Datenstrukturen und Algorithmen

Vorlesung 6: Mastertheorem (K4)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

https://moves.rwth-aachen.de/teaching/ss-18/dsal/

7. Mai 2018

Übersicht

- 1 Lösen von Rekursionsgleichungen
 - Substitutionsmethode
 - Rekursionsbäume
 - Mastertheorem

Übersicht

- 1 Lösen von Rekursionsgleichungen
 - Substitutionsmethode
 - Rekursionsbäume
 - Mastertheorem

Rekursionsgleichungen

Rekursionsgleichung

Für rekursive Algorithmen wird die Laufzeit meistens durch Rekursionsgleichungen beschrieben.

method for (int n)
$$\frac{1}{2}$$

for $\left(\frac{n}{2}\right)$ $\left(\frac{n}{2$

Rekursionsgleichungen

Rekursionsgleichung

Für rekursive Algorithmen wird die Laufzeit meistens durch Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben beschreibt.

Rekursionsgleichungen

Rekursionsgleichung

Für rekursive Algorithmen wird die Laufzeit meistens durch Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben beschreibt.

Beispiele

$$T(n) = T(\lceil (n-1)/2 \rceil) + 1$$

$$ightharpoonup T(n) = T(n-1) + n - 1$$

$$T(n) = 2 \cdot T(n/2) + n - 1$$

$$T(n) = 7 \cdot T(n/2) + c \cdot n^2$$

Strassen's Matrixmultiplikation

Die zentrale Frage ist: Wie löst man solche Rekursionsgleichungen?

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

- 1. Rate die Form der Lösung, durch z. B.:
 - Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
 - ▶ Betrachtung des Rekursionsbaums

Die Substitutionsmethode

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

- 1. Rate die Form der Lösung, durch z. B.:
 - ▶ Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
 - Betrachtung des Rekursionsbaums
- 2. Vollständige Induktion, um die Konstanten zu finden und zu zeigen, dass die Lösung funktioniert.

Beispiel

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

Beispiel

Betrachte folgende Rekursionsgleichung:

$$T(1) = 1$$

 $T(\underline{n}) = 2 \cdot T(\underline{n/2}) + \underbrace{n}_{1} \text{ für } n > 1.$

▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log n)$.

Beispiel

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log n)$.
- Dazu müssen wir $T(n) \le c \cdot n \cdot \log n$ zeigen, für ein geeignetes c > 0.

Beispiel

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log n)$.
- ▶ Dazu müssen wir $T(n) \leq c \cdot n \cdot \log n$ zeigen, für ein geeignetes c > 0.
- Bestimme, ob für ein geeignetes n_0 und für $n \ge n_0$ gilt, dass $T(n) \le c \cdot n \cdot \log n$.

Beispiel

$$T(1) = 1$$

$$T(n) = 2 \cdot T(n/2) + n \text{ für } n > 1.$$

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log n)$.
- ▶ Dazu müssen wir $T(n) \le c \cdot n \cdot \log n$ zeigen, für ein geeignetes c > 0.
- ▶ Bestimme, ob für ein geeignetes n_0 und für $n \ge n_0$ gilt, dass $T(n) \le c \cdot n \cdot \log n$.
- ▶ Stelle fest, dass $T(1) = 1 \leqslant c \cdot 1 \cdot \log 1 = 0$ verletzt ist.

Beispiel

Betrachte folgende Rekursionsgleichung:

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log n)$.
- ▶ Dazu müssen wir $T(n) \le c \cdot n \cdot \log n$ zeigen, für ein geeignetes c > 0.
- ▶ Bestimme, ob für ein geeignetes n_0 und für $n \ge n_0$ gilt, dass $T(n) \le c \cdot n \cdot \log n$.
- ▶ Stelle fest, dass $T(1) = 1 \leqslant c \cdot 1 \cdot \log 1 = 0$ verletzt ist.
- ► Es gilt: $T(2) = 4 \le c \cdot 2 \log 2$ und $T(3) = 5 \le c \cdot 3 \log 3$ für $c \ge 2$

Nº = 5

Beispiel

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log n)$.
- ▶ Dazu müssen wir $T(n) \leq c \cdot n \cdot \log n$ zeigen, für ein geeignetes c > 0.
- ▶ Bestimme, ob für ein geeignetes n_0 und für $n \ge n_0$ gilt, dass $T(n) \le c \cdot n \cdot \log n$.
- ▶ Stelle fest, dass $T(1) = 1 \leqslant c \cdot 1 \cdot \log 1 = 0$ verletzt ist.
- ► Es gilt: $T(2) = 4 \le c \cdot 2 \log 2$ und $T(3) = 5 \le c \cdot 3 \log 3$ für $c \ge 2$
- ▶ Überprüfe dann durch Substitution und Induktion (s. nächste Folie)

Beispiel

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log n)$.
- ▶ Dazu müssen wir $T(n) \leq c \cdot n \cdot \log n$ zeigen, für ein geeignetes c > 0.
- ▶ Bestimme, ob für ein geeignetes n_0 und für $n \ge n_0$ gilt, dass $T(n) \le c \cdot n \cdot \log n$.
- ▶ Stelle fest, dass $T(1) = 1 \leqslant c \cdot 1 \cdot \log 1 = 0$ verletzt ist.
- ► Es gilt: $T(2) = 4 \le c \cdot 2 \log 2$ und $T(3) = 5 \le c \cdot 3 \log 3$ für $c \ge 2$
- ▶ Überprüfe dann durch Substitution und Induktion (s. nächste Folie)
- ▶ Damit gilt für jedes $c \ge 2$ und $n \ge n_0 > 1$, dass $T(n) \le c \cdot n \cdot \log n$.

