Verlflcatlon and Statlc AnaIyS|s of Software

Introduction
Summer Semester 2017; 20 April, 2017

B. Kaminski, C. Matheja, T. Noll, M. Volk
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-17/vsas/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ss-17/vsas/

Overview

Outline
Overview
2 0of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk 0 Rm
Summer Semester 2017; 20 April, 2017 ‘ Software Modeling
Il and Verification Chair

Overview

Formal Methods
Formal methods

e Rigorous, mathematically based techniques for the specification, development, analysis,
and verification of software and hardware systems

e Aim at improving correctness, reliability and robustness of such systems

3 0f 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Overview

Formal Methods

Formal methods

e Rigorous, mathematically based techniques for the specification, development, analysis,
and verification of software and hardware systems

e Aim at improving correctness, reliability and robustness of such systems

Classifications

e According to design phase

— specification, implementation, testing, ...
e According to specification formalism

— source code, process algebras, timed automata, Markov chains, ...
e According to underlying mathematical theories

— model checking, theorem proving, static analysis, ...

3 0f 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Overview

Areas Covered in this Seminar

Areas

e Pointer and Shape Analysis

— Static Program Analysis (WS 2016/17)

— Semantics and Verification of Software (SS 2015)
e Advanced Model Checking Techniques

— Advanced Model Checking (WS 2016/17)

— Introduction to Model Checking (SS 2016)
e Analysis of Probabilistic Programs

— Probabilistic Programming (WS 2016/17)
— Modelling and Verification of Probabilistic Systems (WS 2015/16)

4 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Aims of this Seminar

Outline

Aims of this Seminar

50f 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk 0 Rm
Summer Semester 2017; 20 April, 2017 ‘ Software Modeling
Il and Verification Chair

Aims of this Seminar

Goals
Aims of this seminar

e Independent understanding of a scientific topic

e Acquiring, reading and understanding scientific literature
e Writing of your own report on this topic

e Oral presentation of your results

6 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Aims of this Seminar

Requirements on Report
Your report

e Independent writing of a report of ~ 15 pages
e Complete set of references to all consulted literature
e Correct citation of important literature

e Plagiarism: taking text blocks (from literature or web) without source indication causes
immediate exclusion from this seminar

e Font size 12pt with “standard” page layout

e Language: German or English
e We expect the correct usage of spelling and grammar
— > 10 errors per page = abortion of correction

e Report template will be made available on seminar web page

7 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Aims of this Seminar

Requirements on Talk

Your talk

e Talk of about 45 (= 40 + 5) minutes

e Focus your talk on the audience
e Descriptive slides:

— < 15 lines of text
— use (base) colors in a useful manner

e Language: German or English
e No spelling mistakes please!

e Finish in time. Overtime is bad
e Ask for questions

8 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017

n

4

Software Modeling
Il and Verification Chair

RWTH

Aims of this Seminar

Final Preparations
Preparation of your talk

e Setup laptop and projector ahead of time

e Use a (laser) pointer

e Number your slides

e Multiple copies: laptop, USB, web

e Have backup slides ready for expected questions

9 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017

n

4

Software Modeling
Il and Verification Chair

RWTH

Important Dates

Outline

Important Dates

10 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017

.

4

Software Modeling
Il and Verification Chair

RWTH

Important Dates

Important Dates

Deadlines

e 15 May: Detailed outline of report due
e 12 June: Report due

e 3 July: Presentation slides due

e 17 July (?): Seminar

11 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017

n

4

Software Modeling
Il and Verification Chair

RWTH

Important Dates

Important Dates

Deadlines

e 15 May: Detailed outline of report due
e 12 June: Report due

e 3 July: Presentation slides due

e 17 July (?): Seminar

Missing a deadline causes immediate exclusion from the seminar

11 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Important Dates

Selecting Your Topic

Procedure

e You obtain(ed) a list of topics of this seminar.
e Indicate the preference of your topics (first, second, third).

e Return sheet by Monday (24 April) via e-mail/to secretary.
e We do our best to find an adequate topic-student assignment.
— disclaimer: no guarantee for an optimal solution

e Assignment will be published on web site next week.
e Then also your supervisor will be indicated.

