

The expressive powers of LTL and CTL are incomparable

- The CTL formulas $\forall \diamond(a \wedge \forall \bigcirc a), \forall \diamond \forall \square a$ and $\forall \square \exists \diamond$ a have no equivalent LTL formula
- The LTL formula $\diamond \square a$ has no equivalent CTL formula

CTL properties that are not LTL-definable

The CTL formulas
$\forall \diamond(a \wedge \forall \bigcirc a)$
$\forall \diamond \forall \square a$
$\forall \square \exists ゝ$ a
have no equivalent LTL formula

CTL properties that are not LTL-definable

The CTL formulas

$$
\begin{aligned}
& \forall \diamond(a \wedge \forall \bigcirc a) \\
& \forall \diamond \forall \square a \\
& \forall \square \exists \diamond a
\end{aligned}
$$

have no equivalent LTL formula
Proof uses the fact that for each CTL formula $\boldsymbol{\Phi}$:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$ where φ is the LTL formula obtained from Φ by removing of all path quantifiers

CTL properties that are not LTL-definable

The CTL formulas

$\forall \square \exists \diamond$ a
have no equivalent LTL formula
Proof uses the fact that for each CTL formula Φ :

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$ where φ is the LTL formula obtained from Φ by removing of all path quantifiers

CTL properties that are not LTL-definable

The CTL formulas
 $\forall \diamond(a \wedge \forall \bigcirc a)$ $\forall \diamond \forall \square a$ $\forall \square \exists \gg \longleftarrow$ alternative (direct) proof

 have no equivalent LTL formulaProof uses the fact that for each CTL formula $\boldsymbol{\Phi}$:

- either there is no equivalent LTL formula
- or $\Phi \equiv \varphi$ where φ is the LTL formula obtained from Φ by removing of all path quantifiers

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$ consider the following $\mathrm{TS} \mathcal{T}_{1}$:

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$ consider the following TS \mathcal{T}_{1} :

$$
\operatorname{Sat}(\exists \diamond a)=\{s, t\}
$$

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$ consider the following $\mathrm{TS} \mathcal{T}_{1}$:

$$
\begin{aligned}
& \operatorname{Sat}(\exists \diamond a)=\{s, t\} \\
& \mathcal{T}_{1} \models \forall \square \exists \diamond a
\end{aligned}
$$

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$ consider the following TS \mathcal{T}_{1} :

$$
\begin{aligned}
& \operatorname{Sat}(\exists \diamond a)=\{s, t\} \\
& \mathcal{T}_{1} \models \forall \square \exists \diamond a \Longrightarrow \mathcal{T}_{1} \models \varphi
\end{aligned}
$$

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$ consider the following TS \mathcal{T}_{1} :

$$
\begin{aligned}
& \operatorname{Sat}(\exists \diamond a)=\{s, t\} \\
& \mathcal{T}_{1} \models \forall \square \exists \diamond a \Longrightarrow \mathcal{T}_{1} \models \varphi
\end{aligned}
$$

consider the following TS \mathcal{T}_{2} :

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$ consider the following TS \mathcal{T}_{1} :

$$
\begin{aligned}
& \operatorname{Sat}(\exists \diamond a)=\{s, t\} \\
& \mathcal{T}_{1} \models \forall \square \exists \diamond a \Longrightarrow \mathcal{T}_{1} \models \varphi
\end{aligned}
$$

consider the following TS \mathcal{T}_{2} :

$$
\operatorname{Traces}\left(\mathcal{T}_{2}\right)=\left\{\varnothing^{\omega}\right\}
$$

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$ consider the following TS \mathcal{T}_{1} :

$$
\begin{aligned}
& \operatorname{Sat}(\exists \diamond a)=\{s, t\} \\
& \mathcal{T}_{1} \models \forall \square \exists \diamond a \Longrightarrow \mathcal{T}_{1} \models \varphi
\end{aligned}
$$

consider the following TS \mathcal{T}_{2} :
8

$$
\operatorname{Traces}\left(\mathcal{T}_{2}\right)=\left\{\varnothing^{\omega}\right\} \subseteq \operatorname{Traces}\left(\mathcal{T}_{1}\right)
$$

