
Lehrstuhl für Informatik 2
Software Modeling and Verification

Intro. to Model Checking 2018
Exercise Sheet 2

Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen Christian Hensel, Matthias Volk

Introduction to Model Checking
(Summer Term 2018)

— Exercise Sheet 2 (due 7th May) —

General Remarks

• The exercises are to be solved in groups of three students.

• You may hand in your solutions for the exercises just before the exercise class starts at 12:15 or by
dropping them into the “Introduction to Model Checking” box at our chair before 12:00. Do not
hand in your solutions via L2P or via e-mail.

Exercise 1 (2 + 5 + 1 Points)

Whenever transition systems are compared via = or 6=, this means (in)equality up to renaming of
states (i.e. isomorphism).

(a) Show that the handshaking ‖H operator is not associative, i.e. that in general

(TS1 ‖H TS2) ‖H′ TS3 6= TS1 ‖H (TS2 ‖H′ TS3)

(b) The handshaking operator ‖ that forces transition systems to synchronize over all common actions
is associative. Show that for arbitrary transition systems TSi = (Si,Acti,→i, S

i
0,APi, Li) for i ∈

{1, 2, 3}, it is
(TS1 ‖ TS2) ‖ TS3︸ ︷︷ ︸

L

= TS1 ‖ (TS2 ‖ TS3)︸ ︷︷ ︸
R

.

To this end, show that the bijective function f≈ : ((S1 × S2)× S3) → (S1 × (S2 × S3)) given by
f≈(〈〈s1, s2〉, s3〉) = 〈s1, 〈s2, s3〉〉 preserves the transition relation in the sense that for all α ∈ Act1 ∪
Act2 ∪Act3 we have

`
α−→L `

′ ⇐⇒ f≈(`)
α−→R f≈(`

′) (2.1)

where `, `′ ∈ SL, SL is the state space of transition system L and −→L, −→R are the transition
relations of L and R, respectively.

Hint: When considering an action α, you need only distinguish the cases

(i) α ∈ Act1\(Act2 ∪Act3)

(ii) α ∈ (Act1 ∩Act2)\Act3
(iii) α ∈ Act1 ∩Act2 ∩Act3
as all other cases are symmetric. Also, for simplicity, it suffices to show the direction “=⇒” of
condition (2.1). However, keep in mind that L and R are not necessarily action-deterministic (see
exercise sheet 1).

(c) Consider the following three transition systems:

1

Lehrstuhl für Informatik 2
Software Modeling and Verification

Intro. to Model Checking 2018
Exercise Sheet 2

TS1 : TS2 : TS3 :

1

2 3

4

α

β
α

β

α
β

5

6 7
α

α
γ

α

8

9

10

γ

β

α

Build the composition (TS1 ‖ TS2) ‖ TS3.

Exercise 2 (2 + 5 Points)

(a) In the lecture, channel systems using FIFO (or queue) channels were introduced. We now consider
LIFO (or stack) channels. Formally define the SOS rules for the communication such that in the
induced transition system the channels have LIFO semantics.

(b) Consider the following decision problem.

Input: A LIFO channel system [P1 | . . . | Pn] with program graphs

Pi = (Loci,Acti,Effecti, ↪−→i,Loci0, g
i
0)

over (Var,Chan) and a set F ⊆ Loc1 × . . .Locn × Eval(Var)× Eval(Chan).
Question: Is some state of F reachable in TS([P1 | . . . | Pn])?

Prove that this problem is undecidable. For this, reduce the halting problem for (nondeterministic)
Turing machines started on an empty tape to the above problem.

Exercise 3F (1 + 3 + 1 Points)

We consider the problem of the dining philosophers. There are n philosophers sitting around a table and
one fork is placed in-between any two philosophers sitting next to each other. The philosophers alternate
between thinking and eating. Whenever a philosopher wants to eat, she first has to pick up her left and
her right fork (in arbitrary order). After having finished eating, she puts both forks back on the table.

(a) Model the dining philosophers as a channel system C.

Hint: Model each fork as a separate channel.

(b) Construct the transition system TS(C) for the channel system C defined in (a) for n = 3 philosophers.
For simplification, you may assume that each philosopher first picks up her left fork and then her
right fork. This order is also preserved when placing the forks on the table again. Furthermore, you
may assume that each channel initially contains a fixed number of messages. Finally, you can exploit
symmetries when constructing the transition system and merge symmetric states. If you do, briefly
justify your approach.

(c) Does the transition system of (b) contain a deadlock?

2

