

Compiler Construction

Lecture 13: Semantic Analysis III (Circularity Check)

Summer Semester 2017

Thomas NoII
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-17/cc/

Outline of Lecture 13

Recap: Attribute Grammars

Attribute Dependency Graphs

Checking Attribute Grammars for Circularity

The Circularity Check

Correctness and Complexity of the Circularity Check

Formal Definition of Attribute Grammars

Definition (Attribute grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ with $X := N \uplus \Sigma$.

- Let $Att = Syn \uplus Inh$ be a set of (synthesized or inherited) attributes, and let $V = \bigcup_{\alpha \in Att} V^{\alpha}$ be a union of value sets.
- Let att : $X \to 2^{Att}$ be an attribute assignment, and let $syn(Y) := att(Y) \cap Syn$ and $inh(Y) := att(Y) \cap Inh$ for every $Y \in X$.
- Every production $\pi = Y_0 \rightarrow Y_1 \dots Y_r \in P$ determines the set

$$Var_{\pi} := \{\alpha.i \mid \alpha \in \text{att}(Y_i), i \in \{0, \ldots, r\}\}$$

of attribute variables of π with the subsets of inner and outer variables:

$$\mathit{In}_{\pi} := \{\alpha.i \mid (i = 0, \alpha \in \operatorname{syn}(Y_i)) \text{ or } (i \in [r], \alpha \in \operatorname{inh}(Y_i))\}$$
 $\mathit{Out}_{\pi} := \mathit{Var}_{\pi} \setminus \mathit{In}_{\pi}$

• A semantic rule of π is an equation of the form

$$lpha_0.i_0=f(lpha_1.i_1,\ldots,lpha_n.i_n)$$
 where $n\in\mathbb{N},\ lpha_0.i_0\in In_\pi,\ lpha_j.i_j\in Out_\pi,\ ext{and}\ f:V^{lpha_1} imes\ldots imes V^{lpha_n} o V^{lpha_0}.$

• For each $\pi \in P$, let E_{π} be a set with exactly one semantic rule for every inner variable of π , and let $E := (E_{\pi} \mid \pi \in P)$.

Then $\mathfrak{A} := \langle G, E, V \rangle$ is called an attribute grammar: $\mathfrak{A} \in AG$.

Attribution of Syntax Trees

Definition (Attribution of syntax trees)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G with the set of nodes K.

K determines the set of attribute variables of t:

$$Var_t := \{\alpha.k \mid k \in K \text{ labelled with } Y \in X, \alpha \in \text{att}(Y)\}.$$

- Let $k_0 \in K$ be an (inner) node where production $\pi = Y_0 \to Y_1 \dots Y_r \in P$ is applied, and let $k_1, \dots, k_r \in K$ be the corresponding successor nodes. The attribute equation system E_{k_0} of k_0 is obtained from E_{π} by substituting every attribute index $i \in \{0, \dots, r\}$ by k_i .
- The attribute equation system of t is given by

$$E_t := \bigcup \{E_k \mid k \text{ inner node of } t\}.$$

Solvability of Attribute Equation System

Definition (Solution of attribute equation system)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G. A solution of E_t is a mapping

$$v: Var_t \rightarrow V$$

such that, for every $\alpha_0.k_0 \in Var_t$ and $\alpha_0.k_0 = f(\alpha_1.k_1, \ldots, \alpha_n.k_n) \in E_t$,

$$v(\alpha_0.k_0)=f(v(\alpha_1.k_1),\ldots,v(\alpha_n.k_n)).$$

In general, the attribute equation system E_t of a given syntax tree t can have

- no solution,
- exactly one solution, or
- several solutions.

Circularity of Attribute Grammars

Goal: unique solvability of equation system

⇒ avoid cyclic dependencies

Definition (Circularity)

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is called circular if there exists a syntax tree t such that the attribute equation system E_t is recursive (i.e., some attribute variable of t depends on itself). Otherwise it is called noncircular.

Remark: because of the division of Var_{π} into In_{π} and Out_{π} , cyclic dependencies cannot occur at production level.

