
Verification and Static Analysis of Software
Introduction
Summer Semester 2017; 20 April, 2017

B. Kaminski, C. Matheja, T. Noll, M. Volk
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-17/vsas/

https://moves.rwth-aachen.de/teaching/ss-17/vsas/

Overview

Outline

Overview

Aims of this Seminar

Important Dates

Pointer and Shape Analysis

Advanced Model Checking Techniques

Analysis of Probabilistic Programs

Final Hints

2 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Overview

Formal Methods

Formal methods

• Rigorous, mathematically based techniques for the specification, development, analysis,
and verification of software and hardware systems
• Aim at improving correctness, reliability and robustness of such systems

Classifications

• According to design phase
– specification, implementation, testing, ...

• According to specification formalism
– source code, process algebras, timed automata, Markov chains, ...

• According to underlying mathematical theories
– model checking, theorem proving, static analysis, ...

3 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Overview

Formal Methods

Formal methods

• Rigorous, mathematically based techniques for the specification, development, analysis,
and verification of software and hardware systems
• Aim at improving correctness, reliability and robustness of such systems

Classifications

• According to design phase
– specification, implementation, testing, ...

• According to specification formalism
– source code, process algebras, timed automata, Markov chains, ...

• According to underlying mathematical theories
– model checking, theorem proving, static analysis, ...

3 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Overview

Areas Covered in this Seminar

Areas

• Pointer and Shape Analysis
– Static Program Analysis (WS 2016/17)
– Semantics and Verification of Software (SS 2015)

• Advanced Model Checking Techniques
– Advanced Model Checking (WS 2016/17)
– Introduction to Model Checking (SS 2016)

• Analysis of Probabilistic Programs
– Probabilistic Programming (WS 2016/17)
– Modelling and Verification of Probabilistic Systems (WS 2015/16)

4 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Aims of this Seminar

Outline

Overview

Aims of this Seminar

Important Dates

Pointer and Shape Analysis

Advanced Model Checking Techniques

Analysis of Probabilistic Programs

Final Hints

5 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Aims of this Seminar

Goals

Aims of this seminar

• Independent understanding of a scientific topic
• Acquiring, reading and understanding scientific literature
• Writing of your own report on this topic
• Oral presentation of your results

6 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Aims of this Seminar

Requirements on Report

Your report

• Independent writing of a report of ≈ 15 pages
• Complete set of references to all consulted literature
• Correct citation of important literature
• Plagiarism: taking text blocks (from literature or web) without source indication causes

immediate exclusion from this seminar
• Font size 12pt with “standard” page layout
• Language: German or English
• We expect the correct usage of spelling and grammar

– ≥ 10 errors per page =⇒ abortion of correction

• Report template will be made available on seminar web page

7 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Aims of this Seminar

Requirements on Talk

Your talk

• Talk of about 45 (= 40 + 5) minutes
• Focus your talk on the audience
• Descriptive slides:

– ≤ 15 lines of text
– use (base) colors in a useful manner

• Language: German or English
• No spelling mistakes please!
• Finish in time. Overtime is bad
• Ask for questions

8 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Aims of this Seminar

Final Preparations

Preparation of your talk

• Setup laptop and projector ahead of time
• Use a (laser) pointer
• Number your slides
• Multiple copies: laptop, USB, web
• Have backup slides ready for expected questions

9 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Important Dates

Outline

Overview

Aims of this Seminar

Important Dates

Pointer and Shape Analysis

Advanced Model Checking Techniques

Analysis of Probabilistic Programs

Final Hints

10 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Important Dates

Important Dates

Deadlines

• 15 May: Detailed outline of report due
• 12 June: Report due
• 3 July: Presentation slides due
• 17 July (?): Seminar

Missing a deadline causes immediate exclusion from the seminar

11 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Important Dates

Important Dates

Deadlines

• 15 May: Detailed outline of report due
• 12 June: Report due
• 3 July: Presentation slides due
• 17 July (?): Seminar

Missing a deadline causes immediate exclusion from the seminar

11 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Important Dates

Selecting Your Topic

Procedure

• You obtain(ed) a list of topics of this seminar.
• Indicate the preference of your topics (first, second, third).
• Return sheet by Monday (24 April) via e-mail/to secretary.
• We do our best to find an adequate topic-student assignment.

