Analyzing recursive probabilistic
Programs

Justin Winkens

30. June 2016 ﬂ

Justin Winkens | 30. June 2016

Table of contents

© Introduction
® Preliminaries
@® Translating pGCL to pPDA

@ Analyzing Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 2/42

Introduction

© Introduction

Justin Winkens | 30. June 2016 3/42

Introduction

Probabilistic Programs

Input

- Program

Probabilistic

Justin Winkens | 30. June 2016 4/42

Introduction

Probabilistic Programs

Input

- Program

Probabilistic

Justin Winkens | 30. June 2016

Introduction

Probabilistic Programs

Input

- Program

e

TrueSkill™

Probabilistic

Justin Winkens | 30. June 2016

Introduction

Probabilistic Programs

Probabilistic

- Program

TrueSkill™ self-testing/
correcting

Justin Winkens | 30. June 2016

Introduction

Probabilistic Programs

Probabilistic
Program

_ x
by

TrueSkill™ self-testing/ biology
correcting

Justin Winkens | 30. June 2016

Introduction

Probabilistic Programs

Probabilistic
Program

_ x
by

TrueSkill™ self-testing/ biology networks
correcting

Justin Winkens | 30. June 2016

Introduction

Probabilistic Programs

Probabilistic

- Program

ﬂ

@:E{@
DEE

DR

3

0y
Q¢
b @ 6

TrueSkill™ self-testing/ biology networks Plcture
correcting

Justin Winkens | 30. June 2016

Introduction

Recursive Probabilistic Programs

1 algorithm quicksort (A) is

2 list less, equal, greater

3 if length(A) <= 1

4 return A

5 pivot := A[length(A)]

6 for x in A

7 if x < pivot then append x to less

8 if x = pivot then append x to equal

9 if x > pivot then append x to greater

10 return concat(quicksort(less), equal,quicksort(greater))

Justin Winkens | 30. June 2016 5/42

Introduction

Recursive Probabilistic Programs

1 algorithm quicksort (A) is

2 list less, equal, greater

3 if length(A) <= 1

4 return A

5 pivot := A[length(A)]

6 for x in A

7 if x < pivot then append x to less

8 if x = pivot then append x to equal

9 if x > pivot then append x to greater

10 return concat(quicksort(less), equal,quicksort(greater))

= Average case complexity O(nlogn)

Justin Winkens | 30. June 2016 5/42

Introduction

Recursive Probabilistic Programs

algorithm quicksort(A) is
list less, equal, greater
if length(A) <=1
return A
pivot := A[length(A)]
for x in A
if x < pivot then append x to less
if x = pivot then append x to equal
if x > pivot then append x to greater
10 return concat(quicksort(less), equal,quicksort(greater))

© © N o O A~ W N =

= Average case complexity O(n logn)
= Worst case complexity O(n?)

Justin Winkens | 30. June 2016 5/42

Introduction

Recursive Probabilistic Programs

1 algorithm quicksort (A) is

2 list less, equal, greater

3 if length(A) <= 1

4 return A

5 pivot := uniformSel (A)

6 for x in A

7 if x < pivot then append x to less

8 if x = pivot then append x to equal

9 if x > pivot then append x to greater

10 return concat(quicksort(less), equal,quicksort(greater))

Justin Winkens | 30. June 2016 5/42

Introduction

Recursive Probabilistic Programs

1 algorithm quicksort (A) is

2 list less, equal, greater

3 if length(A) <= 1

4 return A

5 pivot := uniformSel (A)

6 for x in A

7 if x < pivot then append x to less

8 if x = pivot then append x to equal

9 if x > pivot then append x to greater

10 return concat(quicksort(less), equal,quicksort(greater))

= Worst case far less likely!

Justin Winkens | 30. June 2016 5/42

Introduction

Recursive Probabilistic Programs

—We wish to...

Justin Winkens | 30. June 2016 6/42

Introduction

Recursive Probabilistic Programs

—We wish to...
» ...reason about a programs behavior

Justin Winkens | 30. June 2016 6/42

Introduction

Recursive Probabilistic Programs

—We wish to...

» ...reason about a programs behavior
» ...estimate expected outcomes and runtimes

Justin Winkens | 30. June 2016 6/42

Introduction

Recursive Probabilistic Programs

—We wish to...
» ...reason about a programs behavior
» ...estimate expected outcomes and runtimes
» ...quantify probabilities

Justin Winkens | 30. June 2016 6/42

Introduction

Recursive Probabilistic Programs

—We wish to...
» ...reason about a programs behavior
» ...estimate expected outcomes and runtimes
» ...quantify probabilities
[Recursive programs written in the probabilistic Guarded Command
Language

Justin Winkens | 30. June 2016 6/42

Introduction

Recursive Probabilistic Programs

—We wish to...

