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Regu |ar LT properties LF2.6-REGULAR-EXTENDED

idea: define regular LT properties to be those
languages of infinite words over the alphabet 24P
that have a representation by a finite automata
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Regu |ar LT properties LF2.6-REGULAR-EXTENDED

idea: define regular LT properties to be those
languages of infinite words over the alphabet 24P
that have a representation by a finite automata

e regular safety properties:
NFA-representation for the bad prefixes

e representation other regular LT properties by
* w-automata, i.e., acceptors for infinite words

* w-regular expressions
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Regular expressions L s 223

remind: syntax and semantics of regular expressions
over some alphabet ¥ = {A, B, ...}
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Regular expressions over ¥ L urunis 223

Q ::=0|6|A|a1+a2|a1.a2|a*
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Regular expressions over ¥ L urunis 223

Q ::=0|6|A|a1+a2|a1.a2|a*
AN

|
where A € ¥
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Regular expressions over ¥ L urunis 223

a = 0|6|A|a1+a2|a1.a2|a*
AN
|
where A € »

semantics: a — L(a) C T* language of finite words
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Regular expressions over ¥ L urunis 223

a = (Z)|6|A|a1+a2|a1.a2|a*
AN
|
where A € X

semantics: a — L(a) C T* language of finite words

LO)=2  L={  LA)={A}
L(a14az) = L(og) U L(az) union
L(ar.az) = L(a1)Ll(a2) concatenation
L(a*) = L(a)* Kleene closure

10/233



w-regular expressions v amunis 224

regular expressions:

a:x=0]¢€e| A| astar | .00 | o*

w-regular expressions:

regular expressions + w-operator a*
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w-regular expressions v amunis 224

regular expressions:

a:x=0]¢€e| A| astar | .00 | o*

w-regular expressions:

regular expressions + w-operator a*

Kleene star:  “finite repetition”
w-operator:  “infinite repetition”

forL C X*:

Lo % {W1W2W3... : w; € Lforalli> 1}
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w-regular expressions v amunis 224

regular expressions:

a:x=0]¢€e| A| astar | .00 | o*

w-regular expressions:

regular expressions + w-operator a*

Kleene star:  “finite repetition”

w-operator:  “infinite repetition”
forL C X*:
Lo % {W1W2W3... : w; € Lforalli> 1}

note: [“CY¥ifeé¢lL
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Syntax and semantics of w-regular expressions ...
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Syntax and semantics of w-regular expressions ...

syntax of w-regular expressions over alphabet _:
vy = @1.0Y + ... + .Y where

o, [B; are regular expressions over ¥ s.t. € € L([3;)
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Syntax and semantics of w-regular expressions ...

syntax of w-regular expressions over alphabet _:
vy = @1.0Y + ... + .Y where

o, [B; are regular expressions over ¥ s.t. € € L([3;)

semantics: the language generated by 7 is:

L. E U L)y

1<i<n
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Syntax and semantics of w-regular expressions ...

syntax of w-regular expressions over alphabet _:
vy = @1.0Y + ... + .Y where

o, [B; are regular expressions over ¥ s.t. € € L([3;)

semantics: the language generated by 7 is:
def

L) = U L)L) ¢

1<i<n
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syntax of w-regular expressions over alphabet _:
vy = @1.0Y + ... + .Y where

o, [B; are regular expressions over ¥ s.t. € € L([3;)

semantics: the language generated by 7 is:
def

L) = U L)L) ¢

1<i<n

e language of (A*.B)¥
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syntax of w-regular expressions over alphabet _:
vy = @1.0Y + ... + .Y where

o, [B; are regular expressions over ¥ s.t. € € L([3;)

semantics: the language generated by 7 is:
def

L) = U L)L) ¢
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Syntax and semantics of w-regular expressions ...

syntax of w-regular expressions over alphabet _:
vy = @1.0Y + ... + .Y where

o, [B; are regular expressions over ¥ s.t. € € L([3;)

semantics: the language generated by 7 is:
def
L) = U L@@y ¢ =
1<i<n
e language of (A*.B)“ = set of all infinite words over
¥ = {A, B} containing infinitely many B’s

e language of (A*.B)“ + (B*.A)“
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Syntax and semantics of w-regular expressions ...

syntax of w-regular expressions over alphabet _:
vy = @1.0Y + ... + .Y where

o, [B; are regular expressions over ¥ s.t. € € L([3;)

semantics: the language generated by 7 is:
Lo(y) & U £Lle)cs) ¢ =
1<i<n
e language of (A*.B)“ = set of all infinite words over
¥ = {A, B} containing infinitely many B’s
e language of (A*.B)“ + (B*.A)* = set of all infinite
words over 2 with infinitely many A's or B's
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Syntax and semantics of w-regular expressions ...

syntax of w-regular expressions over alphabet _:
vy = @1.0Y + ... + .Y where

o, [B; are regular expressions over ¥ s.t. € € L([3;)

semantics: the language generated by 7 is:
Lo(y) & U £Lle)cs) ¢ =
1<i<n
e language of (A*.B)“ = set of all infinite words over
¥ = {A, B} containing infinitely many B’s
e language of (A*.B)“ + (B*.A)* = set of all infinite
words over 2 with infinitely many A's or B's = ¥
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w-regular languages

syntax of w-regular expressions over alphabet _:
¥ = a1 + ...+ an 87 where

o, [B; are regular expressions over ¥ s.t. € € L([3;)

semantics: the language generated by 7 is:

. ¥ U Llecsy c =

1<i<n

A language L C ¥ is called w-regular iff
there exists an w-regular expression 7y s.t.

L= Lw(’)’)
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Provide an w-regular expression for ...

alphabet X = {A, B}

e set of all infinite words over ¥ containing only
finitely many A's
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Provide an w-regular expression for ...

alphabet X = {A, B}

e set of all infinite words over ¥ containing only
finitely many A's
(A+ B)*.B¥
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Provide an w-regular expression for ...

alphabet X = {A, B}
e set of all infinite words over ¥ containing only
finitely many A's
(A+ B)*.B¥
e set of all infinite words where each A is followed
immediately by letter B
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Provide an w-regular expression for ...

alphabet X = {A, B}
e set of all infinite words over ¥ containing only
finitely many A's
(A+ B)*.B¥
e set of all infinite words where each A is followed
immediately by letter B

(B*.A.B)*.B* + (B*.A.B)*
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Provide an w-regular expression for ...

alphabet X = {A, B}
e set of all infinite words over ¥ containing only
finitely many A's
(A+ B)*.B¥
e set of all infinite words where each A is followed
immediately by letter B

(B*.A.B)*.B* + (B*.A.B)“
e set of all infinite words where each A is followed
eventually by letter B
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Provide an w-regular expression for ...