– disclaimer: no guarantee for an optimal solution

• Assignment will be published on web site next week.
• Then also your supervisor will be indicated.

Withdrawal

• You have up to three weeks to refrain from participating in this seminar.
• Later cancellation (by you or by us) causes a not passed for this seminar and reduces your

(three) possibilities by one.

12 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Important Dates

Selecting Your Topic

Procedure

• You obtain(ed) a list of topics of this seminar.
• Indicate the preference of your topics (first, second, third).
• Return sheet by Monday (24 April) via e-mail/to secretary.
• We do our best to find an adequate topic-student assignment.

– disclaimer: no guarantee for an optimal solution

• Assignment will be published on web site next week.
• Then also your supervisor will be indicated.

Withdrawal

• You have up to three weeks to refrain from participating in this seminar.
• Later cancellation (by you or by us) causes a not passed for this seminar and reduces your

(three) possibilities by one.

12 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Pointer and Shape Analysis

Outline

Overview

Aims of this Seminar

Important Dates

Pointer and Shape Analysis

Advanced Model Checking Techniques

Analysis of Probabilistic Programs

Final Hints

13 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Pointer and Shape Analysis

Pointer-Related Software Errors

https://xkcd.com/371

Sequential programming errors

• Dereferencing invalid pointers
• Creation of memory leaks
• Invalidation of data structures

Concurrent programming errors

• Deadlocks
• Data races
• ...

14 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Pointer and Shape Analysis

Pointer-Related Software Errors

https://xkcd.com/371

Sequential programming errors

• Dereferencing invalid pointers
• Creation of memory leaks
• Invalidation of data structures

Concurrent programming errors

• Deadlocks
• Data races
• ...

14 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Pointer and Shape Analysis

Problems

... and Solutions

Analysis problem: unbounded state spaces with irregular structure

• Infinite data domains
• Dynamic storage (de-)allocation
• Destructive pointer updates

• Recursive procedures
• Dynamic thread creation

Solution: abstraction

• Automata-based: regular model checking, forest automata
• Graph-based: graph grammars, graph transformation systems
• Logic-based: shape analysis, separation logic
• Extensions for concurrency

15 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Pointer and Shape Analysis

Problems ... and Solutions

Analysis problem: unbounded state spaces with irregular structure

• Infinite data domains
• Dynamic storage (de-)allocation
• Destructive pointer updates

• Recursive procedures
• Dynamic thread creation

Solution: abstraction

• Automata-based: regular model checking, forest automata
• Graph-based: graph grammars, graph transformation systems
• Logic-based: shape analysis, separation logic
• Extensions for concurrency

15 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Pointer and Shape Analysis

Problems

... and Solutions

Analysis problem: unbounded state spaces with irregular structure

• Infinite data domains
• Dynamic storage (de-)allocation
• Destructive pointer updates

• Recursive procedures
• Dynamic thread creation

Solution: abstraction

• Automata-based: regular model checking, forest automata
• Graph-based: graph grammars, graph transformation systems
• Logic-based: shape analysis, separation logic
• Extensions for concurrency

15 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Pointer and Shape Analysis

1: Fractional Permissions for Concurrency
2: Symbolic Permission Accounting

Idea

• Threads acquire/release read and write permissions (fractional values between 0 and 1)
• Partial permissions 0 < p < 1 for shared read access
• Full permission p = 1 for exclusive write access

Observations

• Permission not available =⇒ (potential) data race
• Permissions can always be acquired =⇒ data-race freedom

Here: two approaches to symbolically represent permissions
16 of 37 Verification and Static Analysis of Software

Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Pointer and Shape Analysis

3: Compositional Shape Analysis by Means of Bi-Abduction

Terms

• Shape analysis: static analysis to discover and verify properties of pointer programs
• Compositional analysis: each procedure is analyzed independently of its callers
• Abduction: identify part ? of a formula to make implication ϕ ∗ ? → ψ valid