RWTH

Kaminski/Matheja/Noll/Volk

12 of 37 Verification and Static Analysis of Software o
Summer Semester 2017; 20 April, 2017 ‘

Software Modeling
Il and Verification Chair

Important Dates

Selecting Your Topic

Procedure

e You obtain(ed) a list of topics of this seminar.
e Indicate the preference of your topics (first, second, third).

e Return sheet by Monday (24 April) via e-mail/to secretary.
e We do our best to find an adequate topic-student assignment.
— disclaimer: no guarantee for an optimal solution

e Assignment will be published on web site next week.
e Then also your supervisor will be indicated.

Withdrawal

e You have up to three weeks to refrain from participating in this seminar.

e Later cancellation (by you or by us) causes a not passed for this seminar and reduces your
(three) possibilities by one.

RWTH

Kaminski/Matheja/Noll/Volk

12 of 37 Verification and Static Analysis of Software O
Summer Semester 2017; 20 April, 2017 ‘

Software Modeling
Il and Verification Chair

Pointer and Shape Analysis

Outline

Pointer and Shape Analysis

13 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017

.

4

Software Modeling
Il and Verification Chair

RWTH

Pointer and Shape Analysis

Pointer-Related Software Errors

OKAY, HUMAN. YOU KNOW WHEN YOURE | AND SUDDENLY You | WELL, THATS WHAT A
HUK? ;5] FALLING ASLEER AND NISSTEP, STUMBLE, SEGFAULT FEELS LIKE.
1UR: YOU MAGINE YOURSELF | AND JOLT AWAKE? N
BEFORE You WALKING OR YEAH! DOUBLE - CHECK YOUR
AT (OMPILE, ' SOMETHING, I ﬂl DAMN POINTERS, OKAY?
LISTEN Up, % \
https://xkcd.com/371
Sequential programming errors
e Dereferencing invalid pointers
e Creation of memory leaks
e Invalidation of data structures
e Kamingk MATeANOINGK o n RWTH

Summer Semester 2017; 20 April, 2017 ‘

Software Modeling
Il and Verification Chair

Pointer and Shape Analysis

Pointer-Related Software Errors

OKAY, HUMAN.

HOH? 3
BEFORE YoU
HIT (OMPILE,
Y LISTEN up

YOU KNOW WHEN YOURE
FALLING ASLEEP AND
YOU IMAGINE YOURSELF
WALKING OR
A SOMETHING,

|

AND SUCDENLY YOU
NISSTEP, STUMBLE,
AND JOLT AWAKE?

YEAH!

M

https://xkcd.com/371

Sequential programming errors

e Dereferencing invalid pointers
e Creation of memory leaks
e Invalidation of data structures

WELL, THATS WHAT A
SEGFAULT FEELS LIKE.
9

DOUBLE - CHECK YOUR
DAMN POINTERS, OKAY?

 Sul

Concurrent programming errors

Deadlocks
Data races

14 of 37

Verification and Static Analysis of Software

Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017

n

‘ Software Modeling
Il and Verification Chair

RWTH

Pointer and Shape Analysis

Problems

Analysis problem: unbounded state spaces with irregular structure

e Infinite data domains e Recursive procedures
e Dynamic storage (de-)allocation e Dynamic thread creation
e Destructive pointer updates

15 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Pointer and Shape Analysis

Problems ... and Solutions

Analysis problem: unbounded state spaces with irregular structure

e Infinite data domains e Recursive procedures
e Dynamic storage (de-)allocation e Dynamic thread creation
e Destructive pointer updates

Solution: abstraction

o Automata-based: regular model checking, forest automata

e Graph-based: graph grammars, graph transformation systems
e Logic-based: shape analysis, separation logic

e Extensions for concurrency

15 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017 ‘ Software Modeling

Il and Verification Chair

RWTH

Pointer and Shape Analysis

Problems

Analysis problem: unbounded state spaces with irregular structure

e Infinite data domains e Recursive procedures
e Dynamic storage (de-)allocation e Dynamic thread creation
e Destructive pointer updates