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$ consider the following TS \mathcal{T}_{1} :

$$
\begin{aligned}
& \operatorname{Sat}(\exists \diamond a)=\{s, t\} \\
& \mathcal{T}_{1} \models \forall \square \exists \diamond a \Longrightarrow \mathcal{T}_{1} \models \varphi
\end{aligned}
$$

consider the following TS \mathcal{T}_{2} :
\bigcirc

$$
\operatorname{Traces}\left(\mathcal{T}_{2}\right)=\left\{\varnothing^{\omega}\right\} \subseteq \operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Words}(\varphi)
$$

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$ consider the following TS \mathcal{T}_{1} :

$$
\begin{aligned}
& \operatorname{Sat}(\exists \diamond a)=\{s, t\} \\
& \mathcal{T}_{1} \models \forall \square \exists \diamond a \Longrightarrow \mathcal{T}_{1} \models \varphi
\end{aligned}
$$

consider the following TS \mathcal{T}_{2} :

$$
\operatorname{Traces}\left(\mathcal{T}_{2}\right)=\left\{\varnothing^{\omega}\right\} \subseteq \operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Words}(\varphi)
$$

Hence: $\quad \mathcal{T}_{2} \models \varphi$

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$ consider the following $\mathrm{TS} \mathcal{T}_{1}$:

$$
\begin{aligned}
& \operatorname{Sat}(\exists \diamond a)=\{s, t\} \\
& \mathcal{T}_{1} \models \forall \square \exists \diamond a \Longrightarrow \mathcal{T}_{1} \models \varphi
\end{aligned}
$$

consider the following TS \mathcal{T}_{2} :

$$
\operatorname{Traces}\left(\mathcal{T}_{2}\right)=\left\{\varnothing^{\omega}\right\} \subseteq \operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Words}(\varphi)
$$

Hence: $\quad \mathcal{T}_{2} \models \varphi$

$$
\Longrightarrow \quad \mathcal{T}_{2} \models \forall \square \exists \diamond a
$$

There is no LTL formula equivalent to $\forall \square \exists \diamond a$

suppose φ is an LTL formula s.t. $\varphi \equiv \forall \square \exists \diamond a$ consider the following $\mathrm{TS} \mathcal{T}_{1}$:

$$
\begin{aligned}
& \operatorname{Sat}(\exists \diamond a)=\{s, t\} \\
& \mathcal{T}_{1} \models \forall \square \exists \diamond a \Longrightarrow \mathcal{T}_{1} \models \varphi
\end{aligned}
$$

consider the following TS \mathcal{T}_{2} :

$$
\operatorname{Traces}\left(\mathcal{T}_{2}\right)=\left\{\varnothing^{\omega}\right\} \subseteq \operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Words}(\varphi)
$$

Hence: $\quad \mathcal{T}_{2} \models \varphi$
$\Longrightarrow \quad \mathcal{T}_{2} \models \forall \square \exists \diamond a \quad$ contradiction !!

Expressiveness of LTL and CTL

The expressive powers of LTL and CTL are incomparable
The CTL formulas $\forall \diamond(a \wedge \forall \bigcirc a), \forall \diamond \forall \square a$ and $\forall \square \exists \diamond$ a have no equivalent LTL formula

The LTL formula $\diamond \square a$ has no equivalent CTL formula

LTL

$$
\begin{gathered}
C T L \\
\forall \diamond \forall \square a \\
\forall \diamond(a \wedge \forall \bigcirc a) \\
\forall \square \exists \diamond a
\end{gathered}
$$

$\square \diamond a$

Expressiveness of LTL and CTL

The expressive powers of LTL and CTL are incomparable
The CTL formulas $\forall \diamond(a \wedge \forall \bigcirc a), \forall \diamond \forall \square a$ and $\forall \square \exists \diamond$ a have no equivalent LTL formula

The LTL formula $\diamond \square a$ has no equivalent CTL formula

LTL formula $\diamond \square a$

There is no CTL formula which is equivalent to the LTL formula $\diamond \square a$

LTL formula $\diamond \square a$

There is no CTL formula which is equivalent to the LTL formula $\diamond \square a$