$$T(n) \in O(n \log n)$$

Beispiel

$$T(n) = 2 \cdot T(n/2) + n \text{ für } n > 1, \text{ und } T(1) = 1 \qquad T\left(\frac{n}{2}\right) \in O\left(\frac{n}{2}\log\frac{n}{2}\right)$$

$$\frac{T(n)}{\leq 2 \cdot T(n/2) + n} \qquad | \text{Induktionshypothese} \qquad \frac{c \cdot \frac{n}{2} \cdot \log\frac{n}{2}}{\leq 2 \cdot (c \cdot n/2 \cdot \log n/2) + n}$$

$$\Rightarrow \frac{c \cdot n \cdot \log n}{\leq c \cdot n \cdot \log n} = \frac{\log n \cdot \log 2}{\log n \cdot \log 2}$$

$$= \frac{c \cdot n \cdot \log n}{\leq c \cdot n \cdot \log n} = \frac{\log n \cdot \log 2}{\log n \cdot \log 2}$$

$$= \frac{c \cdot n \cdot \log n}{\leq c \cdot n \cdot \log n} = \frac{\log n \cdot \log 2}{\log n \cdot \log 2}$$

$$= \frac{\log n}{\log n \cdot \log n} = \frac{\log n}{\log n \cdot \log n}$$

$$= \frac{\log n}{\log n \cdot \log n}$$

Grundidee

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein Muster erkennt.

$$T(n) = 3 \cdot T(\frac{n}{4}) + n$$

$$T(n) = c$$
for $n \text{ gobs sens}$.

$$(* T(\frac{n}{4}) = 3 \cdot T(\frac{n}{16}) + \frac{n}{4} + n$$

$$= 3 \cdot T(\frac{n}{16}) + \frac{n}{4} + n$$

$$= 3^2 T(\frac{n}{16}) + \frac{3}{4} \cdot n + n$$

$$= (* T(\frac{n}{16}) = 3 \cdot T(\frac{n}{16}) + \frac{n}{16} + n$$

$$= 3^2 T(\frac{n}{16}) + \frac{3}{16} \cdot n + n$$

$$= 3^2 T(\frac{n}{16}) + \frac{3}{16} \cdot n + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n$$

$$= 3^2 T(\frac{n}{16}) + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n$$

$$= 3^2 T(\frac{n}{16}) + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n$$

$$= 3^2 T(\frac{n}{16}) + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n$$

$$= 3^2 T(\frac{n}{16}) + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n$$

$$= 3^2 T(\frac{n}{16}) + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n$$

$$= 3^2 T(\frac{n}{16}) + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n$$

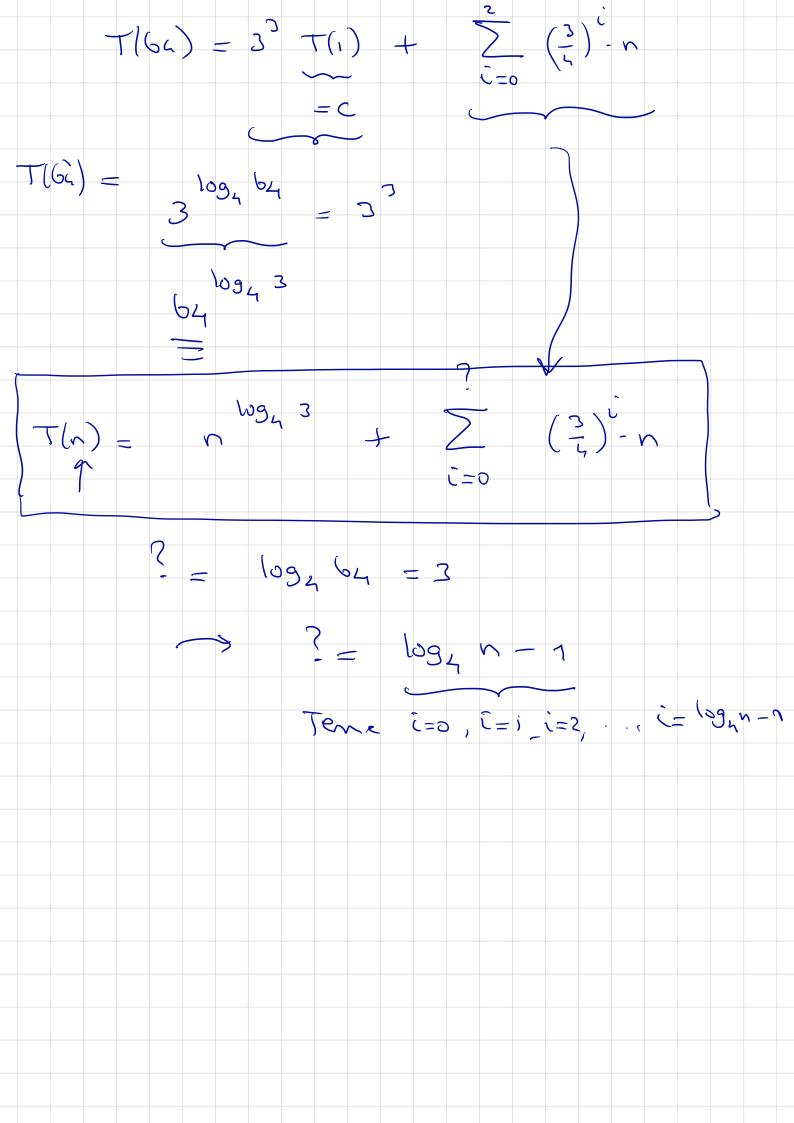
$$= 3^2 T(\frac{n}{16}) + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n$$

$$= 3^2 T(\frac{n}{16}) + (\frac{3}{16})^2 \cdot n + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n$$

$$= 3^2 T(\frac{n}{16}) + (\frac{3}{16})^2 \cdot n + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n$$

$$= 3^2 T(\frac{n}{16}) + (\frac{3}{16})^2 \cdot n + (\frac{3}{14})^2 \cdot n + (\frac{3}{14})^2 \cdot n$$

$$= 3^2 T(\frac{n}{16}) + (\frac{3}{16})^2 \cdot n + (\frac{3}{14})^2 \cdot$$



Grundidee

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein Muster erkennt.

Beispiel

$$T(n) = 3 \cdot T(n/4) + n$$
 | Einsetzen

$$= 3 \cdot (3 \cdot T(n/16) + n/4)) + n$$
 | Nochmal einsetzen

$$= 9 \cdot (3 \cdot T(n/64) + n/16)) + 3 \cdot n/4 + n$$
 | Vereinfachen

$$= 27 \cdot T(n/64) + \left(\frac{3}{4}\right)^2 \cdot n + \left(\frac{3}{4}\right)^1 \cdot n + \left(\frac{3}{4}\right)^0 \cdot n$$

Grundidee

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein Muster erkennt.