Outline of Lecture 13

Recap: Attribute Grammars

Attribute Dependency Graphs

Checking Attribute Grammars for Circularity

The Circularity Check

Correctness and Complexity of the Circularity Check

Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 13.1 (Production dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$. Every production $\pi \in P$ determines the dependency graph $D_{\pi} := \langle Var_{\pi}, \rightarrow_{\pi} \rangle$ where the set of edges $\rightarrow_{\pi} \subseteq Var_{\pi} \times Var_{\pi}$ is given by

$$x \rightarrow_{\pi} y$$
 iff $y = f(\ldots, x, \ldots) \in E_{\pi}$.

Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 13.1 (Production dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$. Every production $\pi \in P$ determines the dependency graph $D_{\pi} := \langle Var_{\pi}, \rightarrow_{\pi} \rangle$ where the set of edges $\rightarrow_{\pi} \subseteq Var_{\pi} \times Var_{\pi}$ is given by

$$x \rightarrow_{\pi} y$$
 iff $y = f(\ldots, x, \ldots) \in E_{\pi}$.

Corollary 13.2

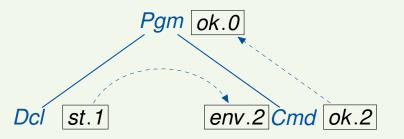
The dependency graph of a production is acyclic (since $\rightarrow_{\pi} \subseteq Out_{\pi} \times In_{\pi}$ and $Out_{\pi} \cap In_{\pi} = \emptyset$).

Attribute Dependency Graphs II

Example 13.3 (cf. Example 11.2)

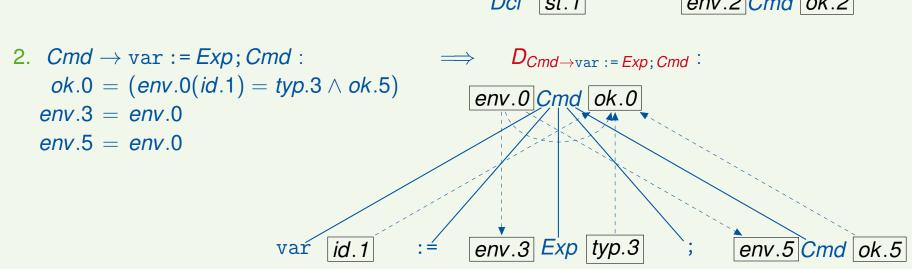
1. $Pgm \rightarrow Dcl \ Cmd$: \Longrightarrow ok.0 = ok.2 env.2 = st.1

 $D_{Pgm o Dcl\ Cmd}$:



Attribute Dependency Graphs II

Example 13.3 (cf. Example 11.2)



Attribute Dependency Graphs III

Just as the attribute equation system E_t of a syntax tree t is obtained from the semantic rules of the contributing productions, the dependency graph of t is obtained by "glueing together" the dependency graphs of the productions.

Attribute Dependency Graphs III

Just as the attribute equation system E_t of a syntax tree t is obtained from the semantic rules of the contributing productions, the dependency graph of t is obtained by "glueing together" the dependency graphs of the productions.

Definition 13.4 (Tree dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G.

• The dependency graph of t is defined by $D_t := \langle Var_t, \rightarrow_t \rangle$ where the set of edges, $\rightarrow_t \subseteq Var_t \times Var_t$, is given by

$$x \rightarrow_t y$$
 iff $y = f(\ldots, x, \ldots) \in E_t$.

• D_t is called cyclic if there exists $x \in Var_t$ such that $x \to_t^+ x$.

Attribute Dependency Graphs III

Just as the attribute equation system E_t of a syntax tree t is obtained from the semantic rules of the contributing productions, the dependency graph of t is obtained by "glueing together" the dependency graphs of the productions.

Definition 13.4 (Tree dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G.

• The dependency graph of t is defined by $D_t := \langle Var_t, \rightarrow_t \rangle$ where the set of edges, $\rightarrow_t \subseteq Var_t \times Var_t$, is given by

$$x \rightarrow_t y$$
 iff $y = f(\ldots, x, \ldots) \in E_t$.