Proof (sketch): provide sequences $\left(\mathcal{T}_{n}\right)_{n \geq 0},\left(\mathcal{T}_{n}^{\prime}\right)_{n \geq 0}$ of transition systems such that for all $\boldsymbol{n} \geq 0$:
(1) $\mathcal{T}_{n} \not \neq \diamond \square a$
(2) $\mathcal{T}_{n}^{\prime} \models \diamond \square a$

LTL formula $\diamond \square a$

There is no CTL formula which is equivalent to the LTL formula $\diamond \square a$

Proof (sketch): provide sequences $\left(\mathcal{T}_{n}\right)_{n \geq 0},\left(\mathcal{T}_{n}^{\prime}\right)_{n \geq 0}$ of transition systems such that for all $\boldsymbol{n} \geq 0$:
(1) $\mathcal{T}_{n} \not \neq \Delta \square a$
(2) $\mathcal{T}_{n}^{\prime} \models \diamond \square a$
(3) $\mathcal{T}_{\boldsymbol{n}}$ and $\boldsymbol{T}_{\boldsymbol{n}}^{\prime}$ satisfy the same $\mathbf{C T L}$ formulas length $\leq n$

Transition systems \mathcal{T}_{n} and \mathcal{T}_{n}^{\prime}

$\mathcal{T}_{n} \not \models \diamond \square a$

Transition systems \mathcal{T}_{n} and \mathcal{T}_{n}^{\prime}

$\mathcal{T}_{n} \not \models \diamond \square a \quad \mathcal{T}_{n}^{\prime} \models \diamond \square a$

Transition systems \mathcal{T}_{n} and \mathcal{T}_{n}^{\prime}

Transition systems \mathcal{T}_{n} and \mathcal{T}_{n}^{\prime}

$$
\begin{aligned}
& \mathcal{T}_{n} \not \models \diamond \square a \\
& \mathcal{T}_{n}^{\prime} \models \diamond \square a
\end{aligned}
$$

Transition systems \mathcal{T}_{n} and \mathcal{T}_{n}^{\prime}

For all CTL formulas Φ of length $|\Phi| \leq n$:

$$
\begin{array}{lll}
s_{n} \models \Phi & \text { iff } & s_{n}^{\prime} \models \Phi \\
t_{n} \models \Phi & \text { iff } & t_{n}^{\prime \prime} \models \Phi
\end{array}
$$

Transition systems \mathcal{T}_{n} and \mathcal{T}_{n}^{\prime}

For all CTL formulas Φ of length $|\Phi| \leq n$:

$$
\begin{array}{lll}
s_{n} \models \Phi & \text { iff } & s_{n}^{\prime} \models \Phi \\
t_{n} \models \Phi & \text { iff } & t_{n}^{\prime \prime} \models \Phi
\end{array}
$$

Hence: \mathcal{T}_{n} and \mathcal{T}_{n}^{\prime} fulfill the same $\mathbf{C T L}$ formulas of length $\leq \boldsymbol{n}$

CTL vs LTL

Does $\forall \diamond(a \wedge \exists \bigcirc a) \equiv \diamond(a \wedge \bigcirc a)$ hold ?

CTL vs LTL

Does $\forall \diamond(a \wedge \exists \bigcirc a) \equiv \diamond(a \wedge \bigcirc a)$ hold ? answer: no.

CTL vs LTL

Does $\forall \diamond(a \wedge \exists \bigcirc a) \equiv \diamond(a \wedge \bigcirc a)$ hold ? answer: no.

$$
\begin{aligned}
O & =\{a\} \\
O & =\varnothing
\end{aligned}
$$

CTL vs LTL

Does $\forall \diamond(a \wedge \exists \bigcirc a) \equiv \diamond(a \wedge \bigcirc a)$ hold ? answer: no.

$$
\mathcal{T} \not \models \diamond(a \wedge \bigcirc a)
$$

CTL vs LTL

Does $\forall \diamond(a \wedge \exists \bigcirc a) \equiv \diamond(a \wedge \bigcirc a)$ hold ? answer: no.

note: $\pi=\boldsymbol{s}_{0} \boldsymbol{s}_{\mathbf{2}} \boldsymbol{s}_{\mathbf{2}} \boldsymbol{s}_{\mathbf{2}} \ldots$ is a path in \mathcal{T} with
$\operatorname{trace}(\pi)=\{a\} \varnothing \varnothing \varnothing \ldots \notin \operatorname{Words}(\diamond(a \wedge \bigcirc a))$

CTL vs LTL

Does $\forall \diamond(a \wedge \exists \bigcirc a) \equiv \diamond(a \wedge \bigcirc a)$ hold ? answer: no.