– ϕ: assertion at call site
– ψ: procedure precondition

Approach

• Heuristic to solve abduction problem of separation logic
• Use abduction to obtain a compositional shape analysis generating pre/post-conditions for

each procedure
• Apply analysis to real-world programs: Linux Kernel, GIMP, Emacs, Sendmail, . . .
• Provides theoretical foundations of a static analyzer called Infer, developed and used by

Facebook

17 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Pointer and Shape Analysis

4: Amortised Resource Analysis
Example

for (ptr = head; ptr != null; ptr = ptr.next) {
expensiveOperation(ptr.data);
ptr = ptr.next; }

What is it all about?

• What is the run-time complexity of this program?
• Resource usage depends on length of list
• Handled nicely by amortised resource analysis
• Use Separation Logic to automatically derive complexity bounds

Main Ideas

• Combine Separation Logic with resources
• {R}consume(R){emp}: “consume R at a given cost”
• Use type system for automated amortized complexity analysis

18 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Advanced Model Checking Techniques

Outline

Overview

Aims of this Seminar

Important Dates

Pointer and Shape Analysis

Advanced Model Checking Techniques

Analysis of Probabilistic Programs

Final Hints

19 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Advanced Model Checking Techniques

Model Checking

20 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Advanced Model Checking Techniques

1: Counterexample-Guided Abstraction Refinement

• Main problem from model checking: large state spaces
• Idea: only consider abstraction Abs(T) of system T
• Abstraction is over-approximation
• If property is satisfied on Abs(T) =⇒ satisfied on T
• Otherwise found counterexample
• If also counterexample for T =⇒ property violated
• Else refine abstraction using counterexample

21 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Advanced Model Checking Techniques

2: Assume-Guarantee Reasoning

• Modular model checking
• Check each module (M1,M2) on its own
• Use assumption A to show property P
•

〈A〉M1〈P〉, 〈true〉M2〈A〉
〈true〉M1||M2〈P〉

• Idea: iteratively compute assumption A0,A1, ... and refine

22 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Advanced Model Checking Techniques

3: Fairness

sx := 0, y := 0

α : x := x + 1

β : y := y − 1

• Fairness important when considering multiple processes
• Algorithms for finite state system operate “locally”
• Now algorithm for infinite state systems

23 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Advanced Model Checking Techniques

4: Bounded Model Checking

• Bounded model checking (BMC) is a powerful bug-hunting technique.
• Is applied to hard- and software.
• Its basis is to consider paths up to a certain depth k .
• The transition system is encoded as Boolean formula.
• Modern SAT solvers are applied to check for counterexamples.
• Generalizations for liveness and arbitrary depths k do exist.

24 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Advanced Model Checking Techniques

5: Configurable Software Verification

Configurable SW Verification:
• Static Analysis (SA) and Verification

reducible to each other
• SA knows generic algorithm for decades
• Won Goedel medal ”for their contributions

to the development of efficient verification
methods and algorithms”

Adjustable Block Encoding
• CEGAR hampered by large programs,

especially sequences
• Simplify program by folding sequences

[Beyer et al. 2009]
• Folding until minimality sometimes not very

efficient, follow spirit of CPA and make it
adjustable

25 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Advanced Model Checking Techniques

6: IC3

Consider the transition systemM = (X , I, T) and the property P(X).

P
F0 F1

ba

F0 F1

F2 F3

F4 F5

e

d

c

ba

ww

vv

u

t

26 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Advanced Model Checking Techniques

7: Probabilistic Model Checking

Given: Markov chainM, LTL formula ϕ
Goal: compute the probability that ϕ holds inM

Classic Approach: 1. get NBA B for ¬ϕ
2. determinise B DRA A
3. analyseM⊗A

Problem: determinisation of B is expensive
Idea: consider simpler constructions for determinisation

Subset Construction: fast, can yield an inconclusive answer
Breakpoint Construction: slower, might also be inconclusive
Multi-Breakpoint Construction: very slow, always conclusive

27 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Advanced Model Checking Techniques

