
Seminar Theoretical Foundations
of Programming Languages
Introduction
Summer Semester 2016; 13 April, 2016

C. Dehnert, T. Lange, C. Matheja, T. Noll, M. Volk, H. Wu
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-16/tfopl/

https://moves.rwth-aachen.de/teaching/ss-16/tfopl/


Overview

Outline

Overview

Aims of this Seminar

Important Dates

Seminar Topics

T. Noll, C. Matheja: Analysis of Pointer Programs

T. Lange: Software Model Checking

C. Dehnert, M. Volk, H. Wu: Analysis of Probabilistic Systems

Final Hints

2 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Overview

Theoretical Foundations of Programming Languages

Theoretical Foundations of Programming Languages

• Seminar addresses several aspects of programming languages and software systems
(in a broad sense)
• Emphasis: formal foundations and principles underpinning practical applications

Aspects

• Analysis of Pointer Programs
– Static Program Analysis (WS 2014/15)
– Semantics and Verification of Software (SS 2015)

• Software Model Checking
– Introduction to Model Checking (SS 2015, now)
– Advanced Model Checking (SS 2014)

• Analysis of Probabilistic Systems
– Modelling and Verification of Probabilistic Systems (SS 2014)

3 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Overview

Theoretical Foundations of Programming Languages

Theoretical Foundations of Programming Languages

• Seminar addresses several aspects of programming languages and software systems
(in a broad sense)
• Emphasis: formal foundations and principles underpinning practical applications

Aspects

• Analysis of Pointer Programs
– Static Program Analysis (WS 2014/15)
– Semantics and Verification of Software (SS 2015)

• Software Model Checking
– Introduction to Model Checking (SS 2015, now)
– Advanced Model Checking (SS 2014)

• Analysis of Probabilistic Systems
– Modelling and Verification of Probabilistic Systems (SS 2014)

3 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Overview

Analysis of Pointer Programs

https://xkcd.com/371

Pointer-related software errors

• Dereferencing null (or disposed) pointers
• Creation of memory leaks
• Accidental invalidation of data structures
• Deadlocks
• Data races, ...

4 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Overview

Software Model Checking

Programmable Logic Controller (PLC) Code

• Tailored for automation processes
• Run ad infinitum
• Executed in a cyclic manner
• Terminate within predefined cycle time

Challenges

• Application domains have high safety requirements
• Violations entail high economical costs
• Currently checked by extensive testing

Example

Motor must move in safe range, otherwise worker gets injured.

5 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Overview

Analysis of Probabilistic Systems

“Jungle” of models

• Discrete vs. continuous time
• Deterministic vs. non-deterministic
• ...

Interesting questions

• Reachability properties (of “bad” states)
• Transient probability distributions
• Model checking
• Analysis of failures (fault trees)
• ...

6 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Aims of this Seminar

Outline

Overview

Aims of this Seminar

Important Dates

Seminar Topics

T. Noll, C. Matheja: Analysis of Pointer Programs

T. Lange: Software Model Checking

C. Dehnert, M. Volk, H. Wu: Analysis of Probabilistic Systems

Final Hints

7 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Aims of this Seminar

Goals

Aims of this seminar

• Independent understanding of a scientific topic
• Acquiring, reading and understanding scientific literature
• Writing of your own report on this topic
• Oral presentation of your results

8 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Aims of this Seminar

Requirements on Report

Your report

• Independent writing of a report of ≈ 15 pages
• Complete set of references to all consulted literature
• Correct citation of important literature
• Plagiarism: taking text blocks (from literature or web) without source indication causes

immediate exclusion from this seminar
• Font size 12pt with “standard” page layout
• Language: German or English
• We expect the correct usage of spelling and grammar

– ≥ 10 errors per page =⇒ abortion of correction

• Report template will be made available on seminar web page

9 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Aims of this Seminar

Requirements on Talk

Your talk

• Talk of about 45 (= 40 + 5) minutes
• Focus your talk on the audience
• Descriptive slides:

– ≤ 15 lines of text
– use (base) colors in a useful manner

• Language: German or English
• No spelling mistakes please!
• Finish in time. Overtime is bad
• Ask for questions

