
Compiler Construction
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Summer Semester 2017

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-17/cc/

https://moves.rwth-aachen.de/teaching/ss-17/cc/

Recap: LR(1) Parsing

Outline of Lecture 11

Recap: LR(1) Parsing

Generating Top-Down Parsers Using ANTLR

Generating Bottom-Up Parsers Using yacc and bison

LL and LR Parsing in Practice

Overview

Semantic Analysis

Attribute Grammars

2 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Recap: LR(1) Parsing

LR(1) Items and Sets

Observation: not every element of fo(A) can follow every occurrence of A
=⇒ refinement of LR(0) items by adding possible lookahead symbols

Definition (LR(1) items and sets)

Let G = 〈N,Σ,P,S〉 ∈ CFGΣ be start separated by S′ → S.
• If S′ ⇒∗r αAaw ⇒r αβ1β2aw , then [A→ β1 · β2, a] is called an LR(1) item for αβ1.
• If S′ ⇒∗r αA⇒r αβ1β2, then [A→ β1 · β2, ε] is called an LR(1) item for αβ1.
• Given γ ∈ X ∗, LR(1)(γ) denotes the set of all LR(1) items for γ, called the LR(1) set (or:

LR(1) information) of γ.
• LR(1)(G) := {LR(1)(γ) | γ ∈ X ∗}.

3 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Recap: LR(1) Parsing

LR(1) Conflicts

Definition (LR(1) conflicts)

Let G = 〈N,Σ,P,S〉 ∈ CFGΣ and I ∈ LR(1)(G).
• I has a shift/reduce conflict if there exist A→ α1aα2,B → β ∈ P and x ∈ Σε such that

[A→ α1 · aα2, x], [B → β·, a] ∈ I.

• I has a reduce/reduce conflict if there exist x ∈ Σε and
A→ α,B → β ∈ P with A 6= B or α 6= β such that

[A→ α·, x], [B → β·, x] ∈ I.

Lemma

G ∈ LR(1) iff no I ∈ LR(1)(G) contains conflicting items.

4 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Recap: LR(1) Parsing

The LR(1) Action Function

Definition (LR(1) action function)

The LR(1) action function

act : LR(1)(G)× Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}
is defined by

act(I, x) :=


red i if i 6= 0, πi = A→ α and [A→ α·, x] ∈ I
shift if [A→ α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S′ → S·, ε] ∈ I and x = ε
error otherwise

Corollary

For every G ∈ CFGΣ, G ∈ LR(1) iff its LR(1) action function is well defined.

5 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Top-Down Parsers Using ANTLR

Outline of Lecture 11

Recap: LR(1) Parsing

Generating Top-Down Parsers Using ANTLR

Generating Bottom-Up Parsers Using yacc and bison

LL and LR Parsing in Practice

Overview

Semantic Analysis

Attribute Grammars

6 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Top-Down Parsers Using ANTLR

Overview of ANTLR

ANother Tool for Language Recognition

• Input: language description using EBNF grammars
• Output: recogniser for the language
• Supports recognisers for three kinds of input:

– character streams (generation of scanner)
– token streams (generation of parser)
– node streams (generation of tree walker)

• Current version: ANTLR 4.7
– generates LL(∗) recognisers: flexible choice of lookahead length
– applies “longest match” principle
– supports ambiguous grammars by using “first match” principle for rules
– supports direct left recursion
– targets Java, C++, C#, Python, JavaScript, Go, Swift

• Details:
– http://www.antlr.org/
– T. Parr: The Definitive ANTLR 4 Reference, Pragmatic Bookshelf, 2013

7 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

http://www.antlr.org/

Generating Top-Down Parsers Using ANTLR

Example: Infix→ Postfix Translator (Simple.g4)

grammar Simple;

// productions for syntax analysis
program returns [String s]: e=expr EOF {$s = $e.s;};
expr returns [String s]: t=term r=rest {$s = $t.s + $r.s;};
rest returns [String s]:

PLUS t=term r=rest {$s = $t.s + "+" + $r.s;}
| MINUS t=term r=rest {$s = $t.s + "-" + $r.s;}
| /* empty */ {$s = "";};
term returns [String s]: DIGIT {$s = $DIGIT.text;};