» ...reason about a programs behavior
» ...estimate expected outcomes and runtimes
» ...quantify probabilities

[Recursive programs written in the probabilistic Guarded Command
Language
[—Analysis by using probabilistic pushdown automata

Justin Winkens | 30. June 2016 6/42

Preliminaries

® Preliminaries

Justin Winkens | 30. June 2016 7/42

Preliminaries Probabilistic Pushdown Automata

Pushdown Automata

. lc

a

f

Stack

albjlajd h
Input tape a
b
I

Justin Winkens | 30. June 2016

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as

Justin Winkens | 30. June 2016 9/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as

[is a finite set of states.

Justin Winkens | 30. June 2016 9/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as

[is a finite set of states.

[T is a finite stack alphabet.

Justin Winkens | 30. June 2016 9/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Probabilistic Pushdown Automaton (pPDA)
A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as

[is a finite set of states.

[T is a finite stack alphabet.
CdsC (Q xTI') x (@ x I'™) is a set of transitions such that

Justin Winkens | 30. June 2016 9/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Probabilistic Pushdown Automaton (pPDA)
A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as

[is a finite set of states.

[T is a finite stack alphabet.
CdsC (Q xTI') x (@ x I'™) is a set of transitions such that
» for every pX € @ x I' there is at least one transition of the form
pX — qu

Justin Winkens | 30. June 2016 9/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as
[is a finite set of states.
[T is a finite stack alphabet.
CdsC (Q xTI') x (@ x I'™) is a set of transitions such that
» for every pX € @ x I' there is at least one transition of the form

pX — qa
» for every transition pX — ga we have that |a| < 2.

Justin Winkens | 30. June 2016 9/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as
13 is a function which assigns probabilities to transitions

Justin Winkens | 30. June 2016 10/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as
13 is a function which assigns probabilities to transitions
> B(pX = qa) €[0,1]

Justin Winkens | 30. June 2016 10/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as
13 is a function which assigns probabilities to transitions
> PEX — qa) € [0,1]
> > BEX —=qa)=1

pX—qa

Justin Winkens | 30. June 2016 10/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as
13 is a function which assigns probabilities to transitions
> B(pX = qa) €[0,1]

> > BEX —=qa)=1

pX—qa

» We write pX < ga instead of PB(pX < qa) ==z

Justin Winkens | 30. June 2016 10/42

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Example pPDA
A pPDA A is given by:

@ = {q}
CT = {1}

=9I &3 oI1, I &3 4e

Justin Winkens | 30. June 2016 11/42

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Example pPDA

A pPDA A is given by:

C@ = {q}
CT = {1}

=9I &3 oI1, I &3 4e

What does this pPDA represent?

Justin Winkens | 30. June 2016 11/42

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Example pPDA

A pPDA A is given by:

@ = {q}
CT = {1}

=9I &3 oI1, I &3 4e

Justin Winkens | 30. June 2016 11/42

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Example pPDA
A pPDA A is given by:

C@ = {q}
CT = {1}

=9I &3 oI1, I &3 4e

0.5
I
0.5 0.5

Justin Winkens | 30. June 2016 11/42

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Example pPDA
A pPDA A is given by:
CQ = {q}

== {1}

=9I &3 oI1, I &3 4e

.r. @

Justin Winkens | 30. June 2016 11/42

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Example pPDA
A pPDA A is given by:
CQ = {q}

== {1}

=9I &3 oI1, I &3 4e

-V.’“- -C-:j

Justin Winkens | 30. June 2016 11/42

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Example pPDA

A pPDA A is given by:
Q= {q}

0 = {I}

=9I &3 gI1, I 3 ¢e

-f- -ﬁ

= Termination on empty stack!

Justin Winkens | 30. June 2016 11/42

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Example pPDA

A pPDA A is given by:

C@ = {q}
CT = {1}

=9I &3 oI1, I &3 4e

What could an unbounded random walk look like?

Justin Winkens | 30. June 2016 11/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Regular Configurations
Let A = (Q,T',—,B) be apPDA and C C @ x I'* a set of configurations.

Justin Winkens | 30. June 2016 12/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Regular Configurations
Let A = (Q,T',—,B) be apPDA and C C @ x I'* a set of configurations.

We call C regular if pa: € C iff the reversed stack of pa is accepted by a
deterministic finite-state automaton (DFA) A.

Justin Winkens | 30. June 2016 12/42

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Definition: Regular Configurations
Let A = (Q,T',—,B) be apPDA and C C @ x I'* a set of configurations.

We call C regular if pa: € C iff the reversed stack of pa is accepted by a
deterministic finite-state automaton (DFA) A.

