'1':"-*_

i e
- ", "

Compiler Construction

Lecture 11: Syntax Analysis VIl (Practical Issues) &
Semantic Analysis | (Attribute Grammars)

Summer Semester 2017

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-17/cc/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ss-17/cc/

Recap: LR(1) Parsing

Outline of Lecture 11

Recap: LR(1) Parsing

RWTH

2 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Recap: LR(1) Parsing

LR(1) ltems and Sets

Observation: not every element of fo(A) can follow every occurrence of A
—> refinement of LR(0) items by adding possible lookahead symbols

Definition (LR(1) items and sets)

Let G= (N,X,P,S) € CFGy be start separated by S" — S.
o If S' = cAaw =, afb.aw, then [A — ;1 - B2, a| is called an LR(1) item for af;.
o If S' =" aA = afifs, then [A — (1 - 52, ¢] is called an LR(1) item for a5;.
e Given v € X*, LR(1)(~) denotes the set of all LR(1) items for ~, called the LR(1) set (or:
LR(1) information) of ~.
o LR(1)(G) :={LR(1)(7) | v € X"}.

3 0of 34 Compiler Construction Rm
Summer Semester 2017 _
X . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & B and Verification Chair
Semantic Analysis | (Attribute Grammars)

Recap: LR(1) Parsing

LR(1) Conflicts

Definition (LR(1) conflicts)

Let G= (N,X,P,S) € CFGyx and | € LR(1)(G).
e / has a shift/reduce conflict if there exist A — «1aas, B — 5 € P and x € X, such that

[A— aq-aag, x],[B— §-,a] € 1.

e [has a reduce/reduce conflict if there exist x € 2. and
A— a,B— [€ Pwith A+ Bora +# [such that

[A— a-, x],[B— 5-,x] € 1.

Lemma
G € LR(1) iffno | € LR(1)(G) contains conflicting items.

RWTH

4 0of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Recap: LR(1) Parsing

The LR(1) Action Function

Definition (LR(1) action function)
The LR(1) action function
act : LR(1)(G) x L. — {redi | i € [p]} U {shift, accept, error}

is defined by
(redi ifi£0,m=A— aand[A— a,x] €l
) shift if[A— aq-xap,y] €land x € &
(b) = < accept if [S'— Sl € land x = ¢
_error otherwise
Corollary

Forevery G € CFGy, G € LR(1) iffits LR(1) action function is well defined.

5of 34 Compiler Construction o Rm
Software Modeling

Summer Semester 2017

Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Generating Top-Down Parsers Using ANTLR

Outline of Lecture 11

Generating Top-Down Parsers Using ANTLR

RWTH

6 of 34 Compiler Construction
Summer Semester 2017 Software Modelin
Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘ Bl and Verification cﬂair
Semantic Analysis | (Attribute Grammars)

Generating Top-Down Parsers Using ANTLR

Overview of ANTLR
ANother Tool for Language Recognition

e Input: language description using EBNF grammars

e Output: recogniser for the language
e Supports recognisers for three kinds of input:

— character streams (generation of scanner)
— token streams (generation of parser)

. The Definitive
— node streams (generation of tree walker) ONTLR 4

Reference

e Current version: ANTLR 4.7
— generates LL () recognisers: flexible choice of lookahead length
— applies “longest match” principle
— supports ambiguous grammars by using “first match” principle for rules
— supports direct left recursion
— targets Java, C++, C#, Python, JavaScript, Go, Swift

e Details:

—http://www.antlr.org/
— T. Parr: The Definitive ANTLR 4 Reference, Pragmatic Bookshelf, 2013

RWTH

7 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

http://www.antlr.org/

Generating Top-Down Parsers Using ANTLR

Example: Infix — Postfix Translator (Simple.g4)

grammar Simple;

// productions for syntax analysis

program returns [String s]: e=expr EOF {$s = $e.s;};

expr returns [String s]: t=term r=rest {$s = $t.s + $r.s;};
rest returns [String s]:

PLUS t=term r=rest {$s = $t.s + "+" + $r.s;}
| MINUS t=term r=rest {$s = $t.s + "-" + $r.s;}
| /* empty */ {$s = ""; };
term returns [String s]: DIGIT {$s = $DIGIT.text;};

// productions for lexical analysis
PLUS : ’+’;
MINUS : ’-’;

DIGIT : [0-9];

8 of 34 Compiler Construction
Summer Semester 2017 .
X . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & B and Verification Chair
Semantic Analysis | (Attribute Grammars)