alphabet X = {A, B}
e set of all infinite words over ¥ containing only
finitely many A's
(A+ B)*.B¥
e set of all infinite words where each A is followed
immediately by letter B

(B*.A.B)*.B* + (B*.A.B)“
e set of all infinite words where each A is followed
eventually by letter B

(B*.A*.B)*.B” + (B*.A*.B)”

def
where o™ = a.a*.
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Provide an w-regular expression for ...

alphabet X = {A, B}
e set of all infinite words over ¥ containing only
finitely many A's
(A+ B)*.B¥
e set of all infinite words where each A is followed
immediately by letter B

(B*.A.B)*.B* + (B*.A.B)“
e set of all infinite words where each A is followed
eventually by letter B

(B*.A*.B)*.B” + (B*.A*.B)* = (A*.B)*

def
where o™ = a.a*.
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w-regular properties LTLAMC3.2-258

Let E be an LT-property over AP, i.e., E C (2AP)w

32/233



w-regular properties LTLAMC3.2-258

Let E be an LT-property over AP, i.e., E C (2AP)w
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w-regular properties LTLAMC3.2-258

Let E be an LT-property over AP, i.e., E C (2AP)w

E is called an w-regular property iff there exists
an w-regular expression y over 24P s.t. E = L,(7)

Examples for AP = {a, b}

e invariant with invariant condition aV —b
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w-regular properties LTLAMC3.2-258

Let E be an LT-property over AP, i.e., E C (2AP)w

E is called an w-regular property iff there exists
an w-regular expression y over 24P s.t. E = L,(7)

Examples for AP = {a, b}

e invariant with invariant condition aV —b

0+ {a} +{a, b})”
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w-regular properties

LTLMC3.2-25B

Let E be an LT-property over AP, i.e., E C (2AP)w

E is called an w-regular property iff there exists
an w-regular expression y over 24P s.t. E = L,(7)

Examples for AP = {a, b}

e invariant with invariant condition aV —b

0+ {a} +{a, b})”

Each invariant is w-regular
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w-regular properties

LTLMC3.2-25B

Let E be an LT-property over AP, i.e., E C (2AP)w

E is called an w-regular property iff there exists
an w-regular expression y over 24P s.t. E = L,(7)

Examples for AP = {a, b}

e invariant with invariant condition aV —b

0+ {a} +{a, b})”

Each invariant is w-regular

/

Let ® be an invariant condition and let
{ACAP:AE o} ={A, ..., A}
Then: invariant “always ®" = (A; + ... + Ax)”
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w-regular properties LTLAC3.2-257

Let E be an LT-property over AP, i.e., E C (2AP)w

E is called an w-regular property iff there exists
an w-regular expression y over 24P st. E = L,(7)

Examples for AP = {a, b}

e invariant with invariant condition aV —b
(0 +{a} + {a, b})”

Indeed: each invariant is w-regular

e ‘“infinitely often a”
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w-regular properties LTLAC3.2-257

Let E be an LT-property over AP, i.e., E C (2AP)w

E is called an w-regular property iff there exists
an w-regular expression y over 24P st. E = L,(7)

Examples for AP = {a, b}

e invariant with invariant condition aV —b
(0 +{a} + {a, b})”

Indeed: each invariant is w-regular

e ‘“infinitely often a”

(©@+{6})*({a} +{a,b}))"
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w-regular properties

Let E be an LT-property over AP, i.e., E C AP

E is called an w-regular property iff there exists
an w-regular expression v over 24P st. E = L,(7)

Examples for AP = {a, b}
e ‘“always a” (or any other invariant)
e ‘infinitely often a"

e ‘eventually a"
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w-regular properties

Let E be an LT-property over AP, i.e., E C AP

E is called an w-regular property iff there exists
an w-regular expression v over 24P st. E = L,(7)

Examples for AP = {a, b}
e ‘“always a” (or any other invariant)
e ‘infinitely often a"

e ‘eventually a"

(2*")*.({a} + {a, b}).2*")

where 24P = (@ + {a} + {b} + {a, b}
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w-regular properties

Let E be an LT-property over AP, i.e., E C AP

E is called an w-regular property iff there exists
an w-regular expression v over 24P st. E = L,(7)

Examples for AP = {a, b}
e ‘“always a” (or any other invariant)
e ‘infinitely often a"
e ‘eventually a"

(2*")*.({a} + {a, b}).2*")

“from some moment on a"

42/233



w-regular properties

Let E be an LT-property over AP, i.e., E C AP

E is called an w-regular property iff there exists
an w-regular expression v over 24P st. E = L,(7)

Examples for AP = {a, b}
e ‘“always a” (or any other invariant)
e ‘infinitely often a"
e ‘eventually a"

(2*")*.({a} + {a, b}).2*")

e 'from some moment on a"

(2*")*.({a} + {a, b})*
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Symbolic notation

symbolic notation for w-regular properties

. using formulas instead of sums ....
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Symbolic notation

Examples for AP = {a, b}
e invariant with invariant condition aV —b

(0 +{a} +{a, b})”
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Symbolic notation

Examples for AP = {a, b}
e invariant with invariant condition aV —b

(av-b) = (0+{a} + {a, b})*
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Symbolic notation

Examples for AP = {a, b}
e invariant with invariant condition aV —b
(av-b)? = (0+{a}+{a, b})”

e “infinitely often a"

((ma)2)" = (@+{b})*.({a} +{a b})”
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Symbolic notation

Examples for AP = {a, b}
e invariant with invariant condition aV —b
(av-b)? = (0+{a}+{a, b})”

e “infinitely often a"

((ma)2)" = (@+{b})*.({a} +{a b})”

e “from some moment on a":
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Symbolic notation

Examples for AP = {a, b}
e invariant with invariant condition aV —b
(av-b)? = (0+{a}+{a, b})”

e “infinitely often a"

((ma).a)” = ((0+{b})*.({a} +{a,b}))"
e “from some moment on a":

true*.a”
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Symbolic notation

Examples for AP = {a, b}
e invariant with invariant condition aV —b
(av-b) = (0+ {a}+{a,b})
e “infinitely often a"
((~aya)* = (@+{6})({a} +{a b}))"
e “from some moment on a":
true*.a”

e “whenever a then b will hold somewhen later”
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Symbolic notation

Examples for AP = {a, b}
e invariant with invariant condition aV —b
(av-b) = (0+ {a}+{a,b})
e “infinitely often a"
((~aya)* = (@+{6})({a} +{a b}))"
e “from some moment on a":
true*.a”

e “whenever a then b will hold somewhen later”

((ma)*.a.true*.b)".(-a)* + ((—a)*.a.true*.b)”
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Nondeterministic Biichi automata (NBA) ...
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Nondeterministic Biichi automata (NBA) ...

syntax as for NFA
T

nondeterministic finite automata
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Nondeterministic Biichi automata (NBA) ...

syntax as for NFA
T

nondeterministic finite automata

semantics: language of infinite words
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Nondeterministic Biichi automata (NBA) ...

