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Overview

Formal Methods

Formal methods

• Rigorous, mathematically based techniques for the specification, development, analysis,
and verification of software and hardware systems
• Aim at improving correctness, reliability and robustness of such systems

Classifications

• According to design phase
– specification, implementation, testing, ...

• According to specification formalism
– source code, process algebras, timed automata, Markov chains, ...

• According to underlying mathematical theories
– model checking, theorem proving, static analysis, ...
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Overview

Areas Covered in this Seminar

Areas

• Pointer and Shape Analysis
– Static Program Analysis (WS 2016/17)
– Semantics and Verification of Software (SS 2015)

• Advanced Model Checking Techniques
– Advanced Model Checking (WS 2016/17)
– Introduction to Model Checking (SS 2016)

• Analysis of Probabilistic Programs
– Probabilistic Programming (WS 2016/17)
– Modelling and Verification of Probabilistic Systems (WS 2015/16)
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Aims of this Seminar

Goals

Aims of this seminar

• Independent understanding of a scientific topic
• Acquiring, reading and understanding scientific literature
• Writing of your own report on this topic
• Oral presentation of your results
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Aims of this Seminar

Requirements on Report

Your report

• Independent writing of a report of ≈ 15 pages
• Complete set of references to all consulted literature
• Correct citation of important literature
• Plagiarism: taking text blocks (from literature or web) without source indication causes

immediate exclusion from this seminar
• Font size 12pt with “standard” page layout
• Language: German or English
• We expect the correct usage of spelling and grammar

– ≥ 10 errors per page =⇒ abortion of correction

• Report template will be made available on seminar web page
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Aims of this Seminar

Requirements on Talk

Your talk

• Talk of about 45 (= 40 + 5) minutes
• Focus your talk on the audience
• Descriptive slides:

– ≤ 15 lines of text
– use (base) colors in a useful manner

• Language: German or English
• No spelling mistakes please!
• Finish in time. Overtime is bad
• Ask for questions
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Aims of this Seminar

Final Preparations

Preparation of your talk

• Setup laptop and projector ahead of time
• Use a (laser) pointer
• Number your slides
• Multiple copies: laptop, USB, web
• Have backup slides ready for expected questions
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Important Dates

Important Dates

Deadlines

• 15 May: Detailed outline of report due
• 12 June: Report due
• 3 July: Presentation slides due
• 17 July (?): Seminar

Missing a deadline causes immediate exclusion from the seminar
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Important Dates

Selecting Your Topic

Procedure

• You obtain(ed) a list of topics of this seminar.
• Indicate the preference of your topics (first, second, third).
• Return sheet by Monday (24 April) via e-mail/to secretary.
• We do our best to find an adequate topic-student assignment.

– disclaimer: no guarantee for an optimal solution

• Assignment will be published on web site next week.
• Then also your supervisor will be indicated.

Withdrawal

• You have up to three weeks to refrain from participating in this seminar.
• Later cancellation (by you or by us) causes a not passed for this seminar and reduces your

(three) possibilities by one.
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Pointer and Shape Analysis

Pointer-Related Software Errors

https://xkcd.com/371

Sequential programming errors

• Dereferencing invalid pointers
• Creation of memory leaks
• Invalidation of data structures

Concurrent programming errors

• Deadlocks
• Data races
• ...
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Pointer and Shape Analysis

Problems

... and Solutions

Analysis problem: unbounded state spaces with irregular structure

• Infinite data domains
• Dynamic storage (de-)allocation
• Destructive pointer updates

• Recursive procedures
• Dynamic thread creation

Solution: abstraction

• Automata-based: regular model checking, forest automata
• Graph-based: graph grammars, graph transformation systems
• Logic-based: shape analysis, separation logic
• Extensions for concurrency

15 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017



Pointer and Shape Analysis

Problems ... and Solutions

Analysis problem: unbounded state spaces with irregular structure

• Infinite data domains
• Dynamic storage (de-)allocation
• Destructive pointer updates

• Recursive procedures
• Dynamic thread creation

Solution: abstraction

• Automata-based: regular model checking, forest automata
• Graph-based: graph grammars, graph transformation systems
• Logic-based: shape analysis, separation logic
• Extensions for concurrency