We call C simple if there exists a set H C @) x I' such that pa € C iff
a # ¢ and head(pa) € H.

Justin Winkens | 30. June 2016 12/42

Paths, Runs

Definition: Paths and Runs

Let G be a set of states and —-C & x & a binary and total relation and
P=(6,-).

Justin Winkens | 30. June 2016 13/42

Paths, Runs

Definition: Paths and Runs

Let G be a set of states and —-C & x & a binary and total relation and
P=(6,-).

A path is a word w such that w(i) — w(i + 1) for every
ie€{0,...,|w| -1}

Justin Winkens | 30. June 2016 13/42

Paths, Runs

Definition: Paths and Runs
Let G be a set of states and —-C & x & a binary and total relation and
P=(6,-).
A path is a word w such that w(i) — w(i + 1) for every
i€{0,...,|w| -1}
[A state ¢ is reachable from s if there is a finite path w with w(0) = s
and w(lw| — 1) = t.

Justin Winkens | 30. June 2016 13/42

Paths, Runs

Definition: Paths and Runs
Let G be a set of states and —-C & x & a binary and total relation and
P=(6,-).
A path is a word w such that w(i) — w(i + 1) for every
i€{0,...,|w| -1}
[A state ¢ is reachable from s if there is a finite path w with w(0) = s
and w(lw| — 1) = t.
A run is an infinite path.

Justin Winkens | 30. June 2016 13/42

Paths, Runs

Definition: Paths and Runs
Let G be a set of states and —-C & x & a binary and total relation and
P=(6,-).
A path is a word w such that w(i) — w(i + 1) for every
i€{0,...,|w| -1}
LA state t is reachable from s if there is a finite path w with w(0) = s
and w(lw| — 1) = t.
A run is an infinite path.
[Runs(P,w) = set of all runs in P that start with w

Justin Winkens | 30. June 2016 13/42

Reachability

Definition: Reachability

Let A = (Q,T',—,B) be a pPDA, pX € @ x I' an initial configuration
and C C Q x I'* a set of target configurations.

Justin Winkens | 30. June 2016 14/42

Reachability

Definition: Reachability

Let A = (Q,T',—,B) be a pPDA, pX € @ x I' an initial configuration
and C C Q x I'* a set of target configurations.

[—Reach(pX,C) set of all runs r € Runs(A,pX) withr(i) € C, i € Ng

Justin Winkens | 30. June 2016 14/42

Reachability

Definition: Reachability

Let A = (Q,T',—,B) be a pPDA, pX € @ x I' an initial configuration
and C C Q x I'* a set of target configurations.
[—Reach(pX,C) set of all runs r € Runs(A,pX) withr(i) € C, i € Ng
L& (Reach(pX,C))

Justin Winkens | 30. June 2016 14/42

Preliminaries Notions

Termination

Definition: Termination

Let A = (Q,T, —,) be a pPDA, pX € @ x I' an initial configuration
and ¢ € @ a (final) state.

Justin Winkens | 30. June 2016 15/42

Preliminaries Notions

Termination

Definition: Termination
Let A = (Q,T, —,) be a pPDA, pX € @ x I' an initial configuration
and ¢ € @ a (final) state.

C_Reach(pX, {qe}) set of all runs r € Runs(A, pX) with 7(i) = ¢e,
1 € Np.

Justin Winkens | 30. June 2016 15/42

Preliminaries Notions

Termination

Definition: Termination
Let A = (Q,T, —,) be a pPDA, pX € @ x I' an initial configuration
and ¢ € @ a (final) state.
C_Reach(pX, {qe}) set of all runs r € Runs(A, pX) with 7(i) = ¢e,
1 € Np.
% (Reach(pX, {qe})).

Justin Winkens | 30. June 2016 15/42

Preliminaries Notions

Qualitative/Quantitative Reachability/Termination

Definition: Qualitative/Quantitative Reachability/Termination

Let A = (Q,T',—,B) be a pPDA, pX € @ x I' an initial configuration
and C C @ x I'" a set of target configurations.

Justin Winkens | 30. June 2016 16/42

Preliminaries Notions

Qualitative/Quantitative Reachability/Termination

Definition: Qualitative/Quantitative Reachability/Termination

Let A = (Q,T',—,B) be a pPDA, pX € @ x I' an initial configuration
and C C @ x I'" a set of target configurations.

L Qualitative reachability/termination: & (Reach(pX,C)) = 1?

Justin Winkens | 30. June 2016 16/42

Preliminaries Notions

Qualitative/Quantitative Reachability/Termination

Definition: Qualitative/Quantitative Reachability/Termination

Let A = (Q,T',—,B) be a pPDA, pX € @ x I' an initial configuration
and C C @ x I'" a set of target configurations.