RWTH

Generating Top-Down Parsers Using ANTLR

Java Code for Using Translator

import java.1io0.*;
import org.antlr.v4.runtime. *,
public class SimpleMain {
public static void main(final Stringl] args)
throws IOException {
String printSource = null, printSymTab = null,
printIR = null, printAsm = null;

SimpleLexer lexer = /* Create instance of lexer */
new SimpleLexer(new ANTLRInputStream(args[0]));
SimpleParser parser = /* Create instance of parser */

new SimpleParser(new CommonTokenStream(lexer));

String postfix = parser.program().s; /* Run translator */
System.out.println(postfix);

}
}

RWTH

9 of 34 Compiler Construction
Summer Semester 2017
Lecture 11: Syntax Analysis VIl (Practical Issues) &
Semantic Analysis | (Attribute Grammars)

Software Modeling
Il and Verification Chair

Generating Top-Down Parsers Using ANTLR

An Example Run

1. After installation, invoke ANTLR:
$ java -jar /usr/local/lib/antlr-4.7-complete.jar Simple.gd

(will generate Simplelexer. java, SimpleParser. java, Simple.tokens, and
SimplelLexer.tokens)

2. Use Java compiler:

$ javac -cp /usr/local/lib/antlr-4.7-complete.jar Simplex.java
3. Run translator:

$ java -cp .:/usr/local/lib/antlr-4.7-complete.jar SimpleMain ’9-5+2’

95-2+
10 of 34 Compiler Construction o Rm
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘ Bl and Verification Chair

Semantic Analysis | (Attribute Grammars)

Generating Top-Down Parsers Using ANTLR

Advantages of ANTLR

Advantages of ANTLR

e Generated (Java) code is similar to hand-written code
— possible (and easy) to read and debug generated code

e Syntax for specifying scanners, parsers and tree walkers is identical
e Support for many target programming languages
e ANTLR is well supported and has an active user community

RWTH

11 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Outline of Lecture 11

Generating Bottom-Up Parsers Using yacc and bison

RWTH

12 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

The yacc and bison Tools

Usage of yacc (“yet another compiler compiler”):

spec.y L y.tab.c lex.yy.c [ﬂﬁx spec.1
yacc specification Parser source Scanner source [£]1lex specification
Lecl
a.out

Executable LALR(1) parser

RWTH

13 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

The yacc and bison Tools

Usage of yacc (“yet another compiler compiler”):

spec.y L y.tab.c lex.yy.c [ﬂﬁx spec.1
yacc specification Parser source Scanner source [£]1lex specification
Lecl
a.out

Executable LALR(1) parser

Like for [£]1ex, a yacc specification is of the form
Declarations (optional)
Y/
Rules
Tolh

Auxiliary procedures (optional)

13 of 34 Compiler Construction o Rm
Summer Semester 2017 . . Software Modeling

Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair

Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

The yacc and bison Tools

Usage of yacc (“yet another compiler compiler”):

spec.y L y.tab.c lex.yy.c [HX spec.1
yacc specification Parser source Scanner source [£]1lex specification
Lecl
a.out

Executable LALR(1) parser

Like for [£]1ex, a yacc specification is of the form
Declarations (optional)
Yol
Rules
Yol
Auxiliary procedures (optional)

bison : upward-compatible GNU implementation of yacc
(more flexible w.r.t. file names, ...)

RWTH

13 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

yacc Specifications

Declarations: e Token definitions: J,token Tokens
e Not every token needs to be declared (°+’, ’=’, ...)
e Start symbol: %start Symbol (optional)
e C code for declarations etc.: %{ Code %}

RWTH

14 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

yacc Specifications

Declarations: e Token definitions: %token Tokens
e Not every token needs to be declared (°+’, ’=’, ...)
e Start symbol: %start Symbol (optional)
e C code for declarations etc.: %{ Code %}
Rules: context-free productions and semantic actions
o A— oy |as|...| a,represented as

A : «q {Action;}
| ao {Action,}

| «n {Action,};

e Semantic actions = C statements for computing attribute values
e 3 = attribute value of A

e $i = attribute value of i-th symbol on right-hand side

e Default action: $$ = $1

14 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

RWTH

Generating Bottom-Up Parsers Using yacc and bison

yacc Specifications

Declarations: e Token definitions: %token Tokens
e Not every token needs to be declared (°+’, ’=’, ...)
e Start symbol: %start Symbol (optional)
e C code for declarations etc.: %{ Code %}
Rules: context-free productions and semantic actions
o A— oy |as|...| a,represented as

A : «q {Action;}
| ao {Action,}

| «n {Action,};

e Semantic actions = C statements for computing attribute values
e 3 = attribute value of A

e $i = attribute value of i-th symbol on right-hand side

e Default action: $$ = $1

Auxiliary procedures: scanner (if not generated by [f]1ex), error routines, ...