• D_t is called cyclic if there exists $x \in Var_t$ such that $x \to_t^+ x$.

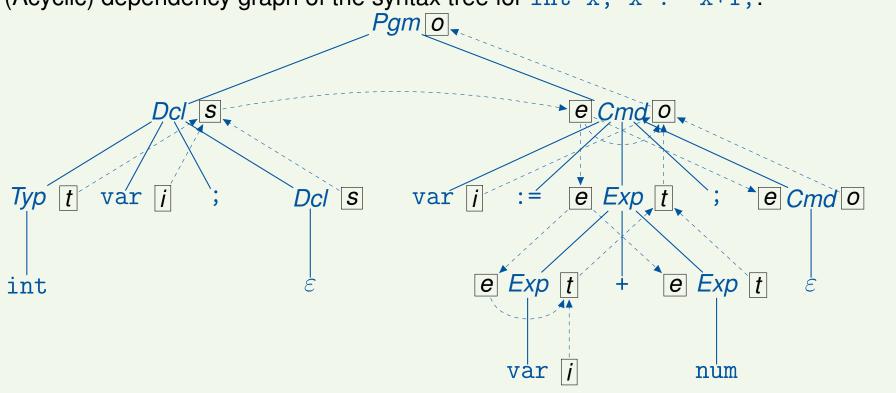
Corollary 13.5

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is circular iff there exists a syntax tree t of G such that D_t is cyclic.

Attribute Dependency Graphs IV

Example 13.6 (cf. Example 11.2)

(Acyclic) dependency graph of the syntax tree for int x; x := x+1;:



Outline of Lecture 13

Recap: Attribute Grammars

Attribute Dependency Graphs

Checking Attribute Grammars for Circularity

The Circularity Check

Correctness and Complexity of the Circularity Check

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a "cover" production $\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that

- the dependencies in E_{k_0} yield the "upper end" of the cycle and
- for at least one $i \in [r]$, some attributes in $syn(A_i)$ depend on attributes in $inh(A_i)$.

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a "cover" production $\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that

- the dependencies in E_{k_0} yield the "upper end" of the cycle and
- for at least one $i \in [r]$, some attributes in $syn(A_i)$ depend on attributes in $inh(A_i)$.

Example 13.7

on the board

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a "cover" production $\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that

- the dependencies in E_{k_0} yield the "upper end" of the cycle and
- for at least one $i \in [r]$, some attributes in $syn(A_i)$ depend on attributes in $inh(A_i)$.

Example 13.7

on the board

To identify such "critical" situations we need to determine for each $i \in [r]$ the possible ways in which attributes in $syn(A_i)$ can depend on attributes in $inh(A_i)$.

Attribute Dependency Graphs and Circularity II

Definition 13.8 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

• If t is a syntax tree with root label $A \in N$ and root node k, $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \to_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \stackrel{A}{\hookrightarrow} \alpha$).

Attribute Dependency Graphs and Circularity II

Definition 13.8 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k, $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \to_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \stackrel{A}{\hookrightarrow} \alpha$).
- For every syntax tree t with root label $A \in N$,

$$is(A, t) := \{(\beta, \alpha) \in inh(A) \times syn(A) \mid \beta \stackrel{A}{\hookrightarrow} \alpha \text{ in } t\}.$$

Attribute Dependency Graphs and Circularity II

Definition 13.8 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k, $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \to_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \stackrel{A}{\hookrightarrow} \alpha$).
- For every syntax tree t with root label $A \in N$,

$$is(A, t) := \{(\beta, \alpha) \in inh(A) \times syn(A) \mid \beta \stackrel{A}{\hookrightarrow} \alpha \text{ in } t\}.$$

• For every $A \in N$,

 $IS(A) := \{is(A, t) \mid t \text{ syntax tree with root label A}\} \subseteq 2^{lnh \times Syn}$.

Attribute Dependency Graphs and Circularity II

Definition 13.8 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k, $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \to_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \stackrel{A}{\hookrightarrow} \alpha$).
- For every syntax tree t with root label $A \in N$,

$$is(A, t) := \{(\beta, \alpha) \in inh(A) \times syn(A) \mid \beta \stackrel{A}{\hookrightarrow} \alpha \text{ in } t\}.$$

• For every $A \in N$,

$$IS(A) := \{is(A, t) \mid t \text{ syntax tree with root label A}\} \subseteq 2^{lnh \times Syn}$$
.