Beispiel

$$T(n) = 3 \cdot T(n/4) + n$$
 | Einsetzen

$$= 3 \cdot (3 \cdot T(n/16) + n/4)) + n$$
 | Nochmal einsetzen

$$= 9 \cdot (3 \cdot T(n/64) + n/16)) + 3 \cdot n/4 + n$$
 | Vereinfachen

$$= 27 \cdot T(n/64) + \left(\frac{3}{4}\right)^2 \cdot n + \left(\frac{3}{4}\right)^1 \cdot n + \left(\frac{3}{4}\right)^0 \cdot n$$

Wir nehmen T(1) = c an und erhalten: $T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4 3}$

Grundidee

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein Muster erkennt.

Beispiel

$$T(n) = 3 \cdot T(n/4) + n$$
 | Einsetzen

$$= 3 \cdot (3 \cdot T(n/16) + n/4)) + n$$
 | Nochmal einsetzen

$$= 9 \cdot (3 \cdot T(n/64) + n/16)) + 3 \cdot n/4 + n$$
 | Vereinfachen

$$= 27 \cdot T(n/64) + \left(\frac{3}{4}\right)^2 \cdot n + \left(\frac{3}{4}\right)^1 \cdot n + \left(\frac{3}{4}\right)^0 \cdot n$$

Wir nehmen
$$T(1) = c$$
 an und erhalten: $T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4 3}$

Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.
 - ▶ Die Blätter stellen die Kosten der Basisfälle dar, z. B. T(0) oder T(1).

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.
 - ▶ Die Blätter stellen die Kosten der Basisfälle dar, z. B. T(0) oder T(1).
- 2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.
 - ▶ Die Blätter stellen die Kosten der Basisfälle dar, z. B. T(0) oder T(1).
- 2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
- 3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

Rekursionsbaum

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.
 - ▶ Die Blätter stellen die Kosten der Basisfälle dar, z. B. T(0) oder T(1).
- 2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
- 3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann mit Hilfe der Substitutionsmethode überprüft werden kann.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

Rekursionsbaum

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.
 - ▶ Die Blätter stellen die Kosten der Basisfälle dar, z. B. T(0) oder T(1).
- 2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
- 3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis

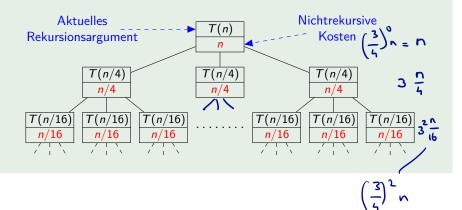
Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann mit Hilfe der Substitutionsmethode überprüft werden kann.

Der Baum selber reicht jedoch meistens nicht als Beweis.

Rekursionsbaum: Beispiel

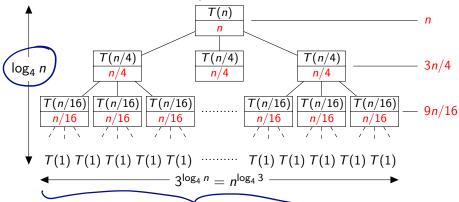
Beispiel

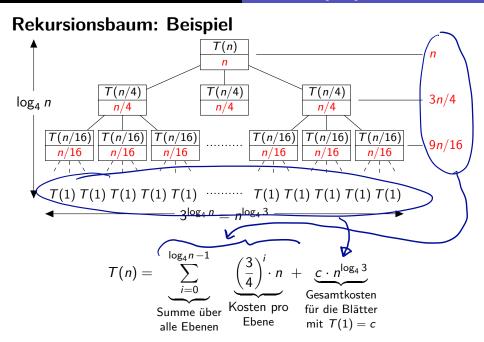
Der Rekursionsbaum von $T(n) = 3 \cdot T(n/4) + n$ sieht etwa so aus:



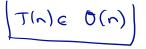
Joost-Pieter Katoen Datenstrukturen und Algorithmen

Rekursionsbaum: Beispiel





Rekursionsbaum: Beispiel



Eine obere Schranke für die Komplexität erhält man nun folgendermaßen:

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4 3} \quad | \text{ Vernachlässigen kleinerer Terme}$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4 3} \quad | \text{ Geometrische Reihe}$$

$$< \frac{1}{1 - (3/4)} \cdot n + c \cdot n^{\log_4 3} \quad | \text{ Umformen}$$

$$= \frac{1}{1 - (3/4)} \cdot n + c \cdot n^{\log_4 3} \quad | \text{ Asymptotische Ordnung bestimmen}$$

$$\text{setze ein, dass } \log_4 3 < 1$$

$$T(n) \in O(n). \qquad \log_4 3 < 1 \qquad | \text{ Koste. dur Blatter}$$

Korrektheit

Wir können die Substitutionsmethode benutzen, um die Vermutung zu bestätigen, dass:

$$T(n) \in O(n)$$
 eine obere Schranke von $T(n) = 3 \cdot T(n/4) + n$ ist.

Korrektheit

Wir können die Substitutionsmethode benutzen, um die Vermutung zu bestätigen, dass:

$$T(n) \in O(n)$$
 eine obere Schranke von $T(n) = 3 \cdot T(n/4) + n$ ist.

$$T(n) = 3 \cdot T(n/4) + n$$

$$\leq 3\underline{d \cdot n/4} + n$$

$$T(n) \in O(n)$$

$$\Rightarrow = \frac{3}{4}d \cdot n + n$$

$$\Rightarrow = \left(\frac{3}{4}d + 1\right) \cdot n$$

$$= \left(\frac{3}{4}d + 1\right) \cdot n$$

$$\Rightarrow = \left(\frac{3}{4}d + 1\right)$$

Korrektheit

Wir können die Substitutionsmethode benutzen, um die Vermutung zu bestätigen, dass:

 $T(n) \in O(n)$ ene obere Schranke von $T(n) = 3 \cdot T(n/4) + n$ ist.

$$T(n) = 3 \cdot T(n/4) + n$$
 ist.

$$T(n) = 3 \cdot T(n/4) + n$$
 | Induktionshypothese
 $\leqslant 3d \cdot n/4 + n$ | $= \frac{3}{4}d \cdot n + n$ | mit $d \geqslant 4$ folgt sofort:
 $\leqslant d \cdot n$

Und wir stellen fest, dass es ein n_0 gibt, sodass $T(n_0) \leq d \cdot n_0$ ist für $d \geq 4$.