Solution: abstraction

o Automata-based: regular model checking, forest automata

e Graph-based: graph grammars, graph transformation systems
e Logic-based: shape analysis, separation logic

e Extensions for concurrency

15 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017 ‘ Software Modeling

Il and Verification Chair

RWTH

Pointer and Shape Analysis

1: Fractional Permissions for Concurrency
2: Symbolic Permission Accounting

int a = 1;

int b = 2;

int threadl () { int thread2 () { 5
return a + b; b = 42; @

} }

ldea

e Threads acquire/release read and write permissions (fractional values between 0 and 1)
e Partial permissions 0 < p < 1 for shared read access
e Full permission p = 1 for exclusive write access
Observations
e Permission not available =—> (potential) data race

e Permissions can always be acquired —> data-race freedom

Here: two approaches to symbolically represent permissions

16 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Pointer and Shape Analysis

3: Shape Analysis by Means of Bi-Abduction

Terms

e Shape analysis: static analysis to discover and verify properties of pointer programs
° analysis: each procedure is analyzed independently of its callers
e Abduction: identify part ? of a formula to make implication ¢ % ? — ¢ valid

— (p: assertion at call site
— 1): procedure precondition

Approach

e Heuristic to solve abduction problem of separation logic

e Use abduction to obtain a compositional shape analysis generating pre/post-conditions for
each procedure

e Apply analysis to real-world programs: Linux Kernel, GIMP, Emacs, Sendmail, . ..

e Provides theoretical foundations of a static analyzer called Infer, developed and used by
Facebook

RWTH

17 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk
Software Modeling

Summer Semester 2017; 20 April, 2017 ‘ BN o Voriscatior Chair

Pointer and Shape Analysis

4: Amortised Resource Analysis
Example

for (ptr = head; ptr != null; ptr = ptr.next) {
expensiveOperation(ptr.data);
ptr = ptr.next; }

What is it all about?

e What is the run-time complexity of this program?

e Resource usage depends on length of list

e Handled nicely by amortised resource analysis

e Use Separation Logic to automatically derive complexity bounds

Main Ideas

e Combine Separation Logic with resources
e {R}consume(R){emp}: “consume R at a given cost”
e Use type system for automated amortized complexity analysis

RWTH

Kaminski/Matheja/Noll/Volk

18 of 37 Verification and Static Analysis of Software o
Summer Semester 2017; 20 April, 2017 ‘

Software Modeling
Il and Verification Chair

Advanced Model Checking Techniques

Outline

Advanced Model Checking Techniques

19 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk 0 Rm
Summer Semester 2017; 20 April, 2017 ‘ Software Modeling
Il and Verification Chair

Advanced Model Checking Techniques

Model Checking

real system requirements
abstraction specification
semantics — -
bstract del finite transition
abstract mode system
finite

or temporal formula, e.g.,

transition system O(request — {enter _crit)

model checker
“does M sat spec hold 7"

/ N

yes no

20 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Advanced Model Checking Techniques

1: Counterexample-Guided Abstraction Refinement

e Main problem from model checking: large state spaces
e |dea: only consider abstraction Abs(T) of system T

e Abstraction is over-approximation

e If property is satisfied on Abs(T) — satisfiedon T

e Otherwise found counterexample

e If also counterexample for T = property violated

e Else refine abstraction using counterexample

RWTH

Kaminski/Matheja/Noll/Volk

21 of 37 Verification and Static Analysis of Software o
Summer Semester 2017; 20 April, 2017 ‘

Software Modeling
Il and Verification Chair

Advanced Model Checking Techniques

2: Assume-Guarantee Reasoning

e Modular model checking
e Check each module (M;, My) on its own
e Use assumption A to show property P

(AYM;(P), (true) M2 (A)
<ITU9>M1 HM2<P>
e |dea: iteratively compute assumption Ay, A+, ... and refine