CTL vs LTL

Does $\forall \diamond(a \wedge \exists \bigcirc a) \equiv \diamond(a \wedge \bigcirc a)$ hold ? answer: no.

$\operatorname{Sat}(\exists \bigcirc a)=\left\{s_{0}, s_{1}\right\}$
$\operatorname{Sat}(\forall \diamond(a \wedge \exists \bigcirc a))=\left\{s_{0}, s_{1}\right\}$

Correct or wrong?

For each NBA \mathcal{A} there is a CTL formula Φ such that for all transition systems \mathcal{T} :

$$
\mathcal{T} \models \Phi \quad \text { iff } \quad \operatorname{Traces}(\mathcal{T}) \subseteq \mathcal{L}_{\omega}(\mathcal{A})
$$

Correct or wrong?

For each NBA \mathcal{A} there is a CTL formula Φ such that for all transition systems \mathcal{T} :

$$
\mathcal{T} \models \Phi \quad \text { iff } \quad \operatorname{Traces}(\mathcal{T}) \subseteq \mathcal{L}_{\omega}(\mathcal{A})
$$

wrong.

Correct or wrong?

For each NBA \mathcal{A} there is a CTL formula Φ such that for all transition systems \boldsymbol{T} :

$$
\mathcal{T} \models \Phi \quad \text { iff } \quad \operatorname{Traces}(\mathcal{T}) \subseteq \mathcal{L}_{\omega}(\mathcal{A})
$$

wrong. consider, e.g., an NBA \mathcal{A} with

$$
\mathcal{L}_{\omega}(\mathcal{A})=\operatorname{Words}(\diamond \square a)
$$

Correct or wrong?

For each NBA \mathcal{A} there is a CTL formula Φ such that for all transition systems \boldsymbol{T} :

$$
\mathcal{T} \models \Phi \quad \text { iff } \quad \operatorname{Traces}(\mathcal{T}) \subseteq \mathcal{L}_{\omega}(\mathcal{A})
$$

wrong. consider, e.g., an NBA \mathcal{A} with

$$
\mathcal{L}_{\omega}(\mathcal{A})=\operatorname{Words}(\diamond \square a)
$$

But there is no CTL formula Φ such that $\Phi \equiv \diamond \square a$

Correct or wrong?

If Φ is CTL formula and φ an LTL formula such that $\Phi \equiv \varphi$ then $\neg \Phi \equiv \neg \varphi$

Correct or wrong?

If Φ is CTL formula and φ an LTL formula such that $\Phi \equiv \varphi$ then $\neg \Phi \equiv \neg \varphi$

wrong.

Correct or wrong?

If Φ is CTL formula and φ an LTL formula such that $\Phi \equiv \varphi$ then $\neg \Phi \equiv \neg \varphi$
wrong. E.g.,

$$
\Phi=\forall \square \forall \diamond a, \quad \varphi=\square \diamond a
$$

Correct or wrong?

If Φ is CTL formula and φ an LTL formula such that $\Phi \equiv \varphi$ then $\neg \Phi \equiv \neg \varphi$
wrong. E.g.,

$$
\Phi=\forall \square \forall \diamond a, \quad \varphi=\square \diamond a
$$

- $\Phi \equiv \varphi$

Correct or wrong?

If Φ is CTL formula and φ an LTL formula such that $\Phi \equiv \varphi$ then $\neg \Phi \equiv \neg \varphi$
wrong. E.g.,

$$
\Phi=\forall \square \forall \diamond a, \quad \varphi=\square \diamond a
$$

- $\Phi \equiv \varphi$
- there is no CTL formula that is equivalent to

$$
\neg \varphi \equiv \diamond \square \neg a
$$

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$

Correct or wrong?

$s \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(s)$ with $\pi \vDash \square \diamond a$
wrong.

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists ゝ$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$

wrong.