L Qualitative reachability/termination: & (Reach(pX,C)) = 1?

L_Quantitative reachability/termination: & (Reach(pX,C)) < d for a
constantd € (0,1)?

Justin Winkens | 30. June 2016 16/42

Preliminaries Probabilistic Guarded Command Language

Probabilistic Guarded Command Language

skip | abort | var x| x:=E | Q;R | {Q}[1{R} | {Q} [p]1{R}
if (G){Q}Yelse{R} | while (G){Q}

Justin Winkens | 30. June 2016 17/42

Preliminaries Probabilistic Guarded Command Language

Probabilistic Guarded Command Language

skip | abort | var x| x:=E | Q;R | {Q}[I1{R} | {Q} [p]{R}
if (G){Q}Yelse{R} | while (G){Q}

Justin Winkens | 30. June 2016 17/42

Preliminaries Probabilistic Guarded Command Language

Probabilistic Guarded Command Language

skip | abort | var x| x:=E | Q;R | {Q}[1{R} | {Q} [p]1{R}
if (G){Q}Yelse{R} | while (G){Q}

var flip := true;
flip)4
while (flip){
{skip;}[0.5]1{flip = false;}
}

o o o~ WO N =

Justin Winkens | 30. June 2016 17/42

Preliminaries Probabilistic Guarded Command Language

Probabilistic Guarded Command Language

skip | abort | var x| x:=E | Q;R | {Q}[1{R} | {Q} [p]1{R}
if (G){Q}Yelse{R} | while (G){Q}

1 var flip := true;

2 flipOA

3 while (f1ip){

4 {skip;}[0.5]{flip = false;}
5 }

6

We allow function calls!

Justin Winkens | 30. June 2016 17/42

Preliminaries Probabilistic Guarded Command Language

Dueling Cowboys

Justin Winkens | 30. June 2016 18/42

Preliminaries Probabilistic Guarded Command Language

Dueling Cowboys (Orig.)

1 var cowboy := Aj;

2 var duel:= true;

3

4 A{cowboy := A;}[pl{cowboy := B;}

5

6 while (duel){

7 if (cowboy = A){

8 {duel := false;}[al{cowboy := B;}
9 }else{

10 {duel := false;}[b]{cowboy := A;}
11 }

12}

Justin Winkens | 30. June 2016 19/42

Preliminaries Probabilistic Guarded Comman

Dueling Cowboys (Rec.)

1 var player := A;

2 duel (){ //do

3 {player:=A;}[pl{player:=B;}
4 shoot () ; //adl

5 1}

Justin Winkens | 30. June 2016

Preliminaries Probabilistic Guarded Command

Dueling Cowboys (Rec.)

1 shoot){ //s0
2 if (player == A){ //s1
3 {
4 kill () //s3
1 var player := A; 5 }
2 duel(){ //d0 s [s]
3 {player:=A;}[pl{player:=B;} , {
4 shoot () ; //d1 s player := B;
5 1} 9 shoot (); //s4
10 }
11 }
12 else if (player == B){//s2
13 {
14 kill () ; //sb
15
16 [t]
17
18 player := A;
19 shoot () ; //s6
20 }
21 }
2 }

Justin Winkens | 30. June 2016 20/42

Preliminaries Probabilistic Guarded Command Language

Dueling Cowboys (Rec.)

1 shoot){ //s0
2 if (player == A){ //s1
3 {
4 kill () //s3
1 var player := A; 5 }
2 duel O{ //d0 s [s]
3 {player:=A;}[pl{player:=B;} , {
4 shoot () ; //d1 s player := B;
5 1} 9 shoot (); //s4
10 }
11 }
12 else if (player == B){//s2
13 {
14 kill O ; //sb
1 kill O{ //k0 15
2 16 [t]
3} 17
18 player := A;
19 shoot () ; //s6
20 }
21 }
2 }

Justin Winkens | 30. June 2016 20/42

Preliminaries Probabilistic Guarded Command Language

Dueling Cowboys (Rec.)

1 shoot){ //s0
2 if (player == A){ //s1
3 {
4 kill () ; //s3
1 var player := A; 5 }
2 duel(){ //d0 6 [s]
3 {player:=A;}[pl{player:=B;} ; {
4 shoot () ; //dl s player := B;
5 } 9 shoot (); //s4
10 }
11 }
12 else if (player == B){//s2
13 {
14 kill) ; //s5
1 kill O{ //k0 s
2 16 [t]
@} 17
18 player := A;
How do we analyze this? 1o , shoot)5 //s6
20
21 }
22 }