NBA A = (Q, %, 8, Qo, F)
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Nondeterministic Biichi automata (NBA) ...

NBA A = (Q, %, 8, Qo, F)

e @ finite set of states
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Nondeterministic Biichi automata (NBA) ...

NBA A=(Q,%,4, Q, F)
e @ finite set of states
e 2 alphabet
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Nondeterministic Biichi automata (NBA) ...

NBA A=(Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation
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Nondeterministic Biichi automata (NBA) ...

NBA A=(Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation
e Q C Q set of initial states
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Nondeterministic Biichi automata (NBA) ...

NBA A=(Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

e Q C Q set of initial states

o [ C Q@ set of final states, also called accept states
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Nondeterministic Biichi automata (NBA) ...

NBA A=(Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

e Q C Q set of initial states

o [ C Q@ set of final states, also called accept states

run for a word Ag A1 Ay ... € 2¥:

state sequence T = qo q1 G2 ... where o € @
and gi+1 € 6(qi, A;) fori >0
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Nondeterministic Biichi automata (NBA) ...

NBA A=(Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

e Q C Q set of initial states

o [ C Q@ set of final states, also called accept states

run for a word Ag A1 Ay ... € 2¥:

state sequence T = qo q1 G2 ... where o € @
and gi+1 € 6(qi, A;) fori >0

00
run 7 is accepting if 31 € N. q; € F
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Nondeterministic Biichi automata (NBA) ...

NBA A=(Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

e Q C Q set of initial states

o [ C Q@ set of final states, also called accept states

accepted language £,(A) C X“ is given by:

L, (A) %f set of infinite words over X that have
an accepting run in A
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Notations in pictures for NBA LTLAC3.2-224

B N jnitial state

@ q1
nonfinal state

"

final state
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Notations in pictures for NBA LTLAC3.2-224

B N jnitial state
Qsm—r
A
. U O nonfinal state
B A
final state

NBA with state space {qo, ¢1}

go Iinitial state

g1 accept state
alphabet X = {A, B}
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Examples for NBA over X = {A, B} ETiMes. 222

B accepted language: ?
q

(%)
O A O

B A
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Examples for NBA over X = {A, B} ETiMes. 222

B

a1

(%)
O A O

B A

accepted language:
set of all infinite words that
contain infinitely many A’'s
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Examples for NBA over X = {A, B} ETiMes. 222

(%)
O

B

B

A

a1

C)

A

accepted language:
set of all infinite words that
contain infinitely many A’'s

(B*.A)*
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Examples for NBA over X = {A, B} ETiMes. 222

a1

accepted language:
set of all infinite words that
contain infinitely many A’'s

(B*.A)*

q2
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Examples for NBA over X = {A, B} ETiMes. 222

B

a1

C)

A

accepted language:
set of all infinite words that
contain infinitely many A’'s

(B*.A)*

B

q2

AABAABAAB...
AAAAAAAAA..

} accepted words
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Examples for NBA over X = {A, B} ETiMes. 222

B accepted language:
@ q set of all infinite words that

. A U contain infinitely many A’s
B A (B*.A)w

B

accepted language:
A “every B is preceded
A .
a2 by a positive even

number of A’s"

AABAABAAB...

AAAAAAAAA . } accepted words
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Examples for NBA over X = {A, B} ETiMes. 222

B accepted language:
@ q set of all infinite words that

. A U contain infinitely many A’s
B A (B*.A)w

B

accepted language:
A “every B is preceded
A .
a2 by a positive even

number of A’s"

((A.A)*.B)* + ((A.A)*.B)*. A
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NBA for LT properties
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NBA for LT properties

NBA A=(Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

e Q C Q set of initial states

o [ C Q@ set of final states, also called accept states
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NBA for LT properties

NBA A = (Q, %, 8, Qo, F)

e @ finite set of states

e 2 alphabet «—

e d:Q x X — 29 transition relation

here: ¥ = 24P

e Y C @ set of initial states
o [ C Q@ set of final states, also called accept states

LTLMC3.2-21B
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NBA for LT properties

NBA A=(Q,%,4, Q, F)
e @ finite set of states
e ¥ alphabet «—| here: ¥ = 24P

e d:Q x X — 29 transition relation
e Y C @ set of initial states
o [ C Q@ set of final states, also called accept states

accepted language £,(.A) is an LT-property:

L,(A) = set of infinite words over 24P that
have an accepting run in A
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N B A for LT pro p e rt ies LTLMC3.2-NBA-2-OMEGA-REG

Lo(A) = ?

set of atomic propositions AP = {a, b}
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N B A for LT pro p e rt ies LTLMC3.2-NBA-2-OMEGA-REG

L,(A) = true.-a.true”

set of atomic propositions AP = {a, b}
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N B A for LT prop erties LTLMC3.2-NBA-2-OMEGA-REG

L,(A) = true.-a.true”

q D true

@ b P1:>true

set of atomic propositions AP = {a, b}
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N B A for LT prop erties LTLMC3.2-NBA-2-OMEGA-REG

L,(A) = true.-a.true”

q D true

@ -b P :) true (a Vv —-b).true“’

set of atomic propositions AP = {a, b}
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N B A for LT pro p e rt ies LTLMC3.2-NBA-2-OMEGA-REG

AN
o) 4—.‘9\/_'[’ @'
()a
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N B A for LT pro p e rt ies LTLMC3.2-NBA-2-OMEGA-REG

N\
aVv-b
CO)b “always 8" = a*

a
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NBA for LT properties

AN
o) 4—.‘9\/_'[’ @'
()a

“always a" = a*




N B A for LT pro p e rt ies LTLMC3.2-NBA-2-OMEGA-REG

N\

aVv-b

CO)b “always 8" = a*
a

)

a

@ q1
b

“infinitely often a and ...”
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N B A for LT pro p e rt ies LTLMC3.2-NBA-2-OMEGA-REG

N\

aVv-b

CO)b “always 8" = a*
a

)

a

@ q1
b

“infinitely often a and always aV b"
= ((avb)a)®

85/233



N B A for LT pro p e rt ies LTLMC3.2-NBA-2-OMEGA-REG

“infinitely often a and
a
g m always a Vv b"

i ((aVvb)*.a)”

“infinitely often a"

((-a)*.a)”
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NBA for LT properties

o

LTLMC3.2-NBA-2-OMEGA-REG

“infinitely often a and

always a Vv b"
((aVvb)*.a)”

“infinitely often a"

((-a)*.a)”



From NBA to w-regular expressions a3 2-NBA-To-0uzA
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From NBA to w-regular expressions a3 2-NBA-To-0uzA

For each NBA A there is an w-regular expression 7y

with £,(A) = Lo(7)
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From NBA to w-regular expressions a3 2-NBA-To-0uzA