8: Monte Carlo Model Checking

• Scalable and applicable for large systems
• Idea: Instead of complete state space only consider parts
• Randomly sample paths
• If path is counterexample: property not satisfied
• Else: sample more paths
• Result: confidence that property is safisfied

28 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Advanced Model Checking Techniques

9: Concurrent Model Checking Algorithms

• Tarjan’s algorithm used for finding strongly connected components (SCCs)
• Crucial in model checking
• DFS which tries to find backward edges to already visited nodes
• Idea: utilise multi-core processors
• Lift algorithm to concurrent algorithm

29 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Analysis of Probabilistic Programs

Outline

Overview

Aims of this Seminar

Important Dates

Pointer and Shape Analysis

Advanced Model Checking Techniques

Analysis of Probabilistic Programs

Final Hints

30 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Analysis of Probabilistic Programs

1: Sampling for Probabilistic Programs

• Probabilistic programs = ordinary programs + randomness

x := 0 [0.5] 1;

if(x=0) { x := x + (0 [0.5] 1) };
observe(x > 0)

• Inference: What is the probability distribution of a program?
• Sampling = Inference through program execution
• Problem: Large number of samples needed
• This paper: Apply program analysis techniques prior to sampling to obtain more accepting

samples

31 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Analysis of Probabilistic Programs

2: Slicing Probabilistic Programs

• A probabilistic pogram P returns a distribution over return values
• Goal: Obtain a simpler program Slice(P)

– Correctness: Slicing should preserve the distribution over return values
– Efficiency: Slicing should be done as fast as possible

• Traditional program slicing techniques are not correct for probabilistic programs
• This paper: Correct and efficient approach for probabilistic program slicing

32 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Analysis of Probabilistic Programs

3: Sampling Functions for Probability Distributions

Shortcoming

Many programs generate only discrete probability distributions

This paper

• Presents a programming language that is expressive enough for
– discrete probability distributions
– continuous probability distributions
– probability distributions that are neither

• Presents technique for formal reasoning about the language
• Uses examples from robotics:

– Localization
– People tracking
– Mapping

33 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Analysis of Probabilistic Programs

4: Static Analysis of Probabilistic Programs

Problem

Approximate the probability that a program
establishes a given assertion φ.

Solution overview

Infer the whole program behaviour from finitely
many executions:
• Choose finite set of executions with overall high

probability
• Compute the probability of φ within this set of

executions by symbolic execution
• Use this probability to give guaranteed bounds for the

probability of φ in the whole program
• Instead of computing exact probabilities, approximate

using branch-and-bound techniques over polyhedra

n := 0;

repeat

n := n + 1;

c := coin flip(0.5);

until (c = heads);

return n

34 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Analysis of Probabilistic Programs

5: Probabilistic Termination

• Behaviour of ordinary programs entirely determined by input
– Program either terminates or not

• Behaviour of probabilistic programs depends on randomness
– Program terminates with some probability

• Probabilistic program terminates almost-certainly if it terminates with probability 1
• Proving almost-certain termination is extremely difficult (more difficult than halting problem)
• In this paper: a proof rule for proving almost-certain termination relatively easily for certain

programs

35 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Final Hints

Outline

Overview

Aims of this Seminar

Important Dates

Pointer and Shape Analysis

Advanced Model Checking Techniques

Analysis of Probabilistic Programs

Final Hints

36 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Final Hints

Some Final Hints

Hints

• Take your time to understand your literature.
• Be proactive! Look for additional literature and information.
• Discuss the content of your report with other students.
• Be proactive! Contact your supervisor on time.
• Prepare the meeting(s) with your supervisor.
• Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!

37 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

Final Hints

Some Final Hints

Hints

• Take your time to understand your literature.
• Be proactive! Look for additional literature and information.
• Discuss the content of your report with other students.
• Be proactive! Contact your supervisor on time.
• Prepare the meeting(s) with your supervisor.
• Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!

37 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

	Overview
	Aims of this Seminar
	Important Dates
	Pointer and Shape Analysis
	Advanced Model Checking Techniques
	Analysis of Probabilistic Programs
	Final Hints