Allgemeines Format der Rekursionsgleichung

Eine Rekursionsgleichung für die Komplexitätsanalyse sieht meistens folgendermaßen aus:

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$
 wobei $b>0$, $c>1$ gilt und $f(n)$ eine gegebene Funktion ist.

Anzahl der Teilpoblene

Auful

nichtrekursne Kosten

Allgemeines Format der Rekursionsgleichung

Eine Rekursionsgleichung für die Komplexitätsanalyse sieht meistens folgendermaßen aus:

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$

wobei b > 0, c > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

▶ Das zu analysierende Problem teilt sich jeweils in *b* Teilprobleme auf.

Allgemeines Format der Rekursionsgleichung

Eine Rekursionsgleichung für die Komplexitätsanalyse sieht meistens folgendermaßen aus:

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$

wobei b > 0, c > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

- ▶ Das zu analysierende Problem teilt sich jeweils in *b* Teilprobleme auf.
- ▶ Jedes dieser Teilprobleme hat die Größe $\frac{n}{c}$.

Allgemeines Format der Rekursionsgleichung

Eine Rekursionsgleichung für die Komplexitätsanalyse sieht meistens folgendermaßen aus:

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$

wobei b > 0, c > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

- ▶ Das zu analysierende Problem teilt sich jeweils in *b* Teilprobleme auf.
- ▶ Jedes dieser Teilprobleme hat die Größe $\frac{n}{c}$.
- ▶ Die Kosten für das Aufteilen eines Problems und Kombinieren der Teillösungen sind f(n).

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$
 mit $b \ge 1$ und $c > 1$.

Anzahl der Blätter im Rekursionsbaum: $E = \log b / \log c$.

$$\log_3 2 = \frac{\log_2 2}{\log_2 \alpha}$$

$$T(n) = 3 \cdot T(\frac{n}{2})$$

summe The alle

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$
 mit $b \ge 1$ und $c > 1$.

Anzahl der Blätter im Rekursionsbaum $\binom{n^E}{n^E}$ mit $E = \frac{\log b}{\log c}$.

Mastertheorem

Wenn

Dann

1.
$$f(n) \in O(n^{E-\varepsilon})$$
 für ein $\varepsilon > 0$

$$T(n) \in \Theta(n^E)$$

$$T(n) = b \cdot T\left(\frac{n}{c}\right)$$
 mit $b \ge 1$ und $c > 1$.

Anzahl der Blätter im Rekursionsbaum: n^E mit $E = \log b / \log c$.

Mastertheorem					
	ΝИ	\sim			
	IVI		rer	2101	72111

	Wenn	Dann			
1.	$f(n) \in \mathit{O}(n^{E-arepsilon})$ für ein $arepsilon > 0$	$T(n) \in \Theta(n^E)$			
2.	$f(n) \in \Theta(n^E)$	$T(n) \in \Theta(n^E \cdot \log n)$			

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$
 mit $b \geqslant 1$ und $c > 1$.

Anzahl der Blätter im Rekursionsbaum: n^E mit $E = \log b / \log c$.

Mastertheorem Wenn f(n) ist shet large-englinn 1. $f(n) \in O(n^{E-\varepsilon})$ für ein $\varepsilon > 0$ $f(n) \in O(n^{E})$ 2. $f(n) \in O(n^{E})$ Senan so schnell $f(n) \in O(n^{E})$ $f(n) \in O(n^{E+\varepsilon})$ für ein $\varepsilon > 0$ und $f(n) \in O(n^{E+\varepsilon})$ $f(n) \in O(n^{E+\varepsilon})$

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/21

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$
 mit $b \geqslant 1$ und $c > 1$.

▶ Anzahl der Blätter im Rekursionsbaum: n^E mit $E = \log b / \log c$.

Mastertheorem				
	Wenn	Dann		
1.	$f(n)\in O(n^{E-arepsilon})$ für ein $arepsilon>0$	$T(n) \in \Theta(n^E)$		
2.	$f(n) \in \Theta(n^E)$	$T(n) \in \Theta(n^E \cdot \log n)$		
3.	$f(n) \in \Omega(n^{E+arepsilon})$ für ein $arepsilon > 0$ und $b \cdot f(n/c) \leqslant d \cdot f(n)$ für ein $d < 1$ und n hinreichend groß	$T(n) \in \Theta(f(n))$		

Bemerke, dass das Mastertheorem nicht alle Fälle abdeckt.

In jedem der 3 Fälle wird die Funktion f(n) mit $n^E = n^{\log_c b}$ verglichen.

nicht - Blätter
reharsve

In jedem der 3 Fälle wird die Funktion f(n) mit $n^E = n^{\log_c b}$ verglichen.

Mastertheorem: Intuition

Wenn

VVCIII						
f(n)	polynomial	kleiner	ist	als	п ^Е	

Dann

 $T(n) \in \Theta(n^E)$

In jedem der 3 Fälle wird die Funktion f(n) mit $n^E = n^{\log_c b}$ verglichen.

Mastertheorem: Intuition				
Wenn	Dann			
1. $f(n)$ polynomial kleiner ist als n^E	$T(n) \in \Theta(n^E)$			
2. $f(n)$ und n^E die gleiche Größe habe	$T(n) \in \Theta(n^E \cdot \log n)$			

In jedem der 3 Fälle wird die Funktion f(n) mit $n^E = n^{\log_c b}$ verglichen.

Mastertheorem: Intuition

	Wenn	Dann
1.	$f(n)$ polynomial kleiner ist als n^E	$T(n) \in \Theta(n^E)$
2.	$f(n)$ und n^E die gleiche Größe haben	$T(n) \in \Theta(n^E \cdot \log n)$
3.	$f(n)$ ist polynomial größer als n^E und erfüllt $b \cdot f(n/c) \leqslant d \cdot f(n)$	$T(n) \in \Theta(f(n))$
] € > 0. f(n) € 1 (1	F+E)

Joost-Pieter Katoen

In jedem der 3 Fälle wird die Funktion f(n) mit $n^E = n^{\log_c b}$ verglichen.