// productions for lexical analysis
PLUS : ’+’;
MINUS : ’-’;
DIGIT : [0-9];

8 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Top-Down Parsers Using ANTLR

Java Code for Using Translator

import java.io.*;
import org.antlr.v4.runtime.*;
public class SimpleMain {

public static void main(final String[] args)
throws IOException {

String printSource = null, printSymTab = null,
printIR = null, printAsm = null;

SimpleLexer lexer = /* Create instance of lexer */
new SimpleLexer(new ANTLRInputStream(args[0]));

SimpleParser parser = /* Create instance of parser */
new SimpleParser(new CommonTokenStream(lexer));

String postfix = parser.program().s; /* Run translator */
System.out.println(postfix);

}
}
9 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Top-Down Parsers Using ANTLR

An Example Run

1. After installation, invoke ANTLR:
$ java -jar /usr/local/lib/antlr-4.7-complete.jar Simple.g4

(will generate SimpleLexer.java, SimpleParser.java, Simple.tokens, and
SimpleLexer.tokens)

2. Use Java compiler:
$ javac -cp /usr/local/lib/antlr-4.7-complete.jar Simple*.java

3. Run translator:
$ java -cp .:/usr/local/lib/antlr-4.7-complete.jar SimpleMain ’9-5+2’

95-2+

10 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Top-Down Parsers Using ANTLR

Advantages of ANTLR

Advantages of ANTLR

• Generated (Java) code is similar to hand-written code
– possible (and easy) to read and debug generated code

• Syntax for specifying scanners, parsers and tree walkers is identical
• Support for many target programming languages
• ANTLR is well supported and has an active user community

11 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Outline of Lecture 11

Recap: LR(1) Parsing

Generating Top-Down Parsers Using ANTLR

Generating Bottom-Up Parsers Using yacc and bison

LL and LR Parsing in Practice

Overview

Semantic Analysis

Attribute Grammars

12 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

The yacc and bison Tools

Usage of yacc (“yet another compiler compiler”):

spec.y
yacc−→ y.tab.c lex.yy.c

[f]lex←− spec.l

yacc specification Parser source Scanner source [f]lex specification
↓ cc ↓
a.out

Executable LALR(1) parser

Like for [f]lex, a yacc specification is of the form
Declarations (optional)
%%
Rules
%%
Auxiliary procedures (optional)

bison : upward-compatible GNU implementation of yacc
(more flexible w.r.t. file names, ...)

13 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

The yacc and bison Tools

Usage of yacc (“yet another compiler compiler”):

spec.y
yacc−→ y.tab.c lex.yy.c

[f]lex←− spec.l

yacc specification Parser source Scanner source [f]lex specification
↓ cc ↓
a.out

Executable LALR(1) parser

Like for [f]lex, a yacc specification is of the form
Declarations (optional)
%%
Rules
%%
Auxiliary procedures (optional)

bison : upward-compatible GNU implementation of yacc
(more flexible w.r.t. file names, ...)

13 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

The yacc and bison Tools

Usage of yacc (“yet another compiler compiler”):

spec.y
yacc−→ y.tab.c lex.yy.c

[f]lex←− spec.l

yacc specification Parser source Scanner source [f]lex specification
↓ cc ↓
a.out

Executable LALR(1) parser

Like for [f]lex, a yacc specification is of the form
Declarations (optional)
%%
Rules
%%
Auxiliary procedures (optional)

bison : upward-compatible GNU implementation of yacc
(more flexible w.r.t. file names, ...)
13 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

yacc Specifications

Declarations: • Token definitions: %token Tokens
• Not every token needs to be declared (’+’, ’=’, ...)
• Start symbol: %start Symbol (optional)
• C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions
• A→ α1 | α2 | . . . | αn represented as

A : α1 {Action1}
| α2 {Action2}
...
| αn {Actionn};

• Semantic actions = C statements for computing attribute values
• $$ = attribute value of A
• $i = attribute value of i-th symbol on right-hand side
• Default action: $$ = $1

Auxiliary procedures: scanner (if not generated by [f]lex), error routines, ...