Remark: it is important that IS(A) is a system of attribute dependence sets, not a union (otherwise: strong noncircularity – see exercises).

Attribute Dependency Graphs and Circularity II

Definition 13.8 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k, $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \to_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \stackrel{A}{\hookrightarrow} \alpha$).
- For every syntax tree t with root label $A \in N$,

$$is(A, t) := \{(\beta, \alpha) \in inh(A) \times syn(A) \mid \beta \stackrel{A}{\hookrightarrow} \alpha \text{ in } t\}.$$

• For every $A \in N$,

$$IS(A) := \{is(A, t) \mid t \text{ syntax tree with root label A}\} \subseteq 2^{lnh \times Syn}.$$

Remark: it is important that IS(A) is a system of attribute dependence sets, not a union (otherwise: strong noncircularity – see exercises).

Example 13.9

on the board

Outline of Lecture 13

Recap: Attribute Grammars

Attribute Dependency Graphs

Checking Attribute Grammars for Circularity

The Circularity Check

Correctness and Complexity of the Circularity Check

The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively computed. The following notation is employed:

Definition 13.10

Given
$$\pi = A \to w_0 A_1 w_1 \dots A_r w_r \in P$$
 and $is_i \subseteq \operatorname{inh}(A_i) \times \operatorname{syn}(A_i)$ for each $i \in [r]$, $is_1, \dots, is_r] \subseteq \operatorname{inh}(A) \times \operatorname{syn}(A)$

is defined by

$$egin{aligned} & extit{is}_1, \dots, extit{is}_r] := \ \left\{ (eta, lpha) \mid (eta.0, lpha.0) \in (o_\pi \cup igcup_{i=1}^r \{ (eta'. p_i, lpha'. p_i) \mid (eta', lpha') \in extit{is}_i \})^+
ight\} \end{aligned}$$

where $p_i := \sum_{j=1}^{i} |w_{j-1}| + i$.

The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively computed. The following notation is employed:

Definition 13.10

Given
$$\pi = A \to w_0 A_1 w_1 \dots A_r w_r \in P$$
 and $is_i \subseteq \operatorname{inh}(A_i) \times \operatorname{syn}(A_i)$ for each $i \in [r]$, $is_1, \dots, is_r] \subseteq \operatorname{inh}(A) \times \operatorname{syn}(A)$

is defined by

$$egin{aligned} & extit{is}_1, \dots, extit{is}_r] := \ \left\{ (eta, lpha) \mid (eta.0, lpha.0) \in (o_\pi \cup igcup_{i=1}^r \{ (eta'. p_i, lpha'. p_i) \mid (eta', lpha') \in extit{is}_i \})^+
ight\} \end{aligned}$$

where $p_i := \sum_{j=1}^{i} |w_{j-1}| + i$.

Example 13.11

on the board

The Circularity Check II

Algorithm 13.12 (Circularity check for attribute grammars)

Input: $\mathfrak{A} = \langle G, E, V \rangle \in AG \text{ with } G = \langle N, \Sigma, P, S \rangle$

The Circularity Check II

Algorithm 13.12 (Circularity check for attribute grammars)

Input:
$$\mathfrak{A} = \langle G, E, V \rangle \in AG$$
 with $G = \langle N, \Sigma, P, S \rangle$
Procedure: 1. for every $A \in N$, iteratively construct $IS(A)$ as follows:
i. if $\pi = A \rightarrow w \in P$, then $is[\pi] \in IS(A)$
ii. if $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$, then $is[\pi; is_1, \dots, is_r] \in IS(A)$

The Circularity Check II

Algorithm 13.12 (Circularity check for attribute grammars)