Mastertheorem: Intuition				
	Wenn	Dann		
1.	$f(n)$ polynomial kleiner ist als n^E	$T(n) \in \Theta(n^E)$		
2.	$f(n)$ und n^{E} die gleiche Größe haben	$T(n) \in \Theta(n^E \cdot \log n)$		
3.	$f(n)$ ist polynomial größer als n^E und er-	$T(n) \in \Theta(f(n))$		

Nicht abgedeckte Fälle:

füllt $b \cdot f(n/c) \leq d \cdot f(n)$

1. f(n) ist kleiner als n^E , jedoch nicht polynomiell kleiner.

In jedem der 3 Fälle wird die Funktion f(n) mit $n^E = n^{\log_c b}$ verglichen.

Mastertheorem:	Intuition
TVI GOVOT CITTO CITTO	ca.c.o

	Wenn	Dann
1.	$f(n)$ polynomial kleiner ist als n^E	$T(n) \in \Theta(n^E)$
2.	$f(n)$ und n^E die gleiche Größe haben	$T(n) \in \Theta(n^E \cdot \log n)$
3.	$f(n)$ ist polynomial größer als n^E und erfüllt $b \cdot f(n/c) \leq d \cdot f(n)$	$T(n) \in \Theta(f(n))$

Nicht abgedeckte Fälle:

- 1. f(n) ist kleiner als n^E , jedoch nicht polynomiell kleiner.
- 2. f(n) ist größer als n^E , jedoch nicht polynomiell größer.

In jedem der 3 Fälle wird die Funktion f(n) mit $n^E = n^{\log_c b}$ verglichen.

Mastertheorem:	Intinition
i viastem neorem:	
i i i dotto i ti i coi ci i i i	· · · · · · · · · · · · · · · · · · ·

	Wenn	Dann
1.	$f(n)$ polynomial kleiner ist als n^E	$T(n) \in \Theta(n^E)$
2.	$f(n)$ und n^E die gleiche Größe haben	$T(n) \in \Theta(n^E \cdot \log n)$
3.	$f(n)$ ist polynomial größer als n^E und erfüllt $b \cdot f(n/c) \le d \cdot f(n)$	$T(n) \in \Theta(f(n))$

Nicht abgedeckte Fälle:

- 1. f(n) ist kleiner als n^E , jedoch nicht polynomiell kleiner.
- 2. f(n) ist größer als n^E , jedoch nicht polynomiell größer.
- 3. f(n) ist polynomiell größer als n^E , erfüllt nicht $b \cdot f(n/c) \leq d \cdot f(n)$.

$$T(n) = 4 \cdot T(n/2) + n$$

$$T(n) = 4 \cdot T(n/2) + n$$

► Somit:
$$b = 4$$
, $c = 2$ und $f(n) = n$; $E = \log 4 / \log 2 = 2$.

$$T(n) = 4 \cdot T(n/2) + n$$

- ▶ Somit: b = 4, c = 2 und f(n) = n; $E = \log 4 / \log 2 = 2$.
- ▶ Da $f(n) = n \in O(n^{2-\varepsilon})$, gilt Fall 1: $T(n) \in \Theta(n^2)$

wern
$$f(n) \in O(n^{2-\epsilon})$$
, don $T(n) \in \Theta(n^{\epsilon})$

Beispiel

$$T(n) = 4 \cdot T(n/2) + n$$

- ► Somit: b = 4, c = 2 und f(n) = n; $E = \log 4 / \log 2 = 2$.
- ▶ Da $f(n) = n \in O(n^{2-\varepsilon})$, gilt Fall 1: $T(n) \in \Theta(n^2)$

$$T(n) = 4 \cdot T(n/2) + n^2$$

$$\uparrow \qquad \qquad =$$

Beispiel

$$T(n) = 4 \cdot T(n/2) + n$$

- ► Somit: b = 4, c = 2 und f(n) = n; $E = \log 4 / \log 2 = 2$.
- ▶ Da $f(n) = n \in O(n^{2-\varepsilon})$, gilt Fall 1: $T(n) \in \Theta(n^2)$

Beispiel

$$T(n) = 4 \cdot T(n/2) + n^2$$

► Somit: b = 4, c = 2 und $f(n) = n^2$; $E = \log 4 / \log 2 = 2$.

Beispiel

$$T(n) = 4 \cdot T(n/2) + n$$

- ► Somit: b = 4, c = 2 und f(n) = n; $E = \log 4 / \log 2 = 2$.
- ▶ Da $f(n) = n \in O(n^{2-\varepsilon})$, gilt Fall 1: $T(n) \in \Theta(n^2)$

$$T(n) = 4 \cdot T(n/2) + n^2$$

- ► Somit: b = 4, c = 2 und $f(n) = n^2$; $E = \log 4 / \log 2 = 2$.
- ▶ Da $f(n) = n^2 \notin O(n^{2-\varepsilon})$, gilt Fall 1 nicht.

Beispiel

$$T(n) = 4 \cdot T(n/2) + n$$

- ► Somit: b = 4, c = 2 und f(n) = n; $E = \log 4 / \log 2 = 2$.
- ▶ Da $f(n) = n \in O(n^{2-\varepsilon})$, gilt Fall 1: $T(n) \in \Theta(n^2)$

$$T(n) = 4 \cdot T(n/2) + n^2$$

- ► Somit: b = 4, c = 2 und $f(n) = n^2$; $E = \log 4 / \log 2 = 2$.
- ▶ Da $f(n) = n^2 \notin O(n^{2-\varepsilon})$, gilt Fall 1 nicht.
- ▶ Aber weil $f(n) = n^2 \in \Theta(n^2)$, gilt Fall 2: $T(n) \in \Theta(n^2 \cdot \log n)$

$$\Theta(n^E) = \Theta(n^2)$$

$$T(n) = 4 \cdot T(n/2) + \underline{n^3}$$

Beispiel

$$T(n) = 4 \cdot T(n/2) + n^3$$

► Somit: b = 4, c = 2 und $f(n) = n^3$; $E = \log 4 / \log 2 = 2$.

$$T(n) = 4 \cdot T(n/2) + n^3$$

- ► Somit: b = 4, c = 2 und $f(n) = n^3$; $E = \log 4 / \log 2 = 2$.
- ▶ Wegen E = 2 gelten Fälle 1 und 2 offenbar nicht.