14 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

yacc Specifications

Declarations: • Token definitions: %token Tokens
• Not every token needs to be declared (’+’, ’=’, ...)
• Start symbol: %start Symbol (optional)
• C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions
• A→ α1 | α2 | . . . | αn represented as

A : α1 {Action1}
| α2 {Action2}
...
| αn {Actionn};

• Semantic actions = C statements for computing attribute values
• $$ = attribute value of A
• $i = attribute value of i-th symbol on right-hand side
• Default action: $$ = $1

Auxiliary procedures: scanner (if not generated by [f]lex), error routines, ...

14 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

yacc Specifications

Declarations: • Token definitions: %token Tokens
• Not every token needs to be declared (’+’, ’=’, ...)
• Start symbol: %start Symbol (optional)
• C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions
• A→ α1 | α2 | . . . | αn represented as

A : α1 {Action1}
| α2 {Action2}
...
| αn {Actionn};

• Semantic actions = C statements for computing attribute values
• $$ = attribute value of A
• $i = attribute value of i-th symbol on right-hand side
• Default action: $$ = $1

Auxiliary procedures: scanner (if not generated by [f]lex), error routines, ...

14 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Example: Simple Desk Calculator I
%{/* SLR(1) grammar for arithmetic expressions (Example 9.9) */

#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ term { $$ = $1 + $3; }

| term { $$ = $1; };
term : term ’*’ factor { $$ = $1 * $3; }

| factor { $$ = $1; };
factor : ’(’ expr ’)’ { $$ = $2; }

| DIGIT { $$ = $1; };
%%
yylex() {

int c;
c = getchar();
if (isdigit(c)) yylval = c - ’0’; return DIGIT;
return c;

}

15 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Example: Simple Desk Calculator II

$ yacc calc.y
$ cc y.tab.c -ly
$ a.out
2+3
5
$ a.out
2+3*5
17

16 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

An Ambiguous Grammar I

%{/* Ambiguous grammar for arithmetic expressions (Example 10.17) */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {

int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}

17 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

An Ambiguous Grammar II

Invoking yacc with the option -v produces a report y.output:
State 8

2 expr: expr . ’+’ expr
2 | expr ’+’ expr .
3 | expr . ’*’ expr

’+’ shift and goto state 6
’*’ shift and goto state 7
’+’ [reduce with rule 2 (expr)]
’*’ [reduce with rule 2 (expr)]

State 9
2 expr: expr . ’+’ expr
3 | expr . ’*’ expr
3 | expr ’*’ expr .

’+’ shift and goto state 6
’*’ shift and goto state 7
’+’ [reduce with rule 3 (expr)]
’*’ [reduce with rule 3 (expr)]

18 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Conflict Handling in yacc

Default conflict resolving strategy in yacc:
reduce/reduce: choose first conflicting production in specification

shift/reduce: prefer shift
• resolves dangling-else ambiguity (Example 10.18) correctly
• also adequate for strong following weak operator (* after +; Example 10.17) and for

right-associative operators
• not appropriate for weak following strong operator and for left-associative operators

(=⇒ reduce; see Example 10.17)
For ambiguous grammar:
$ yacc ambig.y
conflicts: 4 shift/reduce
$ cc y.tab.c -ly
$ a.out
2+3*5
17
$ a.out
2*3+5
16

19 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Conflict Handling in yacc

Default conflict resolving strategy in yacc:
reduce/reduce: choose first conflicting production in specification
shift/reduce: prefer shift

• resolves dangling-else ambiguity (Example 10.18) correctly
• also adequate for strong following weak operator (* after +; Example 10.17) and for

right-associative operators
• not appropriate for weak following strong operator and for left-associative operators

(=⇒ reduce; see Example 10.17)

For ambiguous grammar:
$ yacc ambig.y
conflicts: 4 shift/reduce
$ cc y.tab.c -ly
$ a.out
2+3*5
17
$ a.out
2*3+5
16

19 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Conflict Handling in yacc

Default conflict resolving strategy in yacc:
reduce/reduce: choose first conflicting production in specification
shift/reduce: prefer shift

• resolves dangling-else ambiguity (Example 10.18) correctly
• also adequate for strong following weak operator (* after +; Example 10.17) and for

right-associative operators
• not appropriate for weak following strong operator and for left-associative operators