Input:
$$\mathfrak{A} = \langle G, E, V \rangle \in AG$$
 with $G = \langle N, \Sigma, P, S \rangle$
Procedure: 1. for every $A \in N$, iteratively construct $IS(A)$ as follows:
i. $if \pi = A \rightarrow w \in P$, then $is[\pi] \in IS(A)$
ii. $if \pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$, then $is[\pi; is_1, \dots, is_r] \in IS(A)$

2. test whether \mathfrak{A} is circular by checking if there exist $\pi = A \to w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$ such that the following relation is cyclic:

$$\rightarrow_{\pi} \cup \bigcup_{i=1}^{r} \{ (\beta.p_i, \alpha.p_i) \mid (\beta, \alpha) \in is_i \}$$

(where
$$p_i := \sum_{j=1}^i |w_{j-1}| + i$$
)

The Circularity Check II

Algorithm 13.12 (Circularity check for attribute grammars)

Input: $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$ Procedure: 1. for every $A \in N$, iteratively construct IS(A) as follows: i. $if \pi = A \rightarrow w \in P$, then $is[\pi] \in IS(A)$ ii. $if \pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$, then $is[\pi; is_1, \dots, is_r] \in IS(A)$

2. test whether \mathfrak{A} is circular by checking if there exist $\pi = A \to w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$ such that the following relation is cyclic:

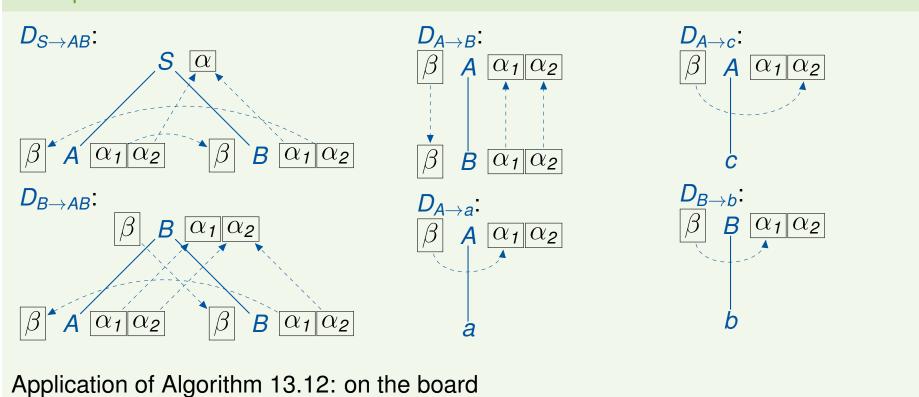
$$\rightarrow_{\pi} \cup \bigcup_{i=1}^{r} \{ (\beta.p_i, \alpha.p_i) \mid (\beta, \alpha) \in is_i \}$$

(where
$$p_i := \sum_{j=1}^i |w_{j-1}| + i$$
)

Output: "yes" or "no"

The Circularity Check III

Example 13.13



Outline of Lecture 13

Recap: Attribute Grammars

Attribute Dependency Graphs

Checking Attribute Grammars for Circularity

The Circularity Check

Correctness and Complexity of the Circularity Check

Correctness and Complexity of Circularity Check

Theorem 13.14 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 13.12 yields the answer "yes"

Correctness and Complexity of Circularity Check

Theorem 13.14 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 13.12 yields the answer "yes"

Proof.

by induction on the syntax tree t with cyclic D_t

Correctness and Complexity of Circularity Check

Theorem 13.14 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 13.12 yields the answer "yes"

Proof.

by induction on the syntax tree t with cyclic D_t

Lemma 13.15

The time complexity of the circularity check is exponential in the size of the attribute grammar (= maximal length of right-hand sides of productions).

Correctness and Complexity of Circularity Check

Theorem 13.14 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 13.12 yields the answer "yes"

Proof.

by induction on the syntax tree t with cyclic D_t

Lemma 13.15

The time complexity of the circularity check is exponential in the size of the attribute grammar (= maximal length of right-hand sides of productions).

Proof.

by reduction of the word problem of alternating Turing machines (see M. Jazayeri: *A Simpler Construction for Showing the Intrinsically Exponential Complexity of the Circularity Problem for Attribute Grammars*, Comm. ACM 28(4), 1981, pp. 715–720)