RWTH

Kaminski/Matheja/Noll/Volk

22 of 37 Verification and Static Analysis of Software o
Summer Semester 2017; 20 April, 2017 ‘

Software Modeling
Il and Verification Chair

Advanced Model Checking Techniques

3: Fairness

Bry=y—1
e Fairness important when considering multiple processes

e Algorithms for finite state system operate “locally”
e Now algorithm for infinite state systems

23 of 37 Verification and Static Analysis of Software Rm
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017 ‘ Software Modeling
Il and Verification Chair

Advanced Model Checking Techniques

4: Bounded Model Checking

e Bounded model checking (BMC) is a powerful bug-hunting technique.
e Is applied to hard- and software.

e |ts basis is to consider paths up to a certain depth k.

e The transition system is encoded as Boolean formula.

e Modern SAT solvers are applied to check for counterexamples.

e Generalizations for liveness and arbitrary depths k do exist.

RWTH

Kaminski/Matheja/Noll/Volk

24 of 37 Verification and Static Analysis of Software o
Summer Semester 2017; 20 April, 2017 ‘

Software Modeling
Il and Verification Chair

Advanced Model Checking Techniques

5: Configurable Software Verification

Configurable SW Verification: Adjustable Block Encoding
e Static Analysis (SA) and Verification e CEGAR hampered by large programs,
reducible to each other especially sequences

e SA knows generic algorithm for decades e Simplify program by folding sequences

e Won Goedel medal “for their contributions [Beyer et al. 2009]
to the development of efficient verification e Folding until minimality sometimes not very
methods and algorithms” efficient, follow spirit of CPA and make it
adjustable

RWTH

Kaminski/Matheja/Noll/Volk

25 of 37 Verification and Static Analysis of Software o
Summer Semester 2017; 20 April, 2017 ‘

Software Modeling
Il and Verification Chair

Advanced Model Checking Techniques

6: IC3
Consider the transition system M = (X, I, T) and the property P(X).

26 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk o R“TI'IAACHEN
Summer Semester 2017; 20 April, 2017 Software Modeling S TY
P ‘ Il and Verification Chair UNIVER I

Advanced Model Checking Techniques

7: Probabilistic Model Checking

Given: Markov chain M, LTL formula ¢
Goal: compute the probability that ¢ holds in M

Classic Approach: 1. get NBA B for —p
2. determinise B ~~ DRA A

3. analyse M ® A

Problem: determinisation of 3 is expensive

Idea: consider simpler constructions for determinisation
Subset Construction: fast, can yield an inconclusive answer
Breakpoint Construction: slower, might also be inconclusive
Multi-Breakpoint Construction: very slow, always conclusive

Kaminski/Matheja/Noll/Volk

27 of 37 Verification and Static Analysis of Software o
Summer Semester 2017; 20 April, 2017 ‘

Software Modeling

Il and Verification Chair

RWTH

Advanced Model Checking Techniques

8: Monte Carlo Model Checking

e Scalable and applicable for large systems

e |dea: Instead of complete state space only consider parts
e Randomly sample paths

e If path is counterexample: property not satisfied

e Else: sample more paths

e Result: confidence that property is safisfied

28 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Advanced Model Checking Techniques

9: Concurrent Model Checking Algorithms

e Tarjan’s algorithm used for finding strongly connected components (SCCs)
e Crucial in model checking

e DFS which tries to find backward edges to already visited nodes

e |dea: utilise multi-core processors

e Lift algorithm to concurrent algorithm

RWTH

Kaminski/Matheja/Noll/Volk

29 of 37 Verification and Static Analysis of Software o
Summer Semester 2017; 20 April, 2017 ‘

Software Modeling
Il and Verification Chair

Analysis of Probabilistic Programs

Outline

Analysis of Probabilistic Programs

30 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk 0 Rm
Summer Semester 2017; 20 April, 2017 ‘ Software Modeling
Il and Verification Chair

Analysis of Probabilistic Programs

1: Sampling for Probabilistic Programs

e Probabilistic programs = ordinary programs + randomness

x := 0 [0.5] {1;
if (x=0) {x := x + (0 [0.5] 1) };

observe(x > 0)

e Inference: What is the probability distribution of a program?
e Sampling = Inference through program execution
e Problem: Large number of samples needed

e This paper: Apply program analysis techniques prior to sampling to obtain more accepting
samples

31 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Analysis of Probabilistic Programs

2: Slicing Probabilistic Programs

e A probabilistic pogram P returns a distribution over return values
e Goal: Obtain a simpler program Slice(P)

— Correctness: Slicing should preserve the distribution over return values
— Efficiency: Slicing should be done as fast as possible

e Traditional program slicing techniques are not correct for probabilistic programs
e This paper: Correct and efficient approach for probabilistic program slicing

32 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Analysis of Probabilistic Programs

3: Sampling Functions for Probability Distributions

Shortcoming

Many programs generate only discrete probability distributions
This paper

e Presents a programming language that is expressive enough for
— discrete probability distributions
— continuous probability distributions
— probability distributions that are neither

e Presents technique for formal reasoning about the language

e Uses examples from robotics:

— Localization
— People tracking
— Mapping
33 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk o Rm
Summer Semester 2017; 20 April, 2017 ‘ Software Modeling
Il and Verification Chair

Analysis of Probabilistic Programs

4: Static Analysis of Probabilistic Programs

Problem n o= 0;

Approximate the probability that a program repeat

establishes a given assertion ¢. n =71 + 1
°)

c := coin f1ip(0.5);
until (¢ = heads);

Solution overview

Infer the whole program behaviour from finitely
many executions: return n

e Choose finite set of executions with overall high
probability

o Compute the probability of ¢ within this set of
executions by symbolic execution

e Use this probability to give guaranteed bounds for the
probability of ¢ in the whole program

e Instead of computing exact probabilities, approximate
using branch-and-bound techniques over polyhedra

RWTH

Kaminski/Matheja/Noll/Volk

34 of 37 Verification and Static Analysis of Software o
Summer Semester 2017; 20 April, 2017 ‘

Software Modeling
Il and Verification Chair

Analysis of Probabilistic Programs

5: Probabilistic Termination

e Behaviour of ordinary programs entirely determined by input
— Program either terminates or not

e Behaviour of probabilistic programs depends on randomness
— Program terminates with some probability

e Probabilistic program terminates almost-certainly if it terminates with probability 1
e Proving almost-certain termination is extremely difficult (more difficult than halting problem)
e In this paper: a proof rule for proving almost-certain termination relatively easily for certain

programs
35 of 37 Verification and Static Analysis of Software Rm
Kaminski/Matheja/Noll/Volk
Summer Semester 2017; 20 April, 2017 ‘ Software Modeling
Il and Verification Chair

Final Hints

Outline

Final Hints

36 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk 0 Rm
Summer Semester 2017; 20 April, 2017 ‘ Software Modeling
Il and Verification Chair

Final Hints

Some Final Hints
Hints

e Take your time to understand your literature.

e Be proactive! Look for additional literature and information.
e Discuss the content of your report with other students.

e Be proactive! Contact your supervisor on time.

e Prepare the meeting(s) with your supervisor.

e Forget the idea that you can prepare a talk in a day or two.

37 of 37 Verification and Static Analysis of Software
Kaminski/Matheja/Noll/Volk

Summer Semester 2017; 20 April, 2017 ‘

RWTH

Software Modeling
Il and Verification Chair

Final Hints

Some Final Hints
Hints

e Take your time to understand your literature.

e Be proactive! Look for additional literature and information.
e Discuss the content of your report with other students.

e Be proactive! Contact your supervisor on time.

e Prepare the meeting(s) with your supervisor.

e Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!

RWTH

Kaminski/Matheja/Noll/Volk

37 of 37 Verification and Static Analysis of Software o
Summer Semester 2017; 20 April, 2017 ‘

Software Modeling
Il and Verification Chair

	Overview
	Aims of this Seminar
	Important Dates
	Pointer and Shape Analysis
	Advanced Model Checking Techniques
	Analysis of Probabilistic Programs
	Final Hints