(=⇒ reduce; see Example 10.17)
For ambiguous grammar:
$ yacc ambig.y
conflicts: 4 shift/reduce
$ cc y.tab.c -ly
$ a.out
2+3*5
17
$ a.out
2*3+5
16

19 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:
%[left|right] Operators1

...
%[left|right] Operatorsn

• operators in one line have given associativity and same precedence
• precedence increases over lines

Example 11.1

%left ’+’ ’-’
%left ’*’ ’/’
%right ’^’

^ (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)

20 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:
%[left|right] Operators1

...
%[left|right] Operatorsn

• operators in one line have given associativity and same precedence
• precedence increases over lines

Example 11.1

%left ’+’ ’-’
%left ’*’ ’/’
%right ’^’

^ (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)

20 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Precedences and Associativities in yacc II
%{/* Ambiguous grammar for arithmetic expressions

with precedences and associativities */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%left ’+’
%left ’*’
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {

int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}

21 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Precedences and Associativities in yacc III

$ yacc ambig-prio.y
$ cc y.tab.c -ly
$ a.out
2*3+5
11
$ a.out
2+3*5
17

22 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

LL and LR Parsing in Practice

Outline of Lecture 11

Recap: LR(1) Parsing

Generating Top-Down Parsers Using ANTLR

Generating Bottom-Up Parsers Using yacc and bison

LL and LR Parsing in Practice

Overview

Semantic Analysis

Attribute Grammars

23 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice

In practice: use of LL(1)/LL(∗) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):

Simplicity: LL wins
Generality: LALR wins
Semantic actions: (see semantic analysis) LL wins
Error handling: LL wins
Parser size: comparable
Parsing speed: comparable

24 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice

In practice: use of LL(1)/LL(∗) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):
Simplicity: LL wins

• LL parsing technique easier to understand
• recursive-descent parser easier to debug than LALR action tables

Generality: LALR wins
Semantic actions: (see semantic analysis) LL wins
Error handling: LL wins
Parser size: comparable
Parsing speed: comparable

24 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice

In practice: use of LL(1)/LL(∗) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):
Simplicity: LL wins
Generality: LALR wins

• “almost” LL(1) ⊆ LALR(1) (only pathological counterexamples)
• LL requires elimination of left recursion and left factorization

Semantic actions: (see semantic analysis) LL wins
Error handling: LL wins
Parser size: comparable
Parsing speed: comparable

24 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice

In practice: use of LL(1)/LL(∗) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):
Simplicity: LL wins
Generality: LALR wins
Semantic actions: (see semantic analysis) LL wins

• actions can be placed anywhere in LL parsers without causing conflicts
• in LALR: implicit ε-productions

=⇒ may generate conflicts

Error handling: LL wins
Parser size: comparable
Parsing speed: comparable

24 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice

In practice: use of LL(1)/LL(∗) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):
Simplicity: LL wins
Generality: LALR wins
Semantic actions: (see semantic analysis) LL wins
Error handling: LL wins

• top-down approach provides context information
=⇒ better basis for reporting and/or repairing errors

Parser size: comparable
Parsing speed: comparable

24 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice

In practice: use of LL(1)/LL(∗) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):
Simplicity: LL wins
Generality: LALR wins
Semantic actions: (see semantic analysis) LL wins
Error handling: LL wins
Parser size: comparable

• LL: action table
• LALR: action/goto table

Parsing speed: comparable

24 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice

In practice: use of LL(1)/LL(∗) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):
Simplicity: LL wins
Generality: LALR wins
Semantic actions: (see semantic analysis) LL wins
Error handling: LL wins
Parser size: comparable
Parsing speed: comparable

• both linear in length of input program (LL(1): see Lemma 7.15 for ε-free case)
• concrete figures tool dependent

24 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice

In practice: use of LL(1)/LL(∗) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):
Simplicity: LL wins
Generality: LALR wins
Semantic actions: (see semantic analysis) LL wins
Error handling: LL wins
Parser size: comparable
Parsing speed: comparable
Conclusion: choose LL when possible
(depending on available grammars and tools)