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists ゝ$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$
wrong.

$$
s \models \exists \square \exists \diamond a
$$

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$
wrong.

$$
s \models \exists \square \exists \diamond a
$$

note that: $\quad s \models \exists \diamond a$

Correct or wrong?

$s \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(s)$ with $\pi \vDash \square \diamond a$

wrong.

$$
s \vDash \exists \square \exists \diamond a
$$

note that: $\quad s \models \exists \diamond a$
thus: $\quad \operatorname{ssc} \ldots \vDash \square \exists \diamond\rangle$

Correct or wrong?

$s \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(s)$ with $\pi \vDash \square \diamond a$

wrong.

$$
\boldsymbol{s} \models \exists \square \exists \diamond a
$$

note that: $\quad s \vDash \exists\rangle$ a
thus: $\quad \operatorname{ssc} \ldots \vDash \square \exists \diamond\rangle$
but there is no path where $\square \diamond$ a holds

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$

wrong.

$s \vDash \exists \diamond \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(s)$ with $\pi \vDash \diamond \square a$

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$

wrong.

$s \vDash \exists \diamond \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(s)$ with $\pi \vDash \diamond \square a$
correct.

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$

wrong.

$s \vDash \exists \diamond \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(s)$ with $\pi \vDash \diamond \square a$
correct.

$$
\exists \diamond \exists \square a \equiv \neg \forall \square \forall \diamond \neg a
$$

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$

wrong.

$s \vDash \exists \diamond \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(s)$ with $\pi \vDash \diamond \square a$
correct.

$$
\begin{aligned}
& \exists \diamond \exists \square a \equiv \neg \forall \square \forall \diamond \neg a \\
& s \models \exists \diamond \exists \square a
\end{aligned}
$$

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$

wrong.

$s \vDash \exists \diamond \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(s)$ with $\pi \vDash \diamond \square a$
correct.

$$
\begin{aligned}
\exists \diamond \exists \square a & \equiv \neg \forall \square \forall \diamond \neg a \\
s \models \exists \diamond \exists \square a & \text { iff } s \neq \forall \forall \square \forall \diamond \neg a
\end{aligned}
$$

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$

wrong.

$s \vDash \exists \diamond \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(s)$ with $\pi \vDash \diamond \square a$
correct.

$$
\begin{aligned}
\exists \diamond \exists \square a & \equiv \neg \square \forall \diamond \neg a \\
s \models \exists \diamond \exists \square a & \text { iff } s \not \models \forall \square \forall \diamond \neg a \\
& \text { iff } s \not \models \square \diamond \neg a
\end{aligned}
$$

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$

wrong.

$s \vDash \exists \diamond \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(s)$ with $\pi \vDash \diamond \square a$
correct.

$$
\begin{aligned}
\exists \diamond \exists \square a & \equiv \neg \forall \square \forall \diamond \neg a \\
s \vDash \exists \diamond \exists \square a & \text { iff } s \not \vDash \forall \square \forall \diamond \neg a \\
& \text { iff } s \not \vDash \square \diamond \neg a \equiv \neg \diamond \square a
\end{aligned}
$$

Correct or wrong?

$\boldsymbol{s} \vDash \exists \square \exists \diamond$ a iff there is a path $\pi \in \operatorname{Paths}(\boldsymbol{s})$ with $\pi \vDash \square \diamond a$

wrong.

$s \vDash \exists \diamond \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(s)$ with $\pi \vDash \diamond \square a$
correct.

$$
\begin{aligned}
\exists \diamond \exists \square a & \equiv \neg \forall \square \forall \diamond \neg a \\
s \vDash \exists \diamond \exists \square a & \text { iff } s \neq \forall \square \forall \diamond \neg a \\
& \text { iff } s \neq \square \diamond \neg a \equiv \neg \diamond \square a \\
& \text { iff there is a path } \pi \ldots .
\end{aligned}
$$

Correct or wrong?

There is an LTL formula φ with $\varphi \equiv \neg \exists \backslash \exists \square a$

Correct or wrong?

There is an LTL formula φ with $\varphi \equiv \neg \exists \diamond \exists \square a$

correct

Correct or wrong?