14 of 34 Compiler Construction o Rm
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Example: Simple Desk Calculator |

%»{/* SLR(1) grammar for arithmetic expressions (Example 9.9) */

#include <stdio.h>
#include <ctype.h>

hy

Jtoken DIGIT

Yoo

line : expr ’\n’

expr . expr ’+’ term
| term

term : term ’x’ factor
| factor

factor : *(’ expr ’)’
| DIGIT

Yoo

yylex(O) {

int c;

c = getchar();

if (isdigit(c)) yylval =

return c;

}

{
{3
{3
13
1
1
1

prlntf(”%d\n” $1);

= $1 + $3; }
= $1; };
= $1 * $3; }
$$ = $1; };
$$ = $2; }
$$ = $1; };

I¥

c - ’0’; return DIGIT;

15 of 34 Compiler Construction
Summer Semester 2017

Lecture 11: Syntax Analysis VIl (Practical Issues) &

Semantic Analysis | (Attribute Grammars)

4

.

Software Modeling
Il and Verification Chair

RWTH

Generating Bottom-Up Parsers Using yacc and bison

Example: Simple Desk Calculator Il

$ yacc calc.y

$ cc y.tab.c -1y
$ a.out

2+3

5

$ a.out

2+3*5

17

RWTH

16 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

An Ambiguous Grammar |

%{/* Ambiguous grammar for arithmetic expressions (Example 10.17) */
#include <stdio.h>
#include <ctype.h>

hy

Jtoken DIGIT

Tolo

line : expr ’\n’ { printf ("%d\n", $1); };
expr : expr '+’ expr {$$ =81 + $3; }
| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };
Y.
yylex(O {
int c;

c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}

return c;
17 of 34 Compiler Construction 0 Rm
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair

Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

An Ambiguous Grammar Il

Invoking yacc with the option —v produces a report y. output:

State 8
2 expr: expr . ’+’ expr
2 | expr ’+’ expr
3 | expr . ’x’ expr

>+’ shift and goto state 6
’x? shift and goto state 7

'+ [reduce with rule 2 (expr)]

)k [reduce with rule 2 (expr)]
State 9

2 expr: expr . ’+’ expr

3 | expr . ’*’ expr

3 | expr ’*’ expr

’+’ shift and goto state 6
’x? shift and goto state 7

'+ [reduce with rule 3 (expr)]
) %) [reduce with rule 3 (expr)l]
18 of 34 Compiler Construction o Rm
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & B and Verification Chair

Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Conflict Handling in yacc

Default conflict resolving strategy in yacc:
reduce/reduce: choose first conflicting production in specification

RWTH

19 of 34 Compiler Construction
Summer Semester 2017 _
X . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘ B and Verification Chair
Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification
shift/reduce: prefer shift
e resolves dangling-else ambiguity (Example 10.18) correctly
e also adequate for strong following weak operator (* after +; Example 10.17) and for
right-associative operators
e not appropriate for weak following strong operator and for left-associative operators
(= reduce; see Example 10.17)

RWTH

19 of 34 Compiler Construction
Summer Semester 2017 Software Modelin
Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘ Bl and Verification cgair
Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification
shift/reduce: prefer shift
e resolves dangling-else ambiguity (Example 10.18) correctly
e also adequate for strong following weak operator (* after +; Example 10.17) and for
right-associative operators
e not appropriate for weak following strong operator and for left-associative operators
(= reduce; see Example 10.17)
For ambiguous grammar:

$ yacc ambig.y

conflicts: 4 shift/reduce
$ cc y.tab.c -1y

$ a.out

2+3%5

17

$ a.out

2%3+5

16

RWTH

19 of 34 Compiler Construction
Summer Semester 2017 Software Modelin
Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘ Bl and Verification cgair
Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Precedences and Associativities in yacc |

General mechanism for resolving conflicts:
h[left|right] Operators;
%[left|right| Operators,

e operators in one line have given associativity and same precedence
e precedence increases over lines

RWTH

20 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Generating Bottom-Up Parsers Using yacc and bison

Precedences and Associativities in yacc |

General mechanism for resolving conflicts:
h[left|right] Operators;
%[left|right| Operators,

e operators in one line have given associativity and same precedence
e precedence increases over lines

Example 11.1
hleft 42 -7

%1eft) %))/)
Jiright *°?