24 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Overview

Outline of Lecture 11

Recap: LR(1) Parsing

Generating Top-Down Parsers Using ANTLR

Generating Bottom-Up Parsers Using yacc and bison

LL and LR Parsing in Practice

Overview

Semantic Analysis

Attribute Grammars

25 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Overview

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimisation

Generation of target code

Target code

attribute grammars

Asg

Var Exp

Sum

Var Con
Asg ok

Varint Exp int

Sum int

Varint Con int

26 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Outline of Lecture 11

Recap: LR(1) Parsing

Generating Top-Down Parsers Using ANTLR

Generating Bottom-Up Parsers Using yacc and bison

LL and LR Parsing in Practice

Overview

Semantic Analysis

Attribute Grammars

27 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
• Are there identifiers that are not declared? Declared but not used?

• Is x a scalar, an array, or a procedure? Of which type?
• Which declaration of x is used by each reference?
• Is x defined before it is used?
• Is the expression 3 * x + y type consistent?
• Where should the value of x be stored (register/stack/heap)?
• Do p and q refer to the same memory location (aliasing)?
• ...

These cannot be expressed using context-free grammars!

(For example, {ww | w ∈ Σ+} /∈ CFLΣ)

28 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
• Are there identifiers that are not declared? Declared but not used?
• Is x a scalar, an array, or a procedure? Of which type?

• Which declaration of x is used by each reference?
• Is x defined before it is used?
• Is the expression 3 * x + y type consistent?
• Where should the value of x be stored (register/stack/heap)?
• Do p and q refer to the same memory location (aliasing)?
• ...

These cannot be expressed using context-free grammars!

(For example, {ww | w ∈ Σ+} /∈ CFLΣ)

28 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
• Are there identifiers that are not declared? Declared but not used?
• Is x a scalar, an array, or a procedure? Of which type?
• Which declaration of x is used by each reference?

• Is x defined before it is used?
• Is the expression 3 * x + y type consistent?
• Where should the value of x be stored (register/stack/heap)?
• Do p and q refer to the same memory location (aliasing)?
• ...

These cannot be expressed using context-free grammars!

(For example, {ww | w ∈ Σ+} /∈ CFLΣ)

28 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
• Are there identifiers that are not declared? Declared but not used?
• Is x a scalar, an array, or a procedure? Of which type?
• Which declaration of x is used by each reference?
• Is x defined before it is used?

• Is the expression 3 * x + y type consistent?
• Where should the value of x be stored (register/stack/heap)?
• Do p and q refer to the same memory location (aliasing)?
• ...

These cannot be expressed using context-free grammars!

(For example, {ww | w ∈ Σ+} /∈ CFLΣ)

28 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
• Are there identifiers that are not declared? Declared but not used?
• Is x a scalar, an array, or a procedure? Of which type?
• Which declaration of x is used by each reference?
• Is x defined before it is used?
• Is the expression 3 * x + y type consistent?

• Where should the value of x be stored (register/stack/heap)?
• Do p and q refer to the same memory location (aliasing)?
• ...

These cannot be expressed using context-free grammars!

(For example, {ww | w ∈ Σ+} /∈ CFLΣ)

28 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
• Are there identifiers that are not declared? Declared but not used?
• Is x a scalar, an array, or a procedure? Of which type?
• Which declaration of x is used by each reference?
• Is x defined before it is used?
• Is the expression 3 * x + y type consistent?
• Where should the value of x be stored (register/stack/heap)?

• Do p and q refer to the same memory location (aliasing)?
• ...

These cannot be expressed using context-free grammars!

(For example, {ww | w ∈ Σ+} /∈ CFLΣ)

28 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
• Are there identifiers that are not declared? Declared but not used?
• Is x a scalar, an array, or a procedure? Of which type?
• Which declaration of x is used by each reference?
• Is x defined before it is used?
• Is the expression 3 * x + y type consistent?
• Where should the value of x be stored (register/stack/heap)?
• Do p and q refer to the same memory location (aliasing)?
• ...

These cannot be expressed using context-free grammars!