For each NBA A there is an w-regular expression 7y

with £,(A) = Lo(7)

Proof. Let A be an NBA (Q, X, 6, Qo, F)
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From NBA to w-regular expressions a3 2-NBA-To-0uzA

For each NBA A there is an w-regular expression 7y

with Lo(A) = L£.(7)

Proof. Let A be an NBA (Q,%,4, Qy, F) and q,p € Q.
Let A, be the NFA (Q, X, 46,49, {p}).
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From NBA to w-regular expressions a3 2-NBA-To-0uzA

For each NBA A there is an w-regular expression 7y

with £,(A) = Lo(7)

Proof. Let A be an NBA (Q,%,4, Qy, F) and q,p € Q.
Let A, be the NFA (Q,X,6,q,{p}). Then:

L,(A) = U U L(Aqg,p) (L(A ») \ {e} )w
qeQo pEF
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From NBA to w-regular expressions a3 2-NBA-To-0uzA

For each NBA A there is an w-regular expression 7y

with £,(A) = Lo(7)

Proof. Let A be an NBA (Q,%,4, Qy, F) and q,p € Q.
Let A, be the NFA (Q,X,6,q,{p}). Then:

L,(A) = U U L(Aqg,p) (L(A ») \ {e} )w
qeQo pEF

is w-regular as L(Agq,) and L(Ap,) \ {€} are regular
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Example: NBA ~~» w-regular expression

NBA A

A

\

2

B

LTLMC3.2-26
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Example: NBA ~~» w-regular expression LTLAMC3.2-26

NBA A

A

\

2

B
A

L,(A) = Lia(L5)* U Lao(L5,)”

Ly = L( A1)
Ly = L(A2)
L5 = L\ {e}
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Example: NBA ~~» w-regular expression LTLAMC3.2-26

NBA A N\ > L,(A) = Lip(L5)“ U Lyp(L5)“
A L2 = L(Az)
1 B 3 Ly = L(A2x)
A Ly = Lo\ {e}
NFA A;»
A 2
B
1 3
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Example: NBA ~~» w-regular expression LTLAMC3.2-26

NBA A N\ > L,(A) = Lip(L5)“ U Lyp(L5)“
A A Ly = L( A1)
1 B 3 Ly = L(A2x)
A L5 = L\ {e}

L1y = A(B.A+ AAA)

NFA A;»
A A

977233



Example: NBA ~~» w-regular expression LTLAMC3.2-26

NBA A
A

\

2

B
A

L,(A) = Lia(L5)“ U Lan(Lyp)”

L, 2 A(BA+AAA)* Ly = (B.A+AAA)*

NFA A;»
A

Ly = L( A1)
3 Ly, = L(A»)
Ly = L\ {e}
init
B A
2
A A
3 1 B 3
A
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Example: NBA ~~» w-regular expression LTLAMC3.2-26

NBA A
A

\

2

B
A

language of A.:

A A.(B.A+ A.AA)
+ (B.A+AAAV

NFA A;»
A

3
L2 A(BA+AAA) Ly = (B.A+AAA?
init
B A
2
A A A
3 158 3
A
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Example: NBA ~~» w-regular expression LTLAMC3.2-26

NBA A
A

\

2

B
A

language of A.:

A A.(B.A+ A.AA)
+ (B.A+AAAV

NFA A;»
A

3) = (A+e).(BA+AAAW
Lir 2 A(BA+AAA® Ly = (B.A+AAA)Y
init
B A
2
A A A
B
3 1 7 3

1007233



From w-regular expressions to NBA LTLACB 227
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From w-regular expressions to NBA LTLACB 227

For each w-regular expression
vY=o01.0 + ... +an B
there exists an NBA A with £,(A) = L,(7).
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From w-regular expressions to NBA LTLACB 227

For each w-regular expression
vY=o01.0 + ... +an B
there exists an NBA A with £,(A) = L,(7).

Proof.
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From w-regular expressions to NBA LTLACB 227

For each w-regular expression
vY=o01.0 + ... +an B
there exists an NBA A with £,(A) = L,(7).

Proof. consider NFA A; for «; and B; for [3;
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From w-regular expressions to NBA LTLACB 227

For each w-regular expression
vY=o01.0 + ... +an B
there exists an NBA A with £,(A) = L,(7).

Proof. consider NFA A; for a; and B; for [3;
e construct NBA By for 3
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From w-regular expressions to NBA LTLACB 227

For each w-regular expression
vY=o01.0 + ... +an B
there exists an NBA A with £,(A) = L,(7).

Proof. consider NFA A; for «; and B; for [3;

e construct NBA By for 3
e construct NBA C; = A;BY for ;.37
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From w-regular expressions to NBA LTLACB 227

For each w-regular expression
vY=o01.0 + ... +an B
there exists an NBA A with £,(A) = L,(7).

Proof. consider NFA A; for «; and B; for [3;
e construct NBA B for 3/
e construct NBA C; = A;BY for ;.37
e construct NBA for |J L,(C})

1<i<n
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From w-regular expressions to NBA LTLMCB 2274

For each w-regular expression
vY=o01.0 + ... +an B
there exists an NBA A with £,(A) = L,(7).

Proof. consider NFA A; for aj and B; for [3;
e construct NBA BY for 37
e construct NBA C; = A;BY for ;.3
e construct NBA for |J L,(C}) —

1<i<n
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NBA are closed under union LTLMO3.2-28
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NBA are closed under union LTLMO3.2-28
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NBA are closed under union LTLMO3.2-28

\
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From w-regular expressions to NBA LTLMCB 2-275

For each w-regular expression
vY=o01.0 + ... +an B
there exists an NBA A with £,(A) = L,(7).

Proof. consider NFA A; for aj and B; for [3;
e construct NBA BY for 37
e construct NBA C; = A;BY for ;.3 ¢
e construct NBA for U Lw(ci)

1<i<n
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Concatenation of an NFA and an NBA LTLMC3.2-29
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Concatenation of an NFA and an NBA LTLMC3.2-29

NFA A; NBA A,

S A (p1)
O=N @@
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Concatenation of an NFA and an NBA LTLMC3.2-29

NFA A; NBA A,

=)

NBA for £(A;1).L.,(As):

G C=)




Concatenation of an NFA and an NBA LTLMC3.2-29

NFA A; NBA A,

accept states as in Ay
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Concatenation of an NFA and an NBA LTLMC3.2-29

NFA A;

\

NBA A,

(@)

\

/

JRC=

NBA for £(A;1).L.,(As):

accept states as in Ay
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From w-regular expressions to NBA LTLMCB 2-27C

For each w-regular expression
vY=o01.0 + ... +an B
there exists an NBA A with £,(A) = L,(7).