There is an LTL formula φ with $\varphi \equiv \neg \exists \diamond \exists \square a$
correct as $\neg \exists \diamond \exists \square a \equiv \forall \square \forall \bigcirc \neg a$

Correct or wrong?

There is an LTL formula φ with $\varphi \equiv \neg \exists \diamond \exists \square a$
correct as $\neg \exists \diamond \exists \square a \equiv \forall \square \forall \diamond \neg a \equiv \square\rangle \neg a$

Correct or wrong?

There is an LTL formula φ with $\varphi \equiv \neg \exists \diamond \exists \square a$
correct as $\neg \exists \diamond \exists \square a \equiv \forall \square \forall \diamond \neg a \equiv \square\rangle \neg a$
$\mathcal{T} \not \vDash \neg \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(\mathcal{T})$ with

$$
\pi \models \square a
$$

Correct or wrong?

There is an LTL formula φ with $\varphi \equiv \neg \exists \diamond \exists \square a$
correct as $\neg \exists \diamond \exists \square a \equiv \forall \square \forall \diamond \neg a \equiv \square \diamond \neg a$
$\mathcal{T} \not \models \neg \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(\mathcal{T})$ with

$$
\pi \models \square a
$$

correct

Correct or wrong?

There is an LTL formula φ with $\varphi \equiv \neg \exists \diamond \exists \square a$
correct as $\neg \exists \diamond \exists \square a \equiv \forall \square \forall \diamond \neg a \equiv \square\rangle \neg a$
$\mathcal{T} \not \models \neg \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(\mathcal{T})$ with

$$
\pi \models \square a
$$

correct $\mathcal{T} \not \models \neg \exists \square a$

Correct or wrong?

There is an LTL formula φ with $\varphi \equiv \neg \exists \diamond \exists \square a$
correct as $\neg \exists \diamond \exists \square a \equiv \forall \square \forall \diamond \neg a \equiv \square\rangle \neg a$
$\mathcal{T} \not \models \neg \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(\mathcal{T})$ with

$$
\pi \models \square a
$$

correct $\mathcal{T} \not \models \neg \exists \square a$
iff there is an initial state \boldsymbol{s} with $\boldsymbol{s} \not \models \neg \exists \square a$

Correct or wrong?

There is an LTL formula φ with $\varphi \equiv \neg \exists \diamond \exists \square a$
correct as $\neg \exists \diamond \exists \square a \equiv \forall \square \forall \diamond \neg a \equiv \square\rangle \neg a$
$\mathcal{T} \not \models \neg \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(\mathcal{T})$ with

$$
\pi \models \square a
$$

correct $\mathcal{T} \not \vDash \neg \exists \square a$
iff there is an initial state \boldsymbol{s} with $\boldsymbol{s} \not \models \neg \exists \square a$
iff there is an initial state s with $s \models \exists \square a$

Correct or wrong?

There is an LTL formula φ with $\varphi \equiv \neg \exists \diamond \exists \square a$
correct as $\neg \exists \diamond \exists \square a \equiv \forall \square \forall \diamond \neg a \equiv \square \diamond \neg a$
$\mathcal{T} \notin \neg \exists \square a$ iff there is a path $\pi \in \operatorname{Paths}(\mathcal{T})$ with

$$
\pi \models \square a
$$

correct $\mathcal{T} \notin \neg \exists \square a$
iff there is an initial state \boldsymbol{s} with $\boldsymbol{s} \not \vDash \neg \exists \square \square$
iff there is an initial state s with $s \models \exists \square a$
iff \quad there is a path $\pi \in \operatorname{Paths}(\mathcal{T})$ with $\pi \models \square a$

Correct or wrong?

There is an LTL formula φ with $\varphi \equiv \neg \exists \diamond \exists \square a$
correct as $\neg \exists>\exists \square a \equiv \forall \square \forall \widehat{\square} \equiv \square\rangle \neg a$
$\mathcal{T} \not \vDash \neg \exists \varphi$ iff there is a path $\pi \in \operatorname{Paths}(\mathcal{T})$ with

$$
\pi \models \varphi
$$

correct $\mathcal{T} \not \models \neg \exists \varphi$
iff there is an initial state \boldsymbol{s} with $\boldsymbol{s} \not \vDash \neg \exists \varphi$
iff there is an initial state \boldsymbol{s} with $\boldsymbol{s} \vDash \exists \varphi$
iff \quad there is a path $\pi \in \operatorname{Paths}(\mathcal{T})$ with $\pi \models \varphi$

Correct or wrong?

$\mathcal{T} \not \models \neg \forall \square a$ iff for all paths $\pi \in \operatorname{Paths}(\mathcal{T})$: $\pi \vDash \square a$

Correct or wrong?

$\mathcal{T} \not \models \neg \forall \square a$ iff for all paths $\pi \in \operatorname{Paths}(\mathcal{T})$: $\pi \vDash \square a$

wrong.

Correct or wrong?

$\mathcal{T} \not \models \neg \forall \square a$ iff for all paths $\pi \in \operatorname{Paths}(\mathcal{T})$: $\pi \vDash \square a$
wrong.
$\mathcal{T} \not \vDash \neg \forall \square a$

Correct or wrong?

$\mathcal{T} \not \models \neg \forall \square a$ iff for all paths $\pi \in \operatorname{Paths}(\mathcal{T})$: $\pi \models \square a$

wrong.

$\mathcal{T} \not \models \neg \forall \square a$
iff there is an initial state \boldsymbol{s} with $\boldsymbol{s} \not \models \neg \neg \square a$

Correct or wrong?

$\mathcal{T} \not \models \neg \forall \square a$ iff for all paths $\pi \in \operatorname{Paths}(\mathcal{T})$: $\pi \vDash \square a$

wrong.

$\mathcal{T} \not \models \neg \forall \square a$
iff there is an initial state \boldsymbol{s} with $\boldsymbol{s} \not \models \neg \neg \square a$
iff there is an initial state \boldsymbol{s} with $\boldsymbol{s} \vDash \forall \square a$

Correct or wrong?

$\mathcal{T} \not \models \neg \forall \square a$ iff for all paths $\pi \in \operatorname{Paths}(\mathcal{T})$: $\pi \vDash \square a$
wrong.
$\mathcal{T} \not \models \neg \forall \square a$
iff there is an initial state \boldsymbol{s} with $\boldsymbol{s} \not \vDash \neg \forall \square a$
iff there is an initial state \boldsymbol{s} with $\boldsymbol{s} \vDash \forall \square a$

but there might be another initial state t
 $$
\text { s.t. } t \not \models \forall \square a
$$

Correct or wrong?

If \mathcal{T}_{1} and \mathcal{T}_{2} are trace equivalent TS then for all CTL formulas Φ : $\quad \mathcal{T}_{1} \models \Phi$ iff $\mathcal{T}_{2} \models \Phi$

Correct or wrong?

If \mathcal{T}_{1} and \mathcal{T}_{2} are trace equivalent TS then for all CTL formulas Φ : $\quad \mathcal{T}_{1} \models \Phi$ iff $\mathcal{T}_{2} \models \Phi$

wrong.

Correct or wrong?

If \mathcal{T}_{1} and \mathcal{T}_{2} are trace equivalent TS then for all
CTL formulas Φ : $\quad \mathcal{T}_{1} \models \Phi$ iff $\mathcal{T}_{2} \models \Phi$

wrong.

\mathcal{T}_{1} :

$\{a\}\{b\}$
$\mathcal{T}_{2}:$

Correct or wrong?

If \mathcal{T}_{1} and \mathcal{T}_{2} are trace equivalent TS then for all
CTL formulas Φ : $\quad \mathcal{T}_{1} \models \Phi$ iff $\mathcal{T}_{2} \models \Phi$

wrong.

\mathcal{T}_{1} :

\{a\} $\{b\}$
$\mathcal{T}_{2}:$

\mathcal{T}_{1} and \mathcal{T}_{2} are trace equivalent

Correct or wrong?

If \mathcal{T}_{1} and \mathcal{T}_{2} are trace equivalent TS then for all
CTL formulas Φ : $\quad \mathcal{T}_{1} \models \Phi$ iff $\mathcal{T}_{2} \models \Phi$

wrong.

\mathcal{T}_{1} :

\{a\} $\{b\}$
$\mathcal{T}_{2}:$
consider the CTL formula

\mathcal{T}_{1} and \mathcal{T}_{2} are trace equivalent