(For example, {ww | w ∈ Σ+} /∈ CFLΣ)

28 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
• Are there identifiers that are not declared? Declared but not used?
• Is x a scalar, an array, or a procedure? Of which type?
• Which declaration of x is used by each reference?
• Is x defined before it is used?
• Is the expression 3 * x + y type consistent?
• Where should the value of x be stored (register/stack/heap)?
• Do p and q refer to the same memory location (aliasing)?
• ...

These cannot be expressed using context-free grammars!

(For example, {ww | w ∈ Σ+} /∈ CFLΣ)

28 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
• Are there identifiers that are not declared? Declared but not used?
• Is x a scalar, an array, or a procedure? Of which type?
• Which declaration of x is used by each reference?
• Is x defined before it is used?
• Is the expression 3 * x + y type consistent?
• Where should the value of x be stored (register/stack/heap)?
• Do p and q refer to the same memory location (aliasing)?
• ...

These cannot be expressed using context-free grammars!

(For example, {ww | w ∈ Σ+} /∈ CFLΣ)

28 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Static Semantics

Static semantics

Refers to properties of program constructs
• which are true for every occurrence of this construct in every program execution and
• can be decided at compile time (“static”)
• but are context-sensitive and thus not expressible using context-free grammars

(“semantics”).

Example properties

Static: type or declaredness of an identifier, number of registers required to evaluate
an expression, ...

Dynamic: value of an expression, size of procedure stack, ...

29 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Semantic Analysis

Static Semantics

Static semantics

Refers to properties of program constructs
• which are true for every occurrence of this construct in every program execution and
• can be decided at compile time (“static”)
• but are context-sensitive and thus not expressible using context-free grammars

(“semantics”).

Example properties

Static: type or declaredness of an identifier, number of registers required to evaluate
an expression, ...

Dynamic: value of an expression, size of procedure stack, ...

29 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Attribute Grammars

Outline of Lecture 11

Recap: LR(1) Parsing

Generating Top-Down Parsers Using ANTLR

Generating Bottom-Up Parsers Using yacc and bison

LL and LR Parsing in Practice

Overview

Semantic Analysis

Attribute Grammars

30 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Attribute Grammars

Attribute Grammars I

Goal: compute context-dependent but runtime-independent properties of a given
program

Idea: enrich context-free grammar by semantic rules which annotate syntax tree
with attribute values

=⇒ Semantic analysis = attribute evaluation
Result: attributed syntax tree

In greater detail:
• With every grammar symbol a set of attributes is associated.
• Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)
• With every production a set of semantic rules is associated.

31 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Attribute Grammars

Attribute Grammars I

Goal: compute context-dependent but runtime-independent properties of a given
program

Idea: enrich context-free grammar by semantic rules which annotate syntax tree
with attribute values

=⇒ Semantic analysis = attribute evaluation
Result: attributed syntax tree

In greater detail:
• With every grammar symbol a set of attributes is associated.
• Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)
• With every production a set of semantic rules is associated.

31 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Attribute Grammars

Attribute Grammars II

Advantage: attribute grammars provide a very flexible and broadly applicable
mechanism for transporting information through the syntax tree (“syntax-directed
translation”)
• Attribute values: symbol tables, data types, code, error flags, ...
• Application in Compiler Construction:

– static semantics
– program analysis for optimisation
– code generation
– error handling

• Automatic attribute evaluation by compiler generators
(cf. ANTLR’s and yacc’s synthesized attributes)
• Originally designed by D. Knuth for defining the semantics of context-free languages

(Math. Syst. Theory 2 (1968), pp. 127–145)

32 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Attribute Grammars

Example: Type Checking I

Example 11.1 (Attribute grammar for type checking)

Pgm→Dcl Cmd

ok .0 = ok .2 env .2 = st.1

Dcl→ ε

st.0 = [id 7→ err | id ∈ Id]

| Typ var;Dcl

st.0 = st.4[id .2 7→ typ.1]