15 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017



Pointer and Shape Analysis

Problems

... and Solutions

Analysis problem: unbounded state spaces with irregular structure

• Infinite data domains
• Dynamic storage (de-)allocation
• Destructive pointer updates

• Recursive procedures
• Dynamic thread creation

Solution: abstraction

• Automata-based: regular model checking, forest automata
• Graph-based: graph grammars, graph transformation systems
• Logic-based: shape analysis, separation logic
• Extensions for concurrency

15 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017



Pointer and Shape Analysis

1: Fractional Permissions for Concurrency
2: Symbolic Permission Accounting

Idea

• Threads acquire/release read and write permissions (fractional values between 0 and 1)
• Partial permissions 0 < p < 1 for shared read access
• Full permission p = 1 for exclusive write access

Observations

• Permission not available =⇒ (potential) data race
• Permissions can always be acquired =⇒ data-race freedom

Here: two approaches to symbolically represent permissions
16 of 37 Verification and Static Analysis of Software
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Pointer and Shape Analysis

3: Compositional Shape Analysis by Means of Bi-Abduction

Terms

• Shape analysis: static analysis to discover and verify properties of pointer programs
• Compositional analysis: each procedure is analyzed independently of its callers
• Abduction: identify part ? of a formula to make implication ϕ ∗ ? → ψ valid

– ϕ: assertion at call site
– ψ: procedure precondition

Approach

• Heuristic to solve abduction problem of separation logic
• Use abduction to obtain a compositional shape analysis generating pre/post-conditions for

each procedure
• Apply analysis to real-world programs: Linux Kernel, GIMP, Emacs, Sendmail, . . .
• Provides theoretical foundations of a static analyzer called Infer, developed and used by

Facebook
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Pointer and Shape Analysis

4: Amortised Resource Analysis
Example

for (ptr = head; ptr != null; ptr = ptr.next) {
expensiveOperation(ptr.data);
ptr = ptr.next; }

What is it all about?

• What is the run-time complexity of this program?
• Resource usage depends on length of list
• Handled nicely by amortised resource analysis
• Use Separation Logic to automatically derive complexity bounds

Main Ideas

• Combine Separation Logic with resources
• {R}consume(R){emp}: “consume R at a given cost”
• Use type system for automated amortized complexity analysis
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Advanced Model Checking Techniques

Model Checking
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Advanced Model Checking Techniques

1: Counterexample-Guided Abstraction Refinement

• Main problem from model checking: large state spaces
• Idea: only consider abstraction Abs(T ) of system T
• Abstraction is over-approximation
• If property is satisfied on Abs(T ) =⇒ satisfied on T
• Otherwise found counterexample
• If also counterexample for T =⇒ property violated
• Else refine abstraction using counterexample
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Advanced Model Checking Techniques

2: Assume-Guarantee Reasoning

• Modular model checking
• Check each module (M1,M2) on its own
• Use assumption A to show property P
•

〈A〉M1〈P〉, 〈true〉M2〈A〉
〈true〉M1||M2〈P〉

• Idea: iteratively compute assumption A0,A1, ... and refine
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Advanced Model Checking Techniques

3: Fairness

sx := 0, y := 0

α : x := x + 1

β : y := y − 1

• Fairness important when considering multiple processes
• Algorithms for finite state system operate “locally”
• Now algorithm for infinite state systems
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Advanced Model Checking Techniques

4: Bounded Model Checking

• Bounded model checking (BMC) is a powerful bug-hunting technique.
• Is applied to hard- and software.
• Its basis is to consider paths up to a certain depth k .
• The transition system is encoded as Boolean formula.
• Modern SAT solvers are applied to check for counterexamples.
• Generalizations for liveness and arbitrary depths k do exist.
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Advanced Model Checking Techniques

5: Configurable Software Verification

Configurable SW Verification:
• Static Analysis (SA) and Verification

reducible to each other
• SA knows generic algorithm for decades
• Won Goedel medal ”for their contributions

to the development of efficient verification
methods and algorithms”