~ (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)

20 of 34 Compiler Construction
Summer Semester 2017

Semantic Analysis | (Attribute Grammars)

X . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & B and Verification Chair

RWTH

Generating Bottom-Up Parsers Using yacc and bison

Precedences and Associativities in yacc ll

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */
#include <stdio.h>
#include <ctype.h>
h
Jhtoken DIGIT
hleft >+’
hleft 2%’
Y.
line : expr ’\n’ { printf("%d\n", $1); };
exXpr : expr ’+’ expr { $$ =81 + $3; }
| expr ’x’ expr { $$ = $1 * $3; }
| DIGIT { 8 = 815 };
Yoo
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;

21 of 34 Compiler Construction
Summer Semester 2017

Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘
Semantic Analysis | (Attribute Grammars)

Software Modeling
Il and Verification Chair

RWTH

Generating Bottom-Up Parsers Using yacc and bison

Precedences and Associativities in yacc Il

$ yacc ambig-prio.y
$ cc y.tab.c -1y

$ a.out

2*x3+5

11

$ a.out

2+3*5

17

RWTH

22 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

LL and LR Parsing in Practice

Outline of Lecture 11

LL and LR Parsing in Practice

RWTH

23 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice

In practice: use of LL(1)/LL(x) or LALR(1)

24 of 34

Compiler Construction
Summer Semester 2017

Lecture 11: Syntax Analysis VIl (Practical Issues) &
Semantic Analysis | (Attribute Grammars)

.

4

Software Modeling
Il and Verification Chair

RWTH

LL and LR Parsing in Practice

LL and LR Parsing in Practice
In practice: use of LL(1)/LL(x) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):
Simplicity: LL wins

e LL parsing technique easier to understand

e recursive-descent parser easier to debug than LALR action tables

RWTH

24 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice
In practice: use of LL(1)/LL(x) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):

Simplicity: LL wins

Generality: LALR wins

e “almost” LL(1) C LALR(1) (only pathological counterexamples)
e LL requires elimination of left recursion and left factorization

RWTH

24 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice
In practice: use of LL(1)/LL(x) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):
Simplicity: LL wins
Generality: LALR wins
Semantic actions: (see semantic analysis) LL wins

e actions can be placed anywhere in LL parsers without causing conflicts

e in LALR: implicit e-productions

—> may generate conflicts

RWTH

24 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice
In practice: use of LL(1)/LL(x) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):

Simplicity: LL wins

Generality: LALR wins

Semantic actions: (see semantic analysis) LL wins

Error handling: LL wins

e top-down approach provides context information
—> better basis for reporting and/or repairing errors

24 of 34 Compiler Construction Rm
Summer Semester 2017 _
X . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘ B and Verification Chair
Semantic Analysis | (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice
In practice: use of LL(1)/LL(x) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):

Simplicity: LL wins

Generality: LALR wins

Semantic actions: (see semantic analysis) LL wins

Error handling: LL wins
Parser size: comparable

e LL: action table
e LALR: action/goto table

RWTH

24 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice
In practice: use of LL(1)/LL(x) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):

Simplicity: LL wins

Generality: LALR wins

Semantic actions: (see semantic analysis) LL wins

Error handling: LL wins

Parser size: comparable
Parsing speed: comparable

e both linear in length of input program (LL(1): see Lemma 7.15 for «-free case)
e concrete figures tool dependent

RWTH

24 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

LL and LR Parsing in Practice

LL and LR Parsing in Practice
In practice: use of LL(1)/LL(x) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler, Benjamin/Cummings,
1988):

Simplicity: LL wins

Generality: LALR wins

Semantic actions: (see semantic analysis) LL wins

Error handling: LL wins

Parser size: comparable

Parsing speed: comparable

Conclusion: choose LL when possible
(depending on available grammars and tools)

RWTH

24 of 34 Compiler Construction
Summer Semester 2017 _
X . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & B and Verification Chair
Semantic Analysis | (Attribute Grammars)

Overview

Outline of Lecture 11

Overview

25 of 34 Compiler Construction
Summer Semester 2017

Lecture 11: Syntax Analysis VIl (Practical Issues) &
Semantic Analysis | (Attribute Grammars)

.