Typ→ int

typ.0 = int

Typ→ bool

typ.0 = bool

Cmd→ ε

ok .0 = true

| var :=Exp;Cmd

ok .0 = (env .0(id .1) = typ.3 ∧ ok .5) env .3 = env .0 env .5 = env .0

Exp→ num

typ.0 = int

| var

typ.0 = env .0(id .1)

| Exp + Exp

typ.0 = (typ.1 = typ.3 = int ? int :err) env .1 = env .0 env .3 = env .0

| Exp < Exp

typ.0 = (typ.1 = typ.3 = int ? bool :err) env .1 = env .0 env .3 = env .0

| Exp && Exp

typ.0 = (typ.1 = typ.3 = bool ? bool :err) env .1 = env .0 env .3 = env .0

• Synthesized attributes: id (identifier name), ok (Boolean result),
st (symbol table, mapping identifiers to types), typ (data type in {bool, int, err})
• Inherited attributes: env (environment – same type as symbol table)

33 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Attribute Grammars

Example: Type Checking I

Example 11.1 (Attribute grammar for type checking)

Pgm→Dcl Cmd ok .0 = ok .2

env .2 = st.1

Dcl→ ε st.0 = [id 7→ err | id ∈ Id]
| Typ var;Dcl st.0 = st.4[id .2 7→ typ.1]

Typ→ int typ.0 = int
Typ→ bool typ.0 = bool

Cmd→ ε ok .0 = true
| var :=Exp;Cmd ok .0 = (env .0(id .1) = typ.3 ∧ ok .5)

env .3 = env .0 env .5 = env .0

Exp→ num typ.0 = int
| var typ.0 = env .0(id .1)
| Exp + Exp typ.0 = (typ.1 = typ.3 = int ? int :err)

env .1 = env .0 env .3 = env .0

| Exp < Exp typ.0 = (typ.1 = typ.3 = int ? bool :err)

env .1 = env .0 env .3 = env .0

| Exp && Exp typ.0 = (typ.1 = typ.3 = bool ? bool :err)

env .1 = env .0 env .3 = env .0

• Synthesized attributes: id (identifier name), ok (Boolean result),
st (symbol table, mapping identifiers to types), typ (data type in {bool, int, err})

• Inherited attributes: env (environment – same type as symbol table)

33 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Attribute Grammars

Example: Type Checking I

Example 11.1 (Attribute grammar for type checking)

Pgm→Dcl Cmd ok .0 = ok .2 env .2 = st.1
Dcl→ ε st.0 = [id 7→ err | id ∈ Id]
| Typ var;Dcl st.0 = st.4[id .2 7→ typ.1]

Typ→ int typ.0 = int
Typ→ bool typ.0 = bool

Cmd→ ε ok .0 = true
| var :=Exp;Cmd ok .0 = (env .0(id .1) = typ.3 ∧ ok .5) env .3 = env .0 env .5 = env .0

Exp→ num typ.0 = int
| var typ.0 = env .0(id .1)
| Exp + Exp typ.0 = (typ.1 = typ.3 = int ? int :err) env .1 = env .0 env .3 = env .0
| Exp < Exp typ.0 = (typ.1 = typ.3 = int ? bool :err) env .1 = env .0 env .3 = env .0
| Exp && Exp typ.0 = (typ.1 = typ.3 = bool ? bool :err) env .1 = env .0 env .3 = env .0

• Synthesized attributes: id (identifier name), ok (Boolean result),
st (symbol table, mapping identifiers to types), typ (data type in {bool, int, err})
• Inherited attributes: env (environment – same type as symbol table)

33 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

Attribute Grammars

Example: Type Checking II

Example 11.2 (Attributed syntax tree)

For program int x; bool y; x := x+1; y := x && y:
Pgm o

Dcl s

Typ t

int

var i ; Dcl s

Typ t

bool

var i ; Dcl s

ε

Cmde o

var i := Expe t

Expe t

var i

+ Expe t

num

; Cmde o

var i := Expe t

Expe t

var i

&& Expe t

var i

; Cmde o

ε

(e = env , i = id , o = ok , s = st , t = typ)

34 of 34 Compiler Construction

Summer Semester 2017
Lecture 11: Syntax Analysis VII (Practical Issues) &
Semantic Analysis I (Attribute Grammars)

	Recap: LR(1) Parsing
	Generating Top-Down Parsers Using ANTLR
	Generating Bottom-Up Parsers Using yacc and bison
	LL and LR Parsing in Practice
	Overview
	Semantic Analysis
	Attribute Grammars