Proof. consider NFA A; for aj and B; for [3;
e construct NBA B for 3/ —
e construct NBA C; = A;BY for ;.3
e construct NBA for |J L.(C)

1<i<n

118/233



w-operator for NFA LTLMCS.2-30
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w-operator for NFA LTLMCS.2-30

NFA A for language .., NBA A“ for language
LCxt v C ¥
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w-operator for NFA LTLMCS.2-30

NFA A for language NBA A“ for language

D

LCxt ¥ C ¥
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w-operator for NFA LTLMCS.2-30

NFA A for language NBA A“ for language

D

LCXxt ¥ C ¥

wrong !
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w-operator for NFA LTLMCS.2-30

NFA A for language NBA A“ for language

D

LCXxt ¥ C ¥

wrong !
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w-operator for NFA LTLMCS.2-30

NFA A for language NBA A“ for language

LCXxt ¥ C ¥

wrong !

.. correct, if 6(q,x) = Vge FVxeX
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w-operator for NFA LTLMCS.2-31

NFA A for language — NFA B for L s.t. all
LCXYt final states are terminal
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w-operator for NFA LTLMCS.2-31

NFA A for language — NFA B for L s.t. all
LCXYt final states are terminal

.. add a new final state p’ ...
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w-operator for NFA LTLMCS.2-31

NFA A for language — NFA B for L s.t. all
LCXYt final states are terminal

Y
NBA B

.. add a new final state p’ ...
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w-operator for NFA LTLMCS.2-31

NFA A for language — NFA B for L s.t. all
LCXYt final states are terminal

-




w-operator for NFA LTLMCS.2-31

NFA A for language — NFA B for L s.t. all
LCXYt final states are terminal

-




w-operator for NFA LTLMCS.2-31

NFA A for language — NFA B for L s.t. all
LCXYt final states are terminal

-

L(A)* = L,(B¥)



Example: w-operator for NFA LTLAC.2-32

NFA A for A.B*

B(|p
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Example: w-operator for NFA LTLAC.2-32

NFA A for A.B*

@

A

B(|p

NFA B for A.B*
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Example: w-operator for NFA LTLAC.2-32

NFA A for A.B*

@

A

B(|p

NFA B for A.B*

133/233



Example: w-operator for NFA

NFA A for A.B*

LTLMC3.2-32

@

A

B(|p

NFA B for A.B*

NBA B¥ for (A.B*)*
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Equivalence of w-regular expressions and NBA ..c...

(1) For each NBA A there exists an w-regular
expression vy with L,(A) = L,(7)

(2) For each w-regular expression 7y there exists an

NBA A with £,(A) = L,(7)
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Equivalence of w-regular expressions and NBA ..c...

(1) For each NBA A there exists an w-regular
expression vy with L,(A) = L,(7)

(2) For each w-regular expression 7y there exists an

NBA A with £,(A) = L,(7)

Corollary:
If E be an LT property then:

E is w-regular iff E = L,(.A) for some NBA A
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Equivalence of w-regular expressions and NBA ..c...

(1) For each NBA A there exists an w-regular
expression vy with L,(A) = L,(7)

(2) For each w-regular expression 7y there exists an

NBA A with £,(A) = L,(7)

Corollary:
If E be an LT property, i.e., E C (2AP)M, then:

E is w-regular iff E = L,(.A) for some NBA A
over the alphabet 24P

137 /233



Closure properties of w-regular properties ..o
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Closure properties of w-regular properties ..o

remind: Kleene's theorem for regular languages:

The class of regular languages is closed under

e union, intersection, complementation
e concatenation and Kleene star
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Closure properties of w-regular properties ..o

remind: Kleene's theorem for regular languages:

The class of regular languages is closed under

e union, intersection, complementation
e concatenation and Kleene star

The class of w-regular languages is closed under
union, intersection and complementation.
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Closure properties of w-regular properties ..o

The class of w-regular languages is closed under
union, intersection and complementation.

® wunion:

® ntersection:

e complementation:
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Closure properties of w-regular properties ..o

The class of w-regular languages is closed under
union, intersection and complementation.

e union:
obvious from definition of w-regular expressions

® ntersection:

e complementation:
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Closure properties of w-regular properties ..o

The class of w-regular languages is closed under
union, intersection and complementation.

e union:
obvious from definition of w-regular expressions

® ntersection:

will be discussed later
relies on a certain product construction for NBA

e complementation:
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Closure properties of w-regular properties ..o

The class of w-regular languages is closed under
union, intersection and complementation.

e union:
obvious from definition of w-regular expressions

® ntersection:

will be discussed later
relies on a certain product construction for NBA

e complementation:

much more difficult than for NFA,
via other types of w-automata

144 /233



N Onem pti neSS for N B A LTLMC3.2-NBA-EMPTINESS
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N Onem pti ness for N B A LTLMC3.2-NBA-EMPTINESS

given: NBA A= (Q,%,6, Q, F)
question: does L,(A) # @ hold ?
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N Onem pti ness for N B A LTLMC3.2-NBA-EMPTINESS

Let A= (Q, %, 0, Qo, F) be an NBA. Then:

L,(A) A2 iff Agpe @ Ipe FIxer*yert.
p € 4(qo0,x) N é(p, y)
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N Onem pti ness for N B A LTLMC3.2-NBA-EMPTINESS

Let A= (Q, %, 0, Qo, F) be an NBA. Then:

L,(A) A2 iff Agpe @ Ipe FIxer*yert.
p € 4(qo0,x) N é(p, y)
T

there exists a reachable accept state p € F
that belongs to a cycle
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N Onem pti ness for N B A LTLMC3.2-NBA-EMPTINESS

Let A= (Q, %, 0, Qo, F) be an NBA. Then:

L,(A) A2 iff Agpe @ Ipe FIxer*yert.
p € 4(qo0,x) N é(p, y)

iff  there exist finite words x,y € L*
s.t. y #€ and xy” € L,(A)
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N Onem pti ness for N B A LTLMC3.2-NBA-EMPTINESS

Let A= (Q, %, 0, Qo, F) be an NBA. Then:

L,(A) A2 iff Agpe @ Ipe FIxer*yert.
p € 4(qo0,x) N é(p, y)

iff  there exist finite words x,y € L*
s.t. y #€ and xy” € L,(A)
*

|
“ultimatively periodic words"
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N Onem pti ness for N B A LTLMC3.2-NBA-EMPTINESS

Let A= (Q, %, 0, Qo, F) be an NBA. Then:

L,(A) A2 iff Agpe @ Ipe FIxer*yert.
p € 4(qo0,x) N é(p, y)

iff  there exist finite words x,y € L*
s.t. y #€ and xy” € L,(A)

The emptiness problem for NBA is solvable
by means of graph algorithms in time O( poly(.A))
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Deterministic Biichi automata (DBA) briAe3.2-81
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Deterministic Biichi automata (DBA) briAe3.2-81