Adjustable Block Encoding
• CEGAR hampered by large programs,

especially sequences
• Simplify program by folding sequences

[Beyer et al. 2009]
• Folding until minimality sometimes not very

efficient, follow spirit of CPA and make it
adjustable

25 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017



Advanced Model Checking Techniques

6: IC3

Consider the transition systemM = (X , I, T ) and the property P(X).
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Advanced Model Checking Techniques

7: Probabilistic Model Checking

Given: Markov chainM, LTL formula ϕ
Goal: compute the probability that ϕ holds inM

Classic Approach: 1. get NBA B for ¬ϕ
2. determinise B DRA A
3. analyseM⊗A

Problem: determinisation of B is expensive
Idea: consider simpler constructions for determinisation

Subset Construction: fast, can yield an inconclusive answer
Breakpoint Construction: slower, might also be inconclusive
Multi-Breakpoint Construction: very slow, always conclusive
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Advanced Model Checking Techniques

8: Monte Carlo Model Checking

• Scalable and applicable for large systems
• Idea: Instead of complete state space only consider parts
• Randomly sample paths
• If path is counterexample: property not satisfied
• Else: sample more paths
• Result: confidence that property is safisfied
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Advanced Model Checking Techniques

9: Concurrent Model Checking Algorithms

• Tarjan’s algorithm used for finding strongly connected components (SCCs)
• Crucial in model checking
• DFS which tries to find backward edges to already visited nodes
• Idea: utilise multi-core processors
• Lift algorithm to concurrent algorithm
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Analysis of Probabilistic Programs

1: Sampling for Probabilistic Programs

• Probabilistic programs = ordinary programs + randomness

x := 0 [0.5] 1;

if(x=0) { x := x + (0 [0.5] 1) };
observe(x > 0)

• Inference: What is the probability distribution of a program?
• Sampling = Inference through program execution
• Problem: Large number of samples needed
• This paper: Apply program analysis techniques prior to sampling to obtain more accepting

samples
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Analysis of Probabilistic Programs

2: Slicing Probabilistic Programs

• A probabilistic pogram P returns a distribution over return values
• Goal: Obtain a simpler program Slice(P)

– Correctness: Slicing should preserve the distribution over return values
– Efficiency: Slicing should be done as fast as possible

• Traditional program slicing techniques are not correct for probabilistic programs
• This paper: Correct and efficient approach for probabilistic program slicing

32 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017



Analysis of Probabilistic Programs

3: Sampling Functions for Probability Distributions

Shortcoming

Many programs generate only discrete probability distributions

This paper

• Presents a programming language that is expressive enough for
– discrete probability distributions
– continuous probability distributions
– probability distributions that are neither

• Presents technique for formal reasoning about the language
• Uses examples from robotics:

– Localization
– People tracking
– Mapping
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Analysis of Probabilistic Programs

4: Static Analysis of Probabilistic Programs

Problem

Approximate the probability that a program
establishes a given assertion φ.

Solution overview

Infer the whole program behaviour from finitely
many executions:
• Choose finite set of executions with overall high

probability
• Compute the probability of φ within this set of

executions by symbolic execution
• Use this probability to give guaranteed bounds for the

probability of φ in the whole program
• Instead of computing exact probabilities, approximate

using branch-and-bound techniques over polyhedra

n := 0;

repeat

n := n + 1;

c := coin flip(0.5);

until (c = heads);

return n
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Analysis of Probabilistic Programs

5: Probabilistic Termination

• Behaviour of ordinary programs entirely determined by input
– Program either terminates or not

• Behaviour of probabilistic programs depends on randomness
– Program terminates with some probability

• Probabilistic program terminates almost-certainly if it terminates with probability 1
• Proving almost-certain termination is extremely difficult (more difficult than halting problem)
• In this paper: a proof rule for proving almost-certain termination relatively easily for certain

programs
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Final Hints

Some Final Hints

Hints

• Take your time to understand your literature.
• Be proactive! Look for additional literature and information.
• Discuss the content of your report with other students.
• Be proactive! Contact your supervisor on time.
• Prepare the meeting(s) with your supervisor.
• Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!
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