Beispiel

$$T(n) = 4 \cdot T(n/2) + (n^3)$$

- ► Somit: b = 4, c = 2 und $f(n) = n^3$; $E = \log 4 / \log 2 = 2$.
- ▶ Wegen E = 2 gelten Fälle 1 und 2 offenbar nicht.
- ▶ Da $f(n) = n^3 \in \Omega(n^{2+\varepsilon})$ für $\varepsilon = 1$, könnte Fall 3 gelten.

where
$$f(r) \in \mathcal{N}(v_{E+c})$$
 for $\epsilon > 0$ \ and $f(r) \in \mathcal{N}(v_{E+c})$

Joost-Pieter Katoen

$$T(n) = 4 \cdot T(n/2) + n^3$$

- ► Somit: b = 4, c = 2 und $f(n) = n^3$; $E = \log 4 / \log 2 = 2$.
- ▶ Wegen E = 2 gelten Fälle 1 und 2 offenbar nicht.
- ▶ Da $f(n) = n^3 \in \Omega(n^{2+\varepsilon})$ für $\varepsilon = 1$, könnte Fall 3 gelten.
- ▶ Überprüfe: gilt $f(n/2) \leq \frac{d}{4} \cdot f(n)$ für ein d < 1 und hinreichend grosse n?

$$p \cdot f(\frac{c}{c}) \leq q \cdot f(u)$$

$$\Rightarrow$$
 4. $f(\frac{n}{2}) \leq d \cdot f(n)$

$$(4) \quad f(\frac{n}{2}) \leq \frac{d}{4} \cdot f(n)$$

$$T(n) = 4 \cdot T(n/2) + n^3$$

- ► Somit: b = 4, c = 2 und $f(n) = n^3$; $E = \log 4 / \log 2 = 2$.
- ▶ Wegen E = 2 gelten Fälle 1 und 2 offenbar nicht.
- ▶ Da $f(n) = n^3 \in \Omega(n^{2+\varepsilon})$ für $\varepsilon = 1$, könnte Fall 3 gelten.
- ▶ Überprüfe: gilt $f(n/2) \leq \frac{d}{4} \cdot f(n)$ für ein d < 1 und hinreichend grosse n?
- ▶ Dies liefert $\frac{1}{8}n^3 \leqslant \frac{d}{4} \cdot n^3$, und dies gilt für alle $\frac{1}{2} \leqslant d < 1$ (und n)

$$t(\frac{5}{\sqrt{3}}) = \left(\frac{5}{\sqrt{3}}\right)_3 = \frac{9}{1} v_3$$

Beispiel

$$T(n) = 4 \cdot T(n/2) + n^3$$

- ► Somit: b = 4, c = 2 und $f(n) = n^3$; $E = \log 4/\log 2 = 2$.
- ▶ Wegen E = 2 gelten Fälle 1 und 2 offenbar nicht.
- ▶ Da $f(n) = n^3 \in \Omega(n^{2+\varepsilon})$ für $\varepsilon = 1$, könnte Fall 3 gelten.
- ▶ Überprüfe: gilt $f(n/2) \leq \frac{d}{4} \cdot f(n)$ für ein d < 1 und hinreichend grosse n?
- ▶ Dies liefert $\frac{1}{8}n^3 \leqslant \frac{d}{4} \cdot n^3$, und dies gilt für alle $\frac{1}{2} \leqslant d < 1$ (und n)
- ► Somit gilt Fall 3 tatsächlich und wir folgern:

 $T(n) \in \Theta(n^3)$

$$T(n) = 4 \cdot T(n/2) + \left(\frac{n^2}{\log n}\right)$$

Beispiel

$$T(n) = 4 \cdot T(n/2) + \frac{n^2}{\log n}$$

► Also gilt: b = 4, c = 2 und $f(n) = n^2/\log n$; E = 2.

Beispiel

$$T(n) = 4 \cdot T(n/2) + \frac{n^2}{\log n}$$

▶ Also gilt: b = 4, c = 2 und $f(n) = n^2 / \log n$; E = 2.

Fall 1 ist nicht anwendbar:

$$n^2/\log n \not\in O(n^{2-arepsilon})$$
, da $f(n)/n^2 = (\log n)^{-1} \not\in O(n^{-arepsilon})$.

$$f(n) \in O(n^{2-\epsilon})$$

$$\frac{n^2}{\log n} \in O(n^{2-\epsilon})$$

Beispiel

$$T(n) = 4 \cdot T(n/2) + \frac{n^2}{\log n}$$

▶ Also gilt: b = 4, c = 2 und $f(n) = n^2 / \log n$; E = 2.

Fall 1 ist nicht anwendbar:

$$n^2/\log n \not\in O(n^{2-\varepsilon})$$
, da $f(n)/n^2 = (\log n)^{-1} \not\in O(n^{-\varepsilon})$.

Fall 2 ist nicht anwendbar: $n^2/\log n \notin \Theta(n^2)$.

Beispiel

$$T(n) = 4 \cdot T(n/2) + \frac{n^2}{\log n}$$

▶ Also gilt: b = 4, c = 2 und $f(n) = n^2 / \log n$; E = 2.

Fall 1 ist nicht anwendbar:

$$n^2/\log n \notin O(n^{2-\varepsilon})$$
, da $f(n)/n^2 = (\log n)^{-1} \notin O(n^{-\varepsilon})$.

Fall 2 ist nicht anwendbar: $n^2/\log n \notin \Theta(n^2)$.

Fall 3 ist nicht anwendbar:

$$f(n) \notin \Omega(\underline{n^{2+\varepsilon}}), \text{ da } \underline{f(n)/n^2} = (\underline{\log n})^{-1} \notin O(n^{+\varepsilon}).$$

Beispiel

$$T(n) = 4 \cdot T(n/2) + \frac{n^2}{\log n}$$

▶ Also gilt: b = 4, c = 2 und $f(n) = n^2 / \log n$; E = 2.

Fall 1 ist nicht anwendbar:

$$n^2/\log n \notin O(n^{2-\varepsilon})$$
, da $f(n)/n^2 = (\log n)^{-1} \notin O(n^{-\varepsilon})$.

Fall 2 ist nicht anwendbar: $n^2/\log n \notin \Theta(n^2)$.

Fall 3 ist nicht anwendbar:

$$f(n) \notin \Omega(n^{2+\varepsilon})$$
, da $f(n)/n^2 = (\log n)^{-1} \notin O(n^{+\varepsilon})$.