A DBA is an NBA A = (Q, %, 4, Qv, F) such that

e A has a unique initial state,

o |6(q,A)| <1 forallge Qand Ae =
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Deterministic Biichi automata (DBA) briAe3.2-81

A DBA is an NBA A = (Q, %, 4, Qv, F) such that

e A has a unique initial state,
i.e., Q is a singleton

o |6(q,A)| <1 forallge Qand Ae =
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Deterministic Biichi automata (DBA) briAe3.2-81

A DBA is an NBA A = (Q, %, 4, Qv, F) such that

e A has a unique initial state,
i.e., Q is a singleton

o |6(q,A)| <1 forallge Qand Ae =

notation: A= (Q,%,0,qo, F) if Qo = {qo}
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Deterministic Biichi automata (DBA) briAe3.2-81

A DBA is an NBA A = (Q, %, 4, Qv, F) such that

e A has a unique initial state,
i.e., Q is a singleton

o |6(q,A)| <1 forallge Qand Ae =

notation: A= (Q,%,0,qo, F) if Qo = {qo}

B

q1

' A U alphabet X = {A, B}
A B
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Deterministic Biichi automata (DBA) briAe3.2-81

A DBA is an NBA A = (Q, %, 4, Qv, F) such that

e A has a unique initial state,
i.e., Q is a singleton

o |6(q,A)| <1 forallge Qand Ae =

notation: A= (Q,%,0,qo, F) if Qo = {qo}

B @ DBA for “infinitely often B"”

' A U alphabet X = {A, B}
A B

157 /233



Determinization by powerset construction  iucose

well-known:

the powerset construction for the
determinization (and complementation) of
finite automata (NFA)
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Determinization by powerset construction  iucose

well-known:

the powerset construction for the
determinization (and complementation) of
finite automata (NFA)

question:

does the powerset construction also work for
Biichi automata (NBA) ?
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Determinization by powerset construction

NBA for “eventually forever a"

qF

LTLMC3.2-82
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Determinization by powerset construction  iucose

NBA for “eventually forever a"

qo0 a

—ad

qF

)

true a

q1

true
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Determinization by powerset construction  iucose

NBA for “eventually forever a"

a —a

qo0 qr q1
true a true

powerset construction

@ 2 . qo qr 2 do q1 qF

U o U

a —a a
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Determinization by powerset construction

NBA for “eventually forever a"

qo0 . qr
true a

powerset construction

aQoQF
9

a

ﬂa@

true

o w

LTLMC3.2-82

o 91 9F

O

—a

)

a

e.g., 8(qo,a) = {qo, gr} and &(qo, a) = {qo}
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Determinization by powerset construction  iucose

NBA for “eventually forever a"

-a( (90)—2— qr —2 @3—-3
a a a

powerset construction

@ 2 . qo qr 2 do q1 qF

U o U

a —a a

e.g., 8(qo,a) = {qo, gr} and &(qo, a) = {qo}
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Determinization by powerset construction  iucose

NBA for “eventually forever a"

—-a o) —2 - qgr 3 (q -3
2 2 2
powerset construction
a

U o U

a —a a

@ 2 . qo qr 2 do q1 qF

DBA for “infinitely often a"
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Powerset construction «| fails for NBA | s

NBA for “eventually forever a"

—-a o) —2 - qgr 3 (q -3
2 2 2
powerset construction
a

U o U

a —a a

@ 2 . qo qr 2 do q1 qF

DBA for “infinitely often a"
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Complementation of DBA LTLMC3.2-83
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Complementation of DBA LTLMC3.2-83

well-known:

DFA can be complemented by
complementation of the acceptance set

question:
does this also work for DBA ?
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Complementation of DBA LTLMC3.2-83

a
qaF
@ DBA for

-a
. U “infinitely often —a"

a —a
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Complementation of DBA LTLMC3.2-83

a
Qe
' — U o DBA for
5 a “infinitely often —a"

complement automaton

\ a

qo

(9F)
O ™ U

a —a
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Complementation of DBA

a

@ qaF
o U

a —a

complement automaton

\ a

qo

(9F)
O ™ U

a —a

LTLMC3.2-83

DBA for
“infinitely often —a"

DBA for
“infinitely often a"
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Complementation «—| fails for DBA | LTLMCB.2-83

S

a

a

—a

qaF

C)

—a

complement automaton

\
qo

)

a

a

—a

5

—a

DBA for
“infinitely often —a"

DBA for
“infinitely often a"
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Complementation «—| fails for DBA | LTLMCB.2-83

a
(4] i DBA f
O O o,
“infinitely often —a"
a -a
complement automaton
\ a
Qo DBA for
U —a . “infinitely often a"
a -a

There is no DBA for the LT-property
“eventually forever a”
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On the power of DBA

There is no DBA A over the alphabet ¥ = {A, B}
such that £,(A) = Lu,( (A+ B)*.A*)
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On the power of DBA

There is no DBA A over the alphabet ¥ = {A, B}
such that £,(A) = Lu,( (A+ B)*.A*)

Hence: there is no DBA for the LT-property
“eventually forever a"

175/233



On the power of DBA

There is no DBA A over the alphabet ¥ = {A, B}
such that £,(A) = Lu,( (A+ B)*.A*)

Hence: there is no DBA for the LT-property
“eventually forever a"

Proof: apply the above theorem for A={a}, B=9
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On the power of DBA

There is no DBA A over the alphabet ¥ = {A, B}
such that £,(A) = Lu,( (A+ B)*.A*)

Hence: there is no DBA for the LT-property
“eventually forever a"

Proof: apply the above theorem for A={a}, B=9

The class of DBA-recognizable languages is a
proper subclass of the class of w-regular languages
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On the power of DBA

There is no DBA A over the alphabet ¥ = {A, B}
such that £,(A) = Lu,( (A+ B)*.A*)

Hence: there is no DBA for the LT-property
“eventually forever a"

Proof: apply the above theorem for A={a}, B=9

The class of DBA-recognizable languages is a
proper subclass of the class of w-regular languages
and is not closed under complementation.
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On the power of DBA

There is no DBA A over the alphabet ¥ = {A, B}
such that £,(A) = Lu,( (A+ B)*.A*)

The class of DBA-recognizable languages is a
proper subclass of the class of w-regular languages
and is not closed under complementation.

(A*.B)¥ “infinitely many B's” DBA-recognizable

(A+ B)*.A“ “only finitely many B's"
not DBA-recognizable
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Generalized NBA (GNBA) LT1MO3.2-40
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Generalized NBA (GNBA) LT1MO3.2-40

A generalized nondeterministic Buchi automaton
is a tuple

g: (072767 QO)]:)

where Q, %, 9, Qp are as in NBA, but F is a set
of accept sets, i.e., F C 29
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Generalized NBA (GNBA) LT1MO3.2-40

A generalized nondeterministic Buchi automaton
is a tuple

g: (072767 QO)]:)

where Q, %, 9, Qp are as in NBA, but F is a set
of accept sets, i.e., F C 29

A run gp g1 q> ... for some infinite word o € X%
is called accepting if each accept set is visited
infinitely often
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Generalized NBA (GNBA) LT1MO3.2-40

A generalized nondeterministic Buchi automaton
is a tuple

g: (072767 QO)]:)

where Q, %, 9, Qp are as in NBA, but F is a set
of accept sets, i.e., F C 29

A run gp g1 q> ... for some infinite word o € X%
is called accepting if each accept set is visited
infinitely often, i.e.,

VFeF 3ieN st. g eF

183 /233



Accepted language of a GNBA LTLMC3.2-40

GNBA G = (Q,%,8, Q, F) as NBA, but F C 29

A run qoq; q> ... for some infinite word 0 € ¥ is
accepting if

VFeF 3ieNst. g €eF

accepted language:
def

L,(G) = {o€X¥:0 hasan accepting runin G }
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Example: GNBA for liveness property LTLMCS.2-40A

GNBA G over ¥ = 24P where AP = {crit, crito}

true

crity F = {{a}. {q}}
true true

q1
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Example: GNBA for liveness property LTLMCS.2-40A
GNBA G over ¥ = 24P where AP = {crit, crito}

true

crit; crity F = {a} {e}}

true true

01

specifies the LT-property

“infinitely often crit; and infinitely often crity"”
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Example: GNBA for liveness property LTLMCS.2-40A
GNBA G over ¥ = 24P where AP = {crit, crito}

true

crit; crity F = {a} {e}}

true true

01

note: Qo A, g1 implies A = crity

do A, g2 implies A = crity
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Example: GNBA for liveness property LTLMCS.2-40A
GNBA G over ¥ = 24P where AP = {crit, crito}

true

crit; crity F = {a} {e}}

true true

note: Qo A, g1 implies A = crity
do A, g2 implies A = crity
hence: |f A A A...€ Lw(g) then
5| 1 > 0. crit) € A; /\E|:>0 crity € A;
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Example: GNBA for liveness property LTLMCS.2-40A
GNBA G over ¥ = 24P where AP = {crit, crito}

true

crit; crity F = {a} {e}}

true true

01

all words Ag A1 Ay... € 2¥ s.t. OECI) i > 0. crit; € A; and

o0
31 > 0. crity € A; have an accepting run of the form:

do---909190---909290---909190---90G2 - - -
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Examples: GNBA over X = {A, B}

GNBA G

B

mA
)]

4 N\
q2

A

LTLMC3.2-41

F= {{Ch},{fh}}
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Examples: GNBA over X = {A, B}

GNBA G

B

mA
)]

A

LTLMC3.2-41

F= {{Ch},{fh}}

Lw(g) = ?
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Examples: GNBA over X = {A, B}

GNBA G

B

mA
)]

A

LTLMC3.2-41

F= {{Ch},{fh}}

L,(G) =2
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Examples: GNBA over X = {A, B}

GNBA G

B

A
A m

4 N\
q2

\ &

J,

A

LTLMC3.2-41

F= {{m},{fh}}
L,(G)=92

GNBA G’ with F' = {{q1, s}, {q2, au} }

OF 5

q1

)
-

q2

B

A

%[ (o)
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Examples: GNBA over X = {A, B} prives. 241

GNBA G A F= {{m},{fh}}

mA
TWAdaE (7)) LL@)=0

\ & J,

GNBA G’ with F' = {{q1, s}, {q2, au} }

B
A m B A A A 7
ol @A fal @

B B

accepted language: ?
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Examples: GNBA over X = {A, B} prives. 241

GNBA G A F= {{m},{fh}}

mA
TWAdaE (7)) LL@)=0

\ & J,

GNBA G’ with F' = {{q1, s}, {q2, au} }

B
A m B A A A 7
ol @A fal @

B B
accepted language: A.B“ + A.B*.A.(A.B)¥
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Empty acceptance condition LTLAC3.2-42
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Empty acceptance condition LTLAC3.2-42

NBA A over X = {A, B}:
A acceptance set F = &

9
9
5

A

NBA Y ={A B}:
G G over {A, B} set of acceptance sets
A F=g

(@ T

A
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Empty acceptance condition LTLAC3.2-42

NBA A over X = {A, B}:

A acceptance set F = &
@@ L,(A) =2

NBA Y ={A B}:
G G over {A, B} set of acceptance sets
A F=g

(@ T

A

198/233



Empty acceptance condition LTLAC3.2-42

NBA A over X = {A, B}:

A acceptance set F = &
@@ L,(A) =2

GNBA G over © = {A, B}: set of acceptance sets
A F=0

(@ T

y L,(G)="7
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Empty acceptance condition LTLAC3.2-42

NBA A over X = {A, B}:

A acceptance set F = &
@@ L,(A) =2

NBA Y ={A B}:
G G over {4, B} set of acceptance sets
A F=g

(@1 _Tay £.(G) = {A°)

A
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Empty acceptance condition LTLAC3.2-42

NBA A over X = {A, B}:

A acceptance set F = &
@@ L,(A) =2

GNBA > ={A, B}:
G over {A, B} set of acceptance sets

A F=0
®@ L£,(G) = {A}

set of all infinite words
that have an infinite run

£.(G) = {
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Correct or wrong? LTLMCB.2-43

For every GNBA G there exists a GNBA G’ such that
o L,(G) = Lu(F)

e the set of acceptance sets of G’ is nonempty
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Correct or wrong? LTLMCB.2-43

For every GNBA G there exists a GNBA G’ such that
o L,(G) = Lu(F)

e the set of acceptance sets of G’ is nonempty

correct

GNBA G

g

GNBAG = (Q,%L,d, Q,{Q})

(Qa z) 57 QO7 Q)
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From GNBA tO NBA LTLMC3.2-44
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From GNBA to NBA LTLMC3.2-44

For each GNBA G there exists an NBA A with
L,(9) = Lu(A)
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From GNBA to NBA LTLMC3.2-44

For each GNBA G there exists an NBA A with
L,(9) = Lu(A)

Proof. Let G = (Q, 2,90, Qo,f) with F = {Fl, ceay Fk}
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From GNBA to NBA LTLMC3.2-44

For each GNBA G there exists an NBA A with
L,(9) = Lu(A)

Proof. Let G = (Q, 2,90, Qo,f) with F = {Fl, ceay Fk}
and k>1
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From GNBA to NBA LTLMC3.2-44

For each GNBA G there exists an NBA A with
L,(9) = Lu(A)

Proof. Let G = (Q, 2,90, Qo,f) with F = {Fl, ceay Fk}
and k>1

note: if k =1 then G is an NBA
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From GNBA to NBA LTLMC3.2-44