Justin Winkens | 30. June 2016 20/42

Translating pGCL to pPDA

@® Translating pGCL to pPDA

Justin Winkens | 30. June 2016 21/42

Translating pGCL to pPDA

2 Steps:

Justin Winkens | 30. June 2016 22/42

Translating pGCL to pPDA

2 Steps:
1. Translate pGCL program to control flow graph

Justin Winkens | 30. June 2016 22/42

Translating pGCL to pPDA

2 Steps:
1. Translate pGCL program to control flow graph
2. Translate control flow graph to pPDA

Justin Winkens | 30. June 2016 22/42

pGCL — Control Flow Graph

[—Pick control points (k0,d0,d1,s0,...,s6) as nodes

Justin Winkens | 30. June 2016 23/42

pGCL — Control Flow Graph

[—Pick control points (k0,d0,d1,s0,...,s6) as nodes
[—Connect nodes by edges if control flows from one node to the next

Justin Winkens | 30. June 2016 23/42

pGCL — Control Flow Graph

[—Pick control points (k0,d0,d1,s0,...,s6) as nodes
[—Connect nodes by edges if control flows from one node to the next
[label edges with statements and transition probability (if # 1)

Justin Winkens | 30. June 2016 23/42

pGCL — Control Flow Graph

[—Pick control points (k0,d0,d1,s0,...,s6) as nodes
[—Connect nodes by edges if control flows from one node to the next
[label edges with statements and transition probability (if # 1)

t var player := A;

2 duel (O{ //4d0

3 {player:=A;}[pl{player:=B;}
4 shoot () ; //d1

5)

Justin Winkens | 30. June 2016 23/42

pGCL — Control Flow Graph

[—Pick control points (k0,d0,d1,s0,...,s6) as nodes
[—Connect nodes by edges if control flows from one node to the next
[label edges with statements and transition probability (if # 1)

t var player := A;

2 duel (O{ //4d0

3 {player:=A;}[pl{player:=B;}

4 shoot () ; //d1

s)

Justin Winkens | 30. June 2016 23/42

pGCL — Control Flow Graph

[—Pick control points (k0,d0,d1,s0,...,s6) as nodes
[—Connect nodes by edges if control flows from one node to the next
[label edges with statements and transition probability (if # 1)

t var player := A; 1-p
2 duel O{ //d0 L
3 {player:=A;}[pl{player:=B;} player := B
4 shoot (); //d1 shoot ()
5 %} d1
®

Justin Winkens | 30. June 2016 23/42

pGCL — Control Flow Graph

[—Pick control points (k0,d0,d1,s0,...,s6) as nodes
[—Connect nodes by edges if control flows from one node to the next
[label edges with statements and transition probability (if # 1)

1 var }()Z)L?yer := A, ., P 1_p
2 duel ao
1 = A 1=
s {player:=A;}(pl{player:=B;} © 3o~ player :=B
4 shoot () ; //d1 shoot () shoot ()
5 % di

Justin Winkens | 30. June 2016 23/42

pGCL — Control Flow Graph

[—Pick control points (k0,d0,d1,s0,...,s6) as nodes
[—Connect nodes by edges if control flows from one node to the next
[label edges with statements and transition probability (if # 1)

1 var }()Z)L?yer := A, ., P 1_p
2 duel ao
1 = A 1=
s {player:=A;}(pl{player:=B;} © 3o~ player :=B
4 shoot () ; //d1 shoot () shoot ()
5 % di

Justin Winkens | 30. June 2016 23/42

Translating pGCL to pPDA

pGCL — Control Flow Graph

1 shoot O{ //s0
2 if (player == A){ //s1
3 {

4 kill () ; //s3
5

6 [s]

7

8 player := B;

9 shoot () ; //s4
10 }

11 ¥

12 else if (player == B){//s2
13 {

14 kill (); //s5
15

16 [t]

17

18 player := A;

19 shoot (); //sé6
20 }

21 ¥

2 }

Justin Winkens | 30. June 2016 24/4:

Translating pGCL to pPDA

pGCL — Control Flow Graph

1 shoot O{ //s0
2 if (player == A){ //s1
3 {

4 kill () ; //s3
5 }

6 [s]
7 {

8 player := B;

9 shoot () ; //s4
10 }

11 ¥

12 else if (player == B){//s2
13 {

14 kill (); //s5
15

16 [t]

17

18 player := A;

19 shoot (); //sé6
20 }

21 ¥

2 }

Justin Winkens | 30. June 2016 24/4:

Translating pGCL to pPDA

pGCL — Control Flow Graph

1 shoot O{ //s0

2 if (player == A){ //s1

3 {

4 kill) //s3

5 }

o [s]
7 { / \lse if
8 player := B;

9 shoot () ; //s4

. }
11 ¥

12 else if (player == B){//s2

13 {

14 kill (); //s5

15

16 [t]

17

18 player := A;

19 shoot (); //sé6

20 }

21 ¥

Justin Winkens | 30. June 2016 24/4:

Translating pGCL to pPDA

pGCL — Control Flow Graph

1

2
3
4
5
6
7
8
9

//s0
if (player == A){ //s1
{

kill () ; //s3
[s]
player := B;
shoot (); //s4
}
¥
else if (player == B){//s2
{
kill (); //s5
¥
[t]
{
player := A;
shoot (); //sé6
}
¥

‘//////// \\\\\3ijj if

1-s
player :=
shoot ()

B

Justin Winkens | 30. June 2016

Translating pGCL to pPDA

pGCL — Control Flow Graph

1 shoot O){ //s0

2 if (player == A){ //s1

3 {

4 kill () //s3

5 }

6 [s]

7 { if else if

8 player := B;

9 shoot () ; //s4

.) 1= -
1" }) S player :=B ! player := A
12 else{lf(player == B){//s2 kill() shoot () ki1l () shoot ()
13

14 kill Q) //s5

15

16 [t]

17

18 player := A;

19 shoot (); //sé6

20 }

21 ¥

2 }

Justin Winkens | 30. June 2016

Translating pGCL to pPDA

pGCL — Control Flow Graph

1 shoot O){ //s0

2 if (player == A){ //s1

3 {

4 kill () //s3

5 }

o [s]

7 { / \lse if
8 player := B;

9 shoot () ; //s4

.) - -

" 3 S player := player := A
12 else if (player == B){//s2 kill() shoot () shoot ()
13 {

1 kill Q) //s5

16 [t]

17

18 player := A;

19 shoot (); //sé6
20 }

21 ¥

2 }

Justin Winkens | 30. June 2016

pGCL — Control Flow Graph

1 kill O{ //ko0
2

3}

Justin Winkens | 30. June 2016 25/42

pGCL — Control Flow Graph

1 kill O{ //ko0
2
3}

®

Justin Winkens | 30. June 2016 25/42

pGCL — Control Flow Graph

1 kill O{ //ko0
2
3}

®

Why do we have this method?

Justin Winkens | 30. June 2016 25/42

pGCL — Control Flow Graph

1 kill O{ //ko0
2
3}

®

Why do we have this method?
[t yields an “easy” head (pko) for analysis

Justin Winkens | 30. June 2016 25/42

pGCL — Control Flow Graph

1 kill O{ //ko0
2
3}

®

Why do we have this method?
[t yields an “easy” head (pko) for analysis
—All configuration with head pkg terminate

Justin Winkens | 30. June 2016 25/42

pGCL — Control Flow Graph

1 kill O{ //ko0
2
3}

®

Why do we have this method?
[t yields an “easy” head (pko) for analysis
—All configuration with head pkg terminate
= Picking good control points and methods is key!

Justin Winkens | 30. June 2016 25/42

Translating pGCL to pPDA

pGCL — Control Flow Graph

b 1=p if 1se if
player := A player := B aeer
shoot () shoot ()
1-s .ig 1—-t

player := B t player := A
shoot () killO) shoot ()

dy

Justin Winkens | 30. June 2016

Translating pGCL to pPDA

Control Flow Graph — pPDA

Reminder: pPDA
A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as

@ is a finite set of states.

[T is a finite stack alphabet.

CC (Q xTI) x (Q xTI'™)is a set of transitions

= is a function which assigns probabilities to transitions

Justin Winkens | 30. June 2016 27/42

Control Flow Graph — pPDA

Reminder: pPDA
A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, T, —,*B)
defined as

@ is a finite set of states.

[T is a finite stack alphabet.

CC (Q xTI) x (Q xTI'™)is a set of transitions

= is a function which assigns probabilities to transitions

How does this relate to control flow graphs?

Justin Winkens | 30. June 2016 27/42

Control Flow Graph — pPDA

Justin Winkens | 30. June 2016 28/42

Control Flow Graph — pPDA

[—(: Variable assignments

Justin Winkens | 30. June 2016 29/42

Control Flow Graph — pPDA

[—(: Variable assignments
[T': Nodes in the graph

Justin Winkens | 30. June 2016 29/42

Control Flow Graph — pPDA

[—(: Variable assignments
[T': Nodes in the graph
=13: Probabilities of the edges

Justin Winkens | 30. June 2016 29/42

Control Flow Graph — pPDA

[—(: Variable assignments
[T': Nodes in the graph

=13: Probabilities of the edges
L4777

Justin Winkens | 30. June 2016 29/42

Control Flow Graph — pPDA

[—donstruct every pair @ x I

Justin Winkens | 30. June 2016 30/42

Control Flow Graph — pPDA

[—donstruct every pair @ x I
—for each pair (¢,v) € @ x I" consider edges of the control flow graph:

Justin Winkens | 30. June 2016 30/42

Control Flow Graph — pPDA

[—donstruct every pair @ x I
—for each pair (¢,v) € @ x I" consider edges of the control flow graph:
» {(q,7) = {(¢’,~') if no function call between ~ and ~’

Justin Winkens | 30. June 2016 30/42

Control Flow Graph — pPDA

[—donstruct every pair @ x I
—for each pair (¢,v) € @ x I" consider edges of the control flow graph:

» {(q,7) = {(¢’,~') if no function call between ~ and ~’
» (q,7) = (¢, ¢7) if function call between ~ and ~’

Justin Winkens | 30. June 2016 30/42

Control Flow Graph — pPDA

[—donstruct every pair @ x I
—for each pair (¢,v) € @ x I" consider edges of the control flow graph:

» {(q,7) = {(¢’,~') if no function call between ~ and ~’
» (q,7) = (¢, ¢7) if function call between ~ and ~’
» ' return address
> entry point of function call

Justin Winkens | 30. June 2016 30/42

Control Flow Graph — pPDA

[—donstruct every pair @ x I
—for each pair (¢,v) € @ x I" consider edges of the control flow graph:

» {(q,7) = {(¢’,~') if no function call between ~ and ~’
» (q,7) = (¢, ¢7) if function call between ~ and ~’

» +/ return address
> entry point of function call

» (q,7) < (¢,) if function call terminates

Justin Winkens | 30. June 2016 30/42

Control Flow Graph — pPDA

Justin Winkens | 30. June 2016 31/42

Control Flow Graph — pPDA

—— (Ako) <> (A¢)

(Bko) < (Be)

Justin Winkens | 30. June 2016 31/42

Control Flow Graph — pPDA

do
p 1-p
player := A player := B
shoot () shoot ()
®

Justin Winkens | 30. June 2016 32/42

Control Flow Graph — pPDA

) do - <Ado> ‘£> <A80d1>
_ 1
player := A player := B - Adp) — (Bsod
shoot () shoot () < 0> 1 < ° 1>
(Ady) 5 ()
I (Bds) & (Be)

Justin Winkens | 30. June 2016 32/42

Translating pGCL to pPDA

Control Flow Graph — pPDA

% \1seif
1-s 1—t

player := B ! player := A
killQ) shoot() killO shoot ()

Justin Winkens | 30. June 2016

Translating pGCL to pPDA

Control Flow Graph — pPDA

(Aso) = (Asy)
(Bso) ‘si> (Bs2)
(Asy) < (Akoss)
/ \lse if (As1) %;; (Bsosa)
. o (Asg) < (de)
ayer = ayer := AS - A
klll() plslyloot() Bklll() plSiOOt() ' ’ ZB;:>> ‘L <<B€5>>
(Bsa) <> (Bhoss)
(Bs3) = (Asoss)
. (Bss) < (Be)
(Bsg) <> (Be)
(Asg) S (Ae)

Justin Winkens | 30. June 2016

N~~~ o~

~ ~ ~— ~— ~—

o~ o~ o~~~

< AT e T

()

o —~ & 3 F 5

o S< < 8

<

o

m —

s o~

Q TEo T8 :
4 3 <83 =82 s
% = ~ ~ e
: g Trg :
- O - J 5 S o 2
3 = ST 24 :
4 < =3I ~>-=8 s
4] (@) -~ £
y O 3

Analyzing Probabilistic Pushdown Automata

@ Analyzing Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 35/42

Reminder: Properties of pPDA

Properties of pPDA

Let A = (Q,T',—,B) be a pPDA, pX € @ x I' an initial configuration
and C C @ x I'" a set of target configurations.

L Qualitative reachability/termination: & (Reach(pX,C)) = 1?

L_Quantitative reachability/termination: & (Reach(pX,C)) < d for a
constantd € (0,1)?

Justin Winkens | 30. June 2016 36/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

We solve this problem for a simple set of target configurations.

Justin Winkens | 30. June 2016 37/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

We solve this problem for a simple set of target configurations.
= Extensible to regular sets of target configurations

Justin Winkens | 30. June 2016 37/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

We solve this problem for a simple set of target configurations.
= Extensible to regular sets of target configurations

Notation

Let A = (Q,T',—,B) be a pPDA, C C @ x I'* a simple set of target
configurations and H be the associated set of heads.

Justin Winkens | 30. June 2016 37/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

We solve this problem for a simple set of target configurations.
= Extensible to regular sets of target configurations

Notation

Let A = (Q,T',—,B) be a pPDA, C C @ x I'* a simple set of target
configurations and H be the associated set of heads.