10 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Aims of this Seminar

Final Preparations

Preparation of your talk

• Setup laptop and projector ahead of time
• Use a (laser) pointer
• Number your slides
• Multiple copies: laptop, USB, web
• Have backup slides ready for expected questions

11 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Important Dates

Outline

Overview

Aims of this Seminar

Important Dates

Seminar Topics

T. Noll, C. Matheja: Analysis of Pointer Programs

T. Lange: Software Model Checking

C. Dehnert, M. Volk, H. Wu: Analysis of Probabilistic Systems

Final Hints

12 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Important Dates

Important Dates

Deadlines

• 09.05.2016: Detailed outline of report due
• 13.06.2016: Report due
• 04.07.2016: Slides due
• 18./19.07.2016 (???): Seminar

Missing a deadline causes immediate exclusion from the seminar

13 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Important Dates

Important Dates

Deadlines

• 09.05.2016: Detailed outline of report due
• 13.06.2016: Report due
• 04.07.2016: Slides due
• 18./19.07.2016 (???): Seminar

Missing a deadline causes immediate exclusion from the seminar

13 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Seminar Topics

Outline

Overview

Aims of this Seminar

Important Dates

Seminar Topics

T. Noll, C. Matheja: Analysis of Pointer Programs

T. Lange: Software Model Checking

C. Dehnert, M. Volk, H. Wu: Analysis of Probabilistic Systems

Final Hints

14 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Seminar Topics

Selecting Your Topic

Procedure

• You obtain(ed) a list of topics of this seminar.
• Classified according to BSc/MSc level (or both).
• Indicate the preference of your topics (first, second, third).
• Return sheet by Friday (15 April) via e-mail/to secretary.
• We do our best to find an adequate topic-student assignment.

– disclaimer: no guarantee for an optimal solution
• Assignment will be published on website by 18 April.
• Please give language preference.

– unsure =⇒ German

Withdrawal

• You have up to three weeks to refrain from participating in this seminar.
• Later cancellation (by you or by us) causes a not passed for this seminar and reduces your

(three) possibilities by one.

15 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Seminar Topics

Selecting Your Topic

Procedure

• You obtain(ed) a list of topics of this seminar.
• Classified according to BSc/MSc level (or both).
• Indicate the preference of your topics (first, second, third).
• Return sheet by Friday (15 April) via e-mail/to secretary.
• We do our best to find an adequate topic-student assignment.

– disclaimer: no guarantee for an optimal solution
• Assignment will be published on website by 18 April.
• Please give language preference.

– unsure =⇒ German

Withdrawal

• You have up to three weeks to refrain from participating in this seminar.
• Later cancellation (by you or by us) causes a not passed for this seminar and reduces your

(three) possibilities by one.

15 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Pointer Programs

Outline

Overview

Aims of this Seminar

Important Dates

Seminar Topics

T. Noll, C. Matheja: Analysis of Pointer Programs

T. Lange: Software Model Checking

C. Dehnert, M. Volk, H. Wu: Analysis of Probabilistic Systems

Final Hints

16 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Pointer Programs

1. B: Introduction to Separation Logic [Noll]

Separation Logic (SL)

• Logic for reasoning about programs that manipulate pointer data structures
• Extension of Hoare logic (correctness properties and proof rules)
• SL formula represents set of heap states
• Symbolic execution of programs on SL formulae

17 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Pointer Programs

2. M: Separation Logic with Permissions [Noll]

Idea

• Threads acquire/release read and write permissions
• Read permission for shared read access
• Write permissions for exclusive write access

Observations

• Permission not available =⇒ potential data race
• Permissions can always be acquired =⇒ data-race freedom

18 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Pointer Programs

3. M: Concurrent Separation Logic [Noll]

Concurrent Separation Logic (CSL)

• Extension of SL that allows independent reasoning about threads that access separate
storage
• Proving soundness of CSL is a difficult problem
• Earlier approaches are based on non-standard semantics or are purely syntactic
• Paper presents new soundness proof for CSL in terms of standard operational semantics

19 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Pointer Programs

4. M: Compositional Shape Analysis by Means of Bi-Abduction [Matheja]

• Compositional analysis: each procedure is analyzed independently of its callers
• Shape analysis: static analysis to discover and verify properties of heap manipulating

programs
• Abduction: identify part ? of a formula to make implication ϕ ∗ ? → ψ valid
• Approach of this paper:

– Heuristic to solve abduction problem of separation logic
– Use abduction to obtain a compositional shape analysis generating pre/post-conditions for each

procedure
– Apply analysis to real-world programs: Linux Kernel, GIMP, Emacs, Sendmail. . .