For each GNBA G there exists an NBA A with
L,(9) = Lu(A)

Proof. Let G = (Q, 2,90, Qo,f) with F = {Fl, ceay Fk}
and k > 2

note: if k =1 then G is an NBA
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From GNBA to NBA LTLMC3.2-44

For each GNBA G there exists an NBA A with
L,(9) = Lu(A)

Proof. Let G = (Q, 2,90, Qo,f) with F = {Fl, ceay Fk}
and k > 2. NBA A results from k copies of G:
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From GNBA to NBA LTLMC3.2-44

For each GNBA G there exists an NBA A with
L,(9) = Lu(A)

Proof. Let G = (Q, %, 8, Qo, F) with F = {Fy,..., F¢}
and k > 2. NBA A results from k copies of G:

(@
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From GNBA to NBA LTLMC3.2-44

For each GNBA G there exists an NBA A with
L,(9) = Lu(A)

Proof. Let G = (Q, %, 8, Qo, F) with F = {Fy,..., F¢}
and k > 2. NBA A results from k copies of G:

(@

size of the NBA: size(.A) = O(size(G) - | F|)
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Example: from GNBA to NBA LTLMCS 245

GNBA G

crity

0

do

true

true

crity

(e
quj

alphabet ¥ = 24P where
AP = {crity, crity}

infinitely often crit; and
infinitely often crity
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Example: from GNBA to NBA LTLMCS 245

GNBA G

crity

0

do

true

true

crity

alphabet ¥ = 24P where
AP = {crity, crity}

infinitely often crit; and
infinitely often crity

NBA A
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Closure properties of w-regular properties ..o

The class of w-regular languages is closed under
union, intersection and complementation.
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Closure properties of w-regular properties

LTLMC3.2-32B-COPY

The class of w-regular languages is closed under
union, intersection and complementation.

® union:
obvious from definition of w-regular expressions
e intersection:

via some product construction

e complementation:
via other types of w-automata
(not discussed here)
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Closure properties of w-regular properties

The class of w-regular languages is closed under
union, intersection and complementation.

® union:
obvious from definition of w-regular expressions

LTLMC3.2-32B-COPY

e intersection: «——| using GNBA

via some product construction

e complementation:
via other types of w-automata
(not discussed here)
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Intersection for NBA

Ay = (Q, X, 681, Qoa, F1)
A2 = (021 z) 627 00,21 F2)

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(Ay)

} two NBA
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Intersection for NBA

Ay = (Q, X, 681, Qoa, F1)
A2 = (021 27 62) 00,21 F2)

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(Ay)

} two NBA

recall:
intersection for finite automata NFA A; and A,
is realized by a product construction that

e runs A; and A in parallel (synchronously)

e checks whether both end in a final state
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Intersection for NBA

Ay = (Q, X, 681, Qoa, F1)
A2 = (021 z) 627 00,21 F2)

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(Ay)

} two NBA

idea: define A; ® A, as for NFA, i.e.,
e A; and A run in parallel (synchronously)

e and check whether both are accepting
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Intersection for NBA

Ay = (Q, X, 681, Qoa, F1)
A2 = (021 27 62) 00,21 F2)

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(Ay)

} two NBA

idea: define A; ® A, as for NFA, i.e.,
e A; and A run in parallel (synchronously)

e and check whether both are accepting

i

i.e., both F; and F» are visited infinitely often
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Intersection for NBA

Ay = (Q, X, 681, Qoa, F1)
A2 = (QZ) 27 62) 00,21 F2)

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(Ay)

} two NBA

idea: define A; ® A, as for NFA, i.e.,
e A; and A run in parallel (synchronously)

e and check whether both are accepting

i

i.e., both F; and F» are visited infinitely often

~ product of A; and A, yields a GNBA
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Intersection for NBA

Ay = (Q, X, 681, Qoa, F1)
A2 = (021 z) 627 00,21 F2)

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(As)

} two NBA

GNBAG=A;1 ® A,
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Intersection for NBA

Ay = (Q, X, 681, Qoa, F1)
A2 = (021 z) 627 00,21 F2)

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(As)

} two NBA

GNBAG=A; ® A,
e state space Q = Q1 X
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Intersection for NBA

Ay = (Q, X, 681, Qoa, F1)
A2 = (021 z) 627 00,21 F2)

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(As)

} two NBA

GNBAG=A;1 ® A,

e state space Q = Q1 X
e alphabet X
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Intersection for NBA

Ay = (Q, X, 681, Qoa, F1)
A2 = (021 z) 627 00,21 F2)

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(As)

} two NBA

GNBAG=A;1 ® A,

e state space Q = Q; X
e alphabet X
e set of initial states: Qy = Qo1 X Qo2
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Intersection for NBA

Ay = (Q, X, 681, Qoa, F1)
A2 = (021 z) 627 00,21 F2)

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(As)

} two NBA

GNBAG=A;1 ® A,

e state space Q = Q1 X

e alphabet X

e set of initial states: Qy = Qo1 X Qo2

e acceptance condition: F = {F1XQ2, Q;[XF2}
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Intersection for NBA

Ay
Ay

= (Ql) z) 617 QO,l) Fl)
= (021 z) 627 00,21 F2)

} two NBA

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(As)

GNBAG=A;1 ® A,

state space Q = Q1 X

alphabet X

set of initial states: Qp = Qo1 X Qo2
acceptance condition: F = {F1XQ2, Q;[XF2}

transition relation:

8({q1, @), A) = {(p1, 2) : p1 € b1(q1, A), P2 € 2(2, A) }
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Intersection for NBA

A
A

= (Qla z) 517 QO,I) Fl)
= (021 z) 627 00,21 F2)

} two NBA

goal: define an NBA A s.t. L,(A) = L,(A1) N L,(As)

GNBAG=A; ® A, ~~> | equivalent NBA A

state space Q = Q1 X

alphabet X

set of initial states: Qp = Qo1 X Qo2
acceptance condition: F = {F1XQ2, Q;[XF2}

transition relation:

8({q1, @), A) = {(p1, 2) : p1 € b1(q1, A), P2 € 2(2, A) }
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Summary: w-regular languages

230/233



Summary: w-regular languages

The class of w-regular languages agrees with

e the class of languages given by w-regular
expressions

e the class of NBA-recognizable languages

e the class of GNBA-recognizable languages
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Summary: w-regular languages

The class of w-regular languages agrees with

e the class of languages given by w-regular
expressions

e the class of NBA-recognizable languages

e the class of GNBA-recognizable languages

but DBA are strictly less expressive
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Summary: w-regular languages

The class of w-regular languages agrees with

e the class of languages given by w-regular
expressions

e the class of NBA-recognizable languages

e the class of GNBA-recognizable languages

but DBA are strictly less expressive

The class of w-regular languages is closed under
union, intersection and complementation.
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