4

Software Modeling
Il and Verification Chair

RWTH

Overview

Conceptual Structure of a Compiler
Source code

l

Lexical analysis (Scanner)| Asg

/\
v Var Exp
Syntax analysis (Parser
Sy ysis (Parser) |
! W
[Semantic analysis] ar on Asq ok attribute grammars
/\
: v : int Var Expint
(Generation of intermediate code)
Sumint
\ 4 . .
'Code optimisation| int Var Conint
. \ 4
‘Generation of target code|
Target code
26 of 34 Compiler Construction
Sumr:er Semester 2017 o) Rm
Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘ - ggatvglri?ig(:ﬁﬁ:lggair

Semantic Analysis | (Attribute Grammars)

Semantic Analysis

Outline of Lecture 11

Semantic Analysis

27 of 34 Compiler Construction
Summer Semester 2017

Lecture 11: Syntax Analysis VIl (Practical Issues) &
Semantic Analysis | (Attribute Grammars)

.

4

Software Modeling
Il and Verification Chair

RWTH

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?

RWTH

28 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e Is x a scalar, an array, or a procedure? Of which type?

RWTH

28 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e Is x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?

RWTH

28 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e Is x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e Is x defined before it is used?

RWTH

28 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e Is x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e |s x defined before it is used?
e |s the expression 3 * x + y type consistent?

RWTH

28 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e Is x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e |s x defined before it is used?
e |s the expression 3 * x + y type consistent?
e Where should the value of x be stored (register/stack/heap)?

RWTH

28 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e Is x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e |s x defined before it is used?
e |s the expression 3 * x + y type consistent?
e Where should the value of x be stored (register/stack/heap)?
e Do p and q refer to the same memory location (aliasing)?

RWTH

28 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e Is x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e |s x defined before it is used?
e |s the expression 3 * x + y type consistent?
e Where should the value of x be stored (register/stack/heap)?
e Do p and q refer to the same memory location (aliasing)?

These cannot be expressed using context-free grammars!

RWTH

28 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e Is x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e |s x defined before it is used?
e |s the expression 3 * x + y type consistent?
e Where should the value of x be stored (register/stack/heap)?
e Do p and q refer to the same memory location (aliasing)?

These cannot be expressed using context-free grammars!
(For example, {ww | w € X"} ¢ CFLy)

RWTH

28 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Semantic Analysis

Static Semantics

Static semantics

Refers to properties of program constructs
e which are true for every occurrence of this construct in every program execution and
e can be decided at compile time (“static”)

e but are context-sensitive and thus not expressible using context-free grammars
(“semantics”).

RWTH

29 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Semantic Analysis

Static Semantics

Static semantics

Refers to properties of program constructs
e which are true for every occurrence of this construct in every program execution and
e can be decided at compile time (“static”)

e but are context-sensitive and thus not expressible using context-free grammars
(“semantics”).

Example properties

Static: type or declaredness of an identifier, number of registers required to evaluate
an expression, ...

Dynamic: value of an expression, size of procedure stack, ...

RWTH

29 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Attribute Grammars

Outline of Lecture 11

Attribute Grammars

30 of 34 Compiler Construction
Summer Semester 2017

Lecture 11: Syntax Analysis VIl (Practical Issues) &
Semantic Analysis | (Attribute Grammars)

.

4

Software Modeling
Il and Verification Chair

RWTH

Attribute Grammars

Attribute Grammars |

Goal: compute context-dependent but runtime-independent properties of a given
program
ldea: enrich context-free grammar by semantic rules which annotate syntax tree
with attribute values
—> Semantic analysis = attribute evaluation
Result: attributed syntax tree

RWTH

31 of 34 Compiler Construction
Summer Semester 2017 _
X . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘ B and Verification Chair
Semantic Analysis | (Attribute Grammars)

Attribute Grammars

Attribute Grammars |

Goal: compute context-dependent but runtime-independent properties of a given
program
ldea: enrich context-free grammar by semantic rules which annotate syntax tree
with attribute values
—> Semantic analysis = attribute evaluation
Result: attributed syntax tree

In greater detail:
e With every grammar symbol a set of attributes is associated.
e Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

e With every production a set of semantic rules is associated.