- ⇒ Das Mastertheorem hilft hier überhaupt nicht weiter!
 - ▶ Durch Substitution erhält man: $T(n) \in \Theta(n^2 \cdot \log \log n)$

Mastertheorem: Beweis

Sei
$$f(n)$$
 eine nicht-negative Funktion,

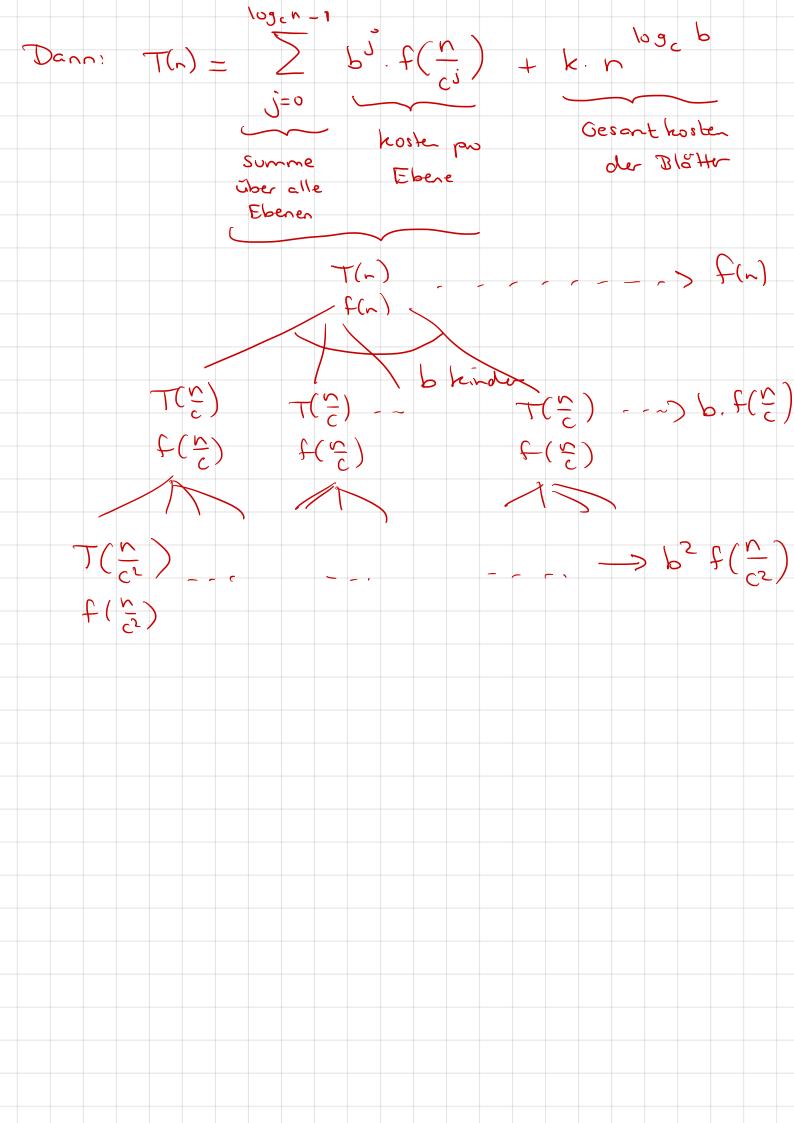
die definiert ist über der Potenzen von C

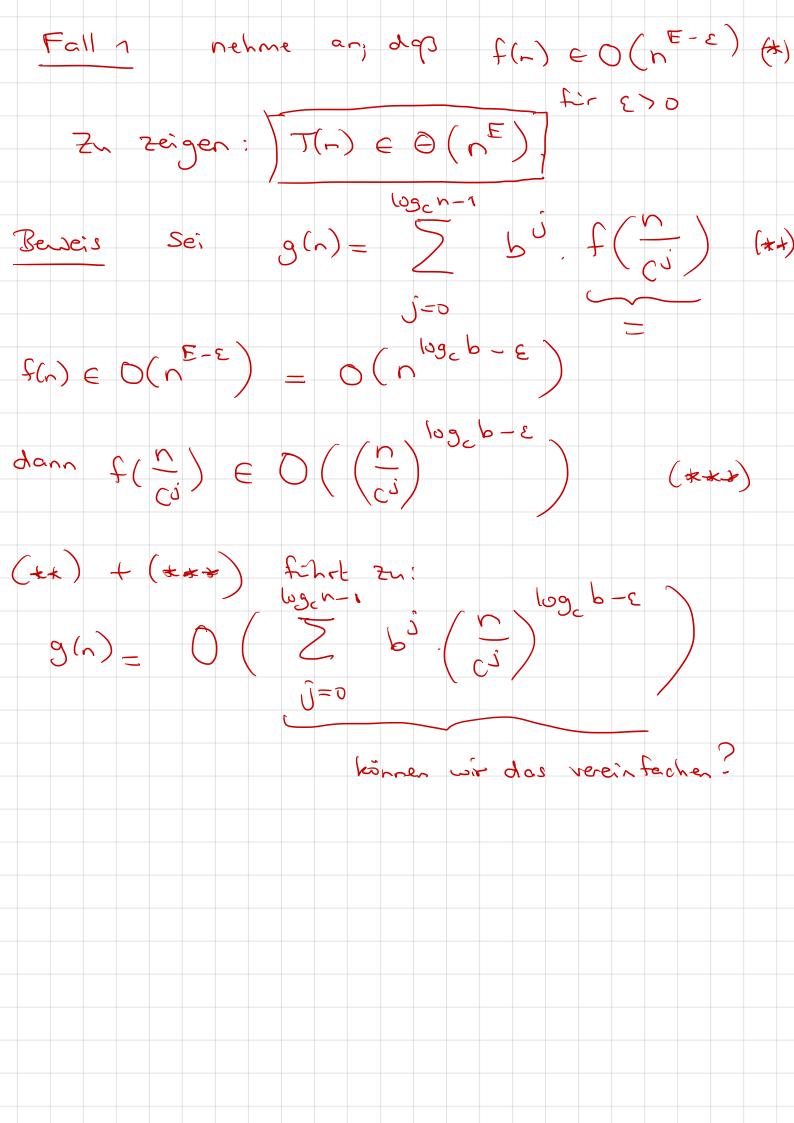
(c^0 , c^1 , c^2 ,). Definiere $T(n)$ über die

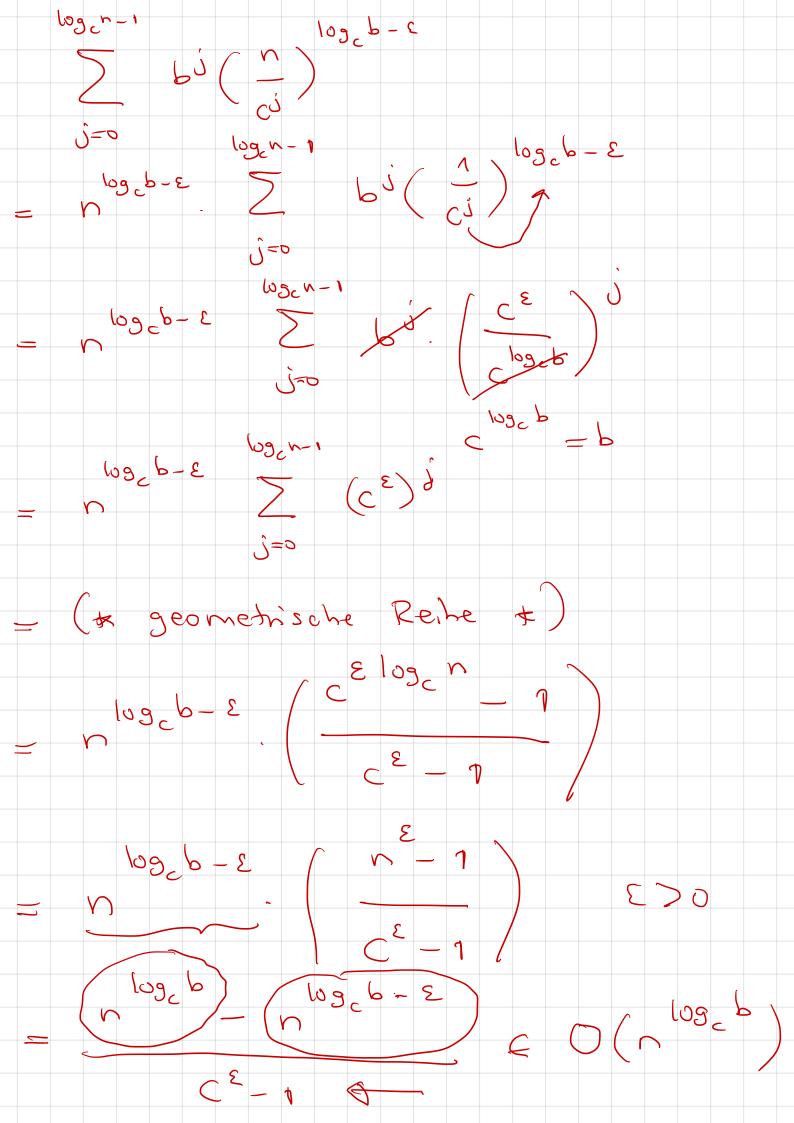
Roberte von c me folgt:

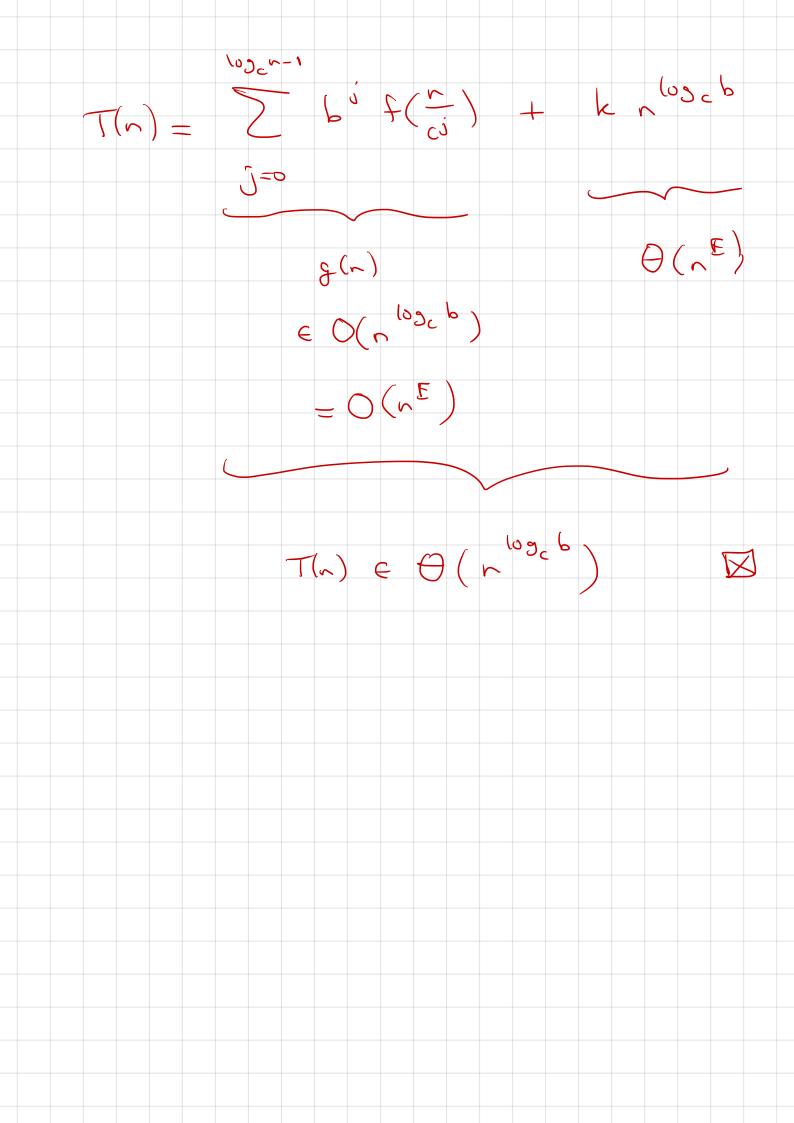
 $f(n) = \begin{cases} k & \text{falls } n = 1 = C^0 \\ b & \text{folls } n = 1 \end{cases}$

ie $|N| > 0$









Nächste Vorlesung

Nächste Vorlesung

Freitag 11. Mai, 13:15 (Hörsaal H01). Bis dann!