CpXe| = #(Reach(pX,C))

Justin Winkens | 30. June 2016 37/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

We solve this problem for a simple set of target configurations.
= Extensible to regular sets of target configurations
Notation

Let A = (Q,T',—,B) be a pPDA, C C @ x I'* a simple set of target
configurations and H be the associated set of heads.

CpXe| = #(Reach(pX,C))
L {pXq| = probability of all » € Reach(pX, {qe}) that do not visit C

Justin Winkens | 30. June 2016 37/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

We solve this problem for a simple set of target configurations.
= Extensible to regular sets of target configurations

Notation

Let A = (Q,T',—,B) be a pPDA, C C @ x I'* a simple set of target
configurations and H be the associated set of heads.

CpXe| = #(Reach(pX,C))
L {pXq| = probability of all » € Reach(pX, {qe}) that do not visit C

For pX € H:

Justin Winkens | 30. June 2016 37/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

We solve this problem for a simple set of target configurations.
= Extensible to regular sets of target configurations
Notation

Let A = (Q,T',—,B) be a pPDA, C C @ x I'* a simple set of target
configurations and H be the associated set of heads.

CpXe| = #(Reach(pX,C))
L {pXq| = probability of all » € Reach(pX, {qe}) that do not visit C

For pX € H:
CipXe] =1
CpXql =0

Justin Winkens | 30. June 2016 37/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

For pX ¢ H:

Justin Winkens | 30. June 2016 38/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

For pX ¢ H:
[pXe]| = Z [rYe|+ Z [rY o]+ Z Z (rYt]-[tZe]
pX<i>rY pr—MYZ pX <—>7YZ teq

Justin Winkens | 30. June 2016 38/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

For pX ¢ H:

[pXe] = Z x-[rY e+ Z [rYe]+ Z Z x-[rYt]-[tZe]
pXEry pXEryZ pXxSryz 1€Q

[(pXq| = Z T+ Z [rYql + Z Z rYt] - [tZq]
])Xfiﬂ/: pX Sy })X‘—H YZ teQ

Justin Winkens | 30. June 2016 38/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

For pX ¢ H:

[pXe] = Z x-[rYe]+ Z [rY e+ Z Za: [rYt]-[tZe]
pPXSrY pXSrYZ pXSrYZ teq

[pXq] = Z x+ Z [rYq] + Z ZCL‘ [rYt] - [tZq]
pX‘—>qa pX(—)rY pX‘—M‘YZ teQ

1. Construct equations for all [pX e] and [pX ¢] needed.

Justin Winkens | 30. June 2016 38/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

For pX ¢ H:

[pXe] = Z x-[rY e+ Z [rYe]+ Z Za: [rYt]-[tZe]
pXEry pXEryZ pXxSryz 1€Q

[pXq] = Z x+ Z [rYq] + Z ZCL‘ [rYt] - [tZq]
pX‘—>qa pX(—)rY pX‘—M‘YZ teQ

1. Construct equations for all [pX e] and [pX ¢] needed.

2. Replace all [pXe] and [pX] by fresh random variables (pXe) and
(pXq)

Justin Winkens | 30. June 2016 38/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

For pX ¢ H:

[pXe] = Z x-[rY e+ Z [rYe]+ Z Za: [rYt]-[tZe]
pXEry pXEryZ pXxSryz 1€Q

[pXq] = Z x+ Z [rYq] + Z ZCL‘ [rYt] - [tZq]
pX‘—>qa pX(—)rY pX<—>'rYZ teQ

1. Construct equations for all [pX e] and [pX ¢] needed.

2. Replace all [pXe] and [pX¢| by fresh random variables (pX e) and
(pXq)
3. Solve the system of recursive equations for least solution.

Justin Winkens | 30. June 2016 38/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Let C be a set of target configurations with # = { Ako, Bko}

Justin Winkens | 30. June 2016 39/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Let C be a set of target configurations with # = { Ako, Bko}
= P (Reach(Adp,C)) = [Adpe] = 1 means qualitative termination

Justin Winkens | 30. June 2016 39/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Let C be a set of target configurations with # = { Ako, Bko}
= P (Reach(Adp,C)) = [Adpe] = 1 means qualitative termination

[Adpe] = Z x-[rYe] + Z x-[rYe| 4+ Z Zx~[rYt]-[tZo]

Ado<SrY AdoSrY Z AdySry 7 1€Q

Justin Winkens | 30. June 2016 39/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Let C be a set of target configurations with # = { Ako, Bko}
= P (Reach(Adp,C)) = [Adpe] = 1 means qualitative termination

[Adpe] = Z x-[rYe] + Z x[rYe] + Z Z (rY't]-[tZe]

AdoSsry AdoSry Z AdoSry 7z 1€Q

(Ado) &> (Asod:)
(Ado) ¥ (Bsody)

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Let C be a set of target configurations with # