Lehrstuhl für Informatik 2

Software Modeling and Verification

Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Introduction to Model Checking (Summer Term 2018) — Exercise Sheet 8 (due 25th June) —

General Remarks

- The exercises are to be solved in groups of *three* students.
- You may hand in your solutions for the exercises just before the exercise class starts at 12:15 or by dropping them into the "Introduction to Model Checking" box at our chair *before 12:00.* Do *not* hand in your solutions via L2P or via e-mail.
- If a task asks you to justify your answer, an explanation of your reasoning is sufficient. If you are required to prove a statement, you need to give a *formal* proof.

General Notation

In the following we transform LTL formulae into the corresponding GNBAs. As an example consider the LTL formula $\varphi = a \cup (\neg a \land b)$ from the lecture. We order the subformulae of φ from the innermost formulae to the outermost, and from left to right. In our example we get the subformulae $a, b, \neg a \land b$ and φ . The elementary sets are given in the following table where we order the sets by their binary encoding:

B	a	b	$\neg a \wedge b$	φ
B_1	0	0	0	0
B_2	0	1	1	1
B_3	1	0	0	0
B_4	1	0	0	1
B_5	1	1	0	0
B_6	1	1	0	1

Moreover, for the GNBA \mathcal{G}_{φ} the transition relation can be given as a table where the rows and columns correspond to states of \mathcal{G}_{φ} and the entries are either empty (representing "no transition") or contain an element from 2^{AP} (representing the character that can be used for the transition).

For example, an extract of the transition relation for the GNBA \mathcal{G}_{φ} is given in the following.

	B_1	B_2	B_3	B_4	B_5	B_6
B_1	Ø	Ø	Ø	Ø	Ø	Ø
B_2						
B_3	$\{a\}$		$\{a\}$		$\{a\}$	

Exercise 1^{\star}

(1+3+3 Points)

Let AP = $\{a, b\}$. Let $\varphi = (a \to \bigcirc \neg b)$ W $(a \land b)$ as in exercise sheet 7.2.

(a) Transform $\neg \varphi$ into an equivalent LTL formula φ' (i.e., $Words(\neg \varphi) = Words(\varphi')$) which is constructed according to the following grammar:

 $\varphi ::= true \mid false \mid a \mid b \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \lor \mathsf{U} \varphi.$

Lehrstuhl für Informatik 2 THAACHEN Software Modeling and Verification

(b) Compute all elementary sets with respect to $closure(\varphi')$.

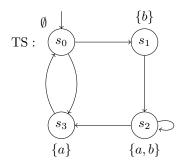
UNIVERS

(c) Construct the GNBA $\mathcal{G}_{\varphi'}$ according to the algorithm from the lecture such that $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi'}) = Words(\varphi')$. It suffices to provide the initial states, the acceptance set and the transition relation of $\mathcal{G}_{\omega'}$ as a table.

Exercise 2

(1+3+3+2+1+2 Points)

Let $\varphi = \Box (a \to ((\neg b) \cup (a \land b)))$ over the set $AP = \{a, b\}$ of atomic propositions. We are interested in checking whether $TS \models \varphi$ where TS is the following transition system:



(a) Convert $\neg \varphi$ into an equivalent LTL-formula ψ which is constructed according to the following grammar:

$$\varphi ::= true \mid false \mid a \mid b \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \lor \mathsf{U} \varphi.$$

Derive $closure(\psi)$.

- (b) Give all elementary sets wrt. $closure(\psi)$.
- (c) Construct the GNBA \mathcal{G}_{ψ} using the algorithm given in the lecture. It suffices to provide its initial states, its acceptance set and its transition relation. Hint: Give the transition relation as a table where the rows and columns correspond to states of \mathcal{G}_{ψ} and the entries are either empty (representing "no transition") or contain an element from 2^{AP} (representing the character that can be used for the transition).
- (d) Now, construct a non-blocking NBA $\mathcal{A}_{\neg\varphi}$ directly from $\neg\varphi$, i.e. without relying on \mathcal{G}_{ψ} . Provide an intuitive explanation of why your automaton recognizes the right language. The latter is absolutely essential to earn points for this task. *Hint*: Four states suffice. Consider rewriting $\neg \varphi$ using the release operator and recall that $\varphi \ \mathsf{R} \ \psi$

intuitively expresses that φ "releases" ψ . That is, ψ either holds all the time or at some point $\varphi \wedge \psi$ holds and at all previous positions ψ holds.

- (e) Construct $TS \otimes \mathcal{A}_{\neg \varphi}$.
- (f) Apply the nested depth-first search (lecture 11, slides 150 and 159) to TS $\otimes A_{\neg \varphi}$ for the persistence property "eventually forever $\neg F$ ", where F is the acceptance set of $\mathcal{A}_{\neg \varphi}$. To illustrate the steps:
 - before each *Pop* operation give:
 - for the first DFS the contents of stack π and set U, and
 - for the second DFS the contents of stack ξ and set V.
 - indicate whenever CYCLE CHECK(...) is called or returns a result (including the result itself).
 - indicate when and which result the outer DFS returns.

Give the stack contents from left to right, in the sense that the topmost element is on the right. Does $TS \models \varphi$ hold? In case the property is refuted, give the counterexample returned by the algorithm.

Lehrstuhl für Informatik 2 Software Modeling and Verification

Exercise 3

(1 Points)

Let φ be an LTL-formula over a set of atomic propositions AP. Let $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ be a GNBA for $Words(\varphi)$ that is the result of the LTL-to-GNBA construction presented in the lecture applied to an LTL formula φ .

Prove that for all elementary sets $B \subseteq closure(\varphi)$ and for all $B' \in \delta(B, B \cap AP)$, it holds:

 $\neg \bigcirc \psi \in B \iff \psi \notin B'.$