RWTH

31 of 34 Compiler Construction o
Summer Semester 2017 . . ‘ Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Attribute Grammars

Attribute Grammars Il

Advantage: attribute grammars provide a very flexible and broadly applicable
mechanism for transporting information through the syntax tree (“syntax-directed
translation”)
e Attribute values: symbol tables, data types, code, error flags, ...
e Application in Compiler Construction:
— static semantics
— program analysis for optimisation
— code generation
— error handling
e Automatic attribute evaluation by compiler generators
(cf. ANTLR’s and yacc’s synthesized attributes)

e Originally designed by D. Knuth for defining the semantics of context-free languages
(Math. Syst. Theory 2 (1968), pp. 127—145)

RWTH

32 of 34 Compiler Construction o
Summer Semester 2017 Software Modeling

Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘ Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

Attribute Grammars

Example: Type Checking |

Example 11.1 (Attribute grammar for type checking)
Pgm — Dcl Cmd

Dcl — ¢
| Typ var; Dcl
Typ — int
Typ — bool
Cmd — ¢
| var := Exp; Cmd
Exp — num
| var
| Exp + Exp
| Exp < Exp
| Exp && Exp
s e ... RWIH
Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘ | gl(::ltv:rri?iggslﬂlgﬂair

Semantic Analysis | (Attribute Grammars)

Attribute Grammars

Example: Type Checking |
Example 11.1 (Attribute grammar for type checking)

Pgm — Dcl Cmd ok.0 =o0k.2
Dcl — ¢ st.0=[id — err | id € Id]
| Typ var; Dcl st.0 = st.4[id.2 — typ.1]
Typ — int typ.0 =int
Typ — bool typ.0 = bool
Cmd — ¢ ok.0 =true
| var :=Exp;Cmd o0k.0=(env.0(id.1) = typ.3 A\ 0k.5)
Exp — num typ.0 =int
| var typ.0 = env.0(id.1)
| Exp + Exp typ.0 = (typ.1 = typ.3 = int?int:err)
| Exp < Exp typ.0 = (typ.1 = typ.3 = int ? bool : err)
| Exp && Exp typ.0 = (typ.1 = typ.3 = bool ? bool : err)

e Synthesized attributes: id (identifier name), ok (Boolean result),
st (symbol table, mapping identifiers to types), typ (data type in {bool, int, err})

RWTH

33 of 34 Compiler Construction
Summer Semester 2017 _
X X Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & ‘ B and Verification Chair
Semantic Analysis | (Attribute Grammars)

Attribute Grammars

Example: Type Checking |
Example 11.1 (Attribute grammar for type checking)

Pgm — Dcl Cmd ok.0 =o0k.2 env.2 = st.1
Dcl — ¢ st.0=[id — err | id € Id]
| Typ var; Dcl st.0 = st.4[id.2 — typ.1]
Typ — int typ.0 =int
Typ — bool typ.0 = bool
Cmd — ¢ ok.0 =true

| var :=Exp;Cmd o0k.0=(env.0(id.1) = typ.3 A\ 0k.5) env.3=env.0 env.5=env.0
Exp — num typ.0 =int

| var typ.0 = env.0(id.1)

| Exp + Exp typ.0 = (typ.1 = typ.3 = int?int:err) env.1=env.0 env.3=env.0
| Exp < Exp typ.0 = (typ.1 = typ.3 = int?bool:err) env.1=env.0 env.3=env.0
| Exp && Exp typ.0 = (typ.1 = typ.3 = bool ? bool:err) env.1=env.0 env.3=-env.0

e Synthesized attributes: id (identifier name), ok (Boolean result),
st (symbol table, mapping identifiers to types), typ (data type in {bool, int, err})
e Inherited attributes: env (environment — same type as symbol table)

33 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

RWTH

Attribute Grammars

Example: Type Checking Il

Example 11.2 (Attributed syntax tree)

For program int x; bool y; x

Typ[t]var|i] 5 Dcl|s] [e] Exp|t] +@Expvar :=[e]Exp[t] ;[e]Cmd|[o]

N

bool € var|[j] num [e]Exp[t] && [e]Exp[t]e

-

var|j| var|j|
(el = env,|i| = id,[0] = ok, [s] = st,[t] = typ)

34 of 34 Compiler Construction o
Summer Semester 2017 . . Software Modeling
Lecture 11: Syntax Analysis VIl (Practical Issues) & Bl and Verification Chair
Semantic Analysis | (Attribute Grammars)

RWTH

	Recap: LR(1) Parsing
	Generating Top-Down Parsers Using ANTLR
	Generating Bottom-Up Parsers Using yacc and bison
	LL and LR Parsing in Practice
	Overview
	Semantic Analysis
	Attribute Grammars