• This paper provides the theoretical foundations of a static analyzer developed and used at
Facebook called Infer

20 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Pointer Programs

5. M: Verification of Pointer Programs with Data by Forest Automata [Matheja]

• Setting: C-like programs with dynamic data structures and integer data (e.g. binary search
trees)
• Goal: Verify that a program successfully sorts a list, traverses a search tree. . .
• Forest automata: Extension of tree automata to accept graph-like structures
• Approach of this paper:

– Extend forest automata to handle data structures with data
– Develop a shape analysis based on forest automata
– Apply analysis to several simple algorithms (e.g. binary search)

21 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Software Model Checking

Outline

Overview

Aims of this Seminar

Important Dates

Seminar Topics

T. Noll, C. Matheja: Analysis of Pointer Programs

T. Lange: Software Model Checking

C. Dehnert, M. Volk, H. Wu: Analysis of Probabilistic Systems

Final Hints

22 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Software Model Checking

6. B: Abstraction in SMT-Based Unbounded Software Model Checking [Lange]

• Abstraction over data domains very
successful
• Simple programs hard to verify
• Abstracted version of program easy to

verify
• Combine abstraction of program and data

23 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Software Model Checking

7. M: Configurable Software Verification [Lange]

Configurable SW Verification:
• Static Analysis (SA) and Verification

reducible to each other
• SA knows generic algorithm for decades
• Won Goedel medal ”for their contributions

to the development of efficient verification
methods and algorithms”

Adjustable Block Encoding:
• CEGAR hampered by large programs,

especially sequences
• Simplify program by folding sequences

[Beyer et al. 2009]
• Folding until minimality sometimes not very

efficient, follow spirit of CPA and make it
adjustable

24 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Software Model Checking

8. M: Inductive Invariant Generation via Abductive Inference [Lange]

• Invariants are at the heart of software verification
• Abduction: Inference of missing hypotheses
• Given known facts Γ and desired outcome φ, abductive inference finds ”simple” explanatory

hypothesis ψ such that

Γ ∧ ψ |= φ and SAT(Γ ∧ ψ)

• i.e. given invalid formula Γ =⇒ φ, find a ”simple” formula ψ such that Γ ∧ ψ =⇒ φ is valid
and ψ does not contradict Γ

25 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

Outline

Overview

Aims of this Seminar

Important Dates

Seminar Topics

T. Noll, C. Matheja: Analysis of Pointer Programs

T. Lange: Software Model Checking

C. Dehnert, M. Volk, H. Wu: Analysis of Probabilistic Systems

Final Hints

26 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

9. B/M: Verification of MDPs Using Learning Algorithms [Dehnert]

observation: MDPs (probabilities + nondeterminism) used in various areas:

8 DP/Probabilistic Model Checking, Michaelmas 2011 

Simple MDP example 

•  Modification of the simple DTMC communication protocol 
−  after one step, process starts trying to send a message 
−  then, a nondeterministic choice between: (a) waiting a step 

because the channel is unready; (b) sending the message 
−  if the latter, with probability 0.99 send successfully and stop 
−  and with probability 0.01, message sending fails, restart 

s1 s0 

s2 

s3 

0.01 

0.99 

1 

1 

1 

1 

{fail} 

{succ} 

{try} 

start send 

stop 

wait 

restart 

• randomized algorithms: leader election, mutual exclusion, . . .
• protocols: zeroconf, wlan, firewire, bluetooth, . . .
• (partially) unknown environments: planning (robots ’n stuff), power management

problem: state space explosion

idea: apply techniques from AI to compute reachability probabilities

approach: modify Q-learning to work with unbounded, undiscounted probs.

27 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

10. B: Parametric Probabilistic Reachability [Volk]

• Given: DTMC
• Goal: compute probability to reach target state

• Use parameters instead of concrete values
• Perform state elimination

s0 s1

s2

s3

0.5

0.5

0.6

0.2

0.2

28 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

10. B: Parametric Probabilistic Reachability [Volk]

• Given: DTMC
• Goal: compute probability to reach target state
• Use parameters instead of concrete values

• Perform state elimination

s0 s1

s2

s30.6

0.2

0.2

p

1−p

28 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

10. B: Parametric Probabilistic Reachability [Volk]

• Given: DTMC
• Goal: compute probability to reach target state
• Use parameters instead of concrete values
• Perform state elimination

s0 s1

s2

s3

p

1−p

0.5

0.5

28 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

10. B: Parametric Probabilistic Reachability [Volk]

• Given: DTMC
• Goal: compute probability to reach target state
• Use parameters instead of concrete values
• Perform state elimination

s0

s2

s3

1 −
0.5p

0.5p

28 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

11. M: Fault Tree Analysis [Volk]

• Dynamic Fault Trees (DFT) model system failures

• Analyse DFTs by I/O-IMCs:
– Convert each element into corresponding MC
– Apply parallel composition

A

2
B

3
C

fB?

fC?

fC?

fB?

fA!

fB!

fC!

2

3

29 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

11. M: Fault Tree Analysis [Volk]

• Dynamic Fault Trees (DFT) model system failures
• Analyse DFTs by I/O-IMCs:

– Convert each element into corresponding MC
– Apply parallel composition

A

2
B

3
C

fB?

fC?

fC?

fB?

fA!

fB!

fC!

2

3

29 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

12. M: Multi-Objective Model Checking [Volk]

• Given: MDP
• Goal: compute strategy to fulfill each property ϕi with probability ≥ pi

s0

s1 s3

α β γ

1 0.3 0.7 1

30 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

12. M: Multi-Objective Model Checking [Volk]

• Given: MDP
• Goal: compute strategy to fulfill each property ϕi with probability ≥ pi

s0

s1 s3

α β γ

1 0.3 0.7 1

P(♦s1) ≥ 0.8

30 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

12. M: Multi-Objective Model Checking [Volk]

• Given: MDP
• Goal: compute strategy to fulfill each property ϕi with probability ≥ pi

s0

s1 s3

α β γ

1 0.3 0.7 1

P(♦s2) ≥ 0.9

30 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

12. M: Multi-Objective Model Checking [Volk]

• Given: MDP
• Goal: compute strategy to fulfill each property ϕi with probability ≥ pi

s0

s1 s3

α β γ

1 0.3 0.7 1

P(♦s1) ≥ 0.3 ∧ P(♦s2) ≥ 0.3

30 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

12. M: Multi-Objective Model Checking [Volk]

• Given: MDP
• Goal: compute strategy to fulfill each property ϕi with probability ≥ pi

s0

s1 s3

α β γ

1 0.3 0.7 1

P(♦s1) ≥ 0.4 ∧ P(♦s2) ≥ 0.4

30 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

13. B/M: Interactive Markov Chains [Wu]

An interactive Markov chain is a tuple I = (S,Act, ,−→, s0), where

- S is a nonempty set of states with initial state s0 ∈ S,
- Act is a set of actions,
- ⊆ S × Act × S is a set of interactive transitions, and
- −→⊆ S ×R>0 × S is a set of Markovian transitions.

314 H. Hermanns and J.-P. Katoen

– IT(s) =
{
s α−−→ s′} be the set of interactive transitions that leave s, and

– MT(s) = {s
λ⇒ s′} be the set of Markovian transitions that leave s.

A state s is Markovian iff MT(s) $= ∅ and IT(s) = ∅; it is interactive iff MT(s) =
∅ and IT(s) $= ∅. Further, s is a hybrid state iff MT(s) $= ∅ and IT(s) $= ∅; finally,
s is a deadlock state iff MT(s) = IT(s) = ∅. Let MS ⊆ S and IS ⊆ S denote the
sets of Markovian and interactive states in IMC I.

A labeled transition system (LTS) is an IMC with MT(s) = ∅ for any state
s. A continuous-time Markov chain (CTMC) is an IMC with IT(s) = ∅ for any
state s. (The case in which MT(s) = ∅ = IT(s) for any s is both an LTS and a
CTMC). IMCs are thus natural extensions of labeled transition systems, as well
as of continuous-time Markov chains.

The semantics of an IMC. Roughly speaking, the interpretation of Markovian

transition s
λ⇒ s′ is that the IMC can switch from state s to s′ within d time

units with probability 1−e−λ·d. The positive real value λ thus uniquely identifies
a negative exponential distribution. For a Markovian state s ∈ MS, let R(s, s′) =
∑{λ | s

λ⇒ s′} be the rate to move from state s to state s′. If R(s, s′) > 0 for
more than one state s′, a competition between the transitions of s exists, known
as the race condition. The probability to move from such state s to a particular
state s′ within d time units, i.e., the Markovian transition s → s′ wins the race,
is given by:

R(s, s′)
E(s)

·
(
1 − e−E(s)·d

)
,

where E(s) =
∑

s′∈S R(s, s′) denotes the exit rate of state s. Intuitively, it
states that after a delay of at most d time units (second term), the IMC moves
probabilistically to a direct successor state s′ with discrete branching probability

P(s, s′) = R(s,s′)
E(s) .

s0

s1

s2

s3

s4

0.6

0.3
0.4 0.4

0.2

0.1

β

α

α

Fig. 1. Example of an IMC with Markovian and interactive states

Example 1. Consider the IMC I of Fig. 1 where dotted arrows denote interactive
transitions and solid arrows Markovian transitions. We have MS = {s0, s1, s4}
and IS = {s2, s3}. Markovian states behave like CTMC states, e.g., the transition

s0
0.3⇒ s2 expires within z ∈ R≥0 time units with probability 1 − e−0.3·z. The

two Markovian transitions of s0 compete for execution and the transition whose

The operators are defined on the IMCs such as:
- parallel composition I1 ‖A I∈ w.r.t to a synchronization set A ∈ Act ,
- hiding I\H w.r.t to a hiding set H ∈ Act .

The interesting questions are:
- How to analysis the IMC?
- How make the IMC smaller?
- etc.

31 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Analysis of Probabilistic Systems

14. M: Analysis of Markov Automata [Wu]

A Markov automaton (MA) is a tupleM = (S, s0,Act, ,⇒), where

- S is a countable set of states with initial state s0 ∈ S,
- Act is a countable set of actions,
- ⊆ S × Act × Distr(S) is the interactive probabilistic

transition relation,
- ⇒⊆ S ×R>0 × S is the Markovian transition relation.

How we can compute the following properties on the MA?
- The expected time to reach a set of target states
- The long-run average time spend in a set of target states
- The time-bounded reachability to reach a set of target states within a given time interval

32 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Final Hints

Outline

Overview

Aims of this Seminar

Important Dates

Seminar Topics

T. Noll, C. Matheja: Analysis of Pointer Programs

T. Lange: Software Model Checking

C. Dehnert, M. Volk, H. Wu: Analysis of Probabilistic Systems

Final Hints

33 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Final Hints

Some Final Hints

Hints

• Take your time to understand your literature.
• Be proactive! Look for additional literature and information.
• Discuss the content of your report with other students.
• Be proactive! Contact your supervisor on time.
• Prepare the meeting(s) with your supervisor.
• Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!

34 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016



Final Hints

Some Final Hints

Hints

• Take your time to understand your literature.
• Be proactive! Look for additional literature and information.
• Discuss the content of your report with other students.
• Be proactive! Contact your supervisor on time.
• Prepare the meeting(s) with your supervisor.
• Forget the idea that you can prepare a talk in a day or two.

We wish you success and look forward to an enjoyable and high-quality seminar!

34 of 34 Seminar Theoretical Foundationsof Programming Languages
T. Noll et al.
Summer Semester 2016; 13 April, 2016


	Overview
	Aims of this Seminar
	Important Dates
	Seminar Topics
	T. Noll, C. Matheja: Analysis of Pointer Programs
	T. Lange: Software Model Checking
	C. Dehnert, M. Volk, H. Wu: Analysis of Probabilistic Systems
	Final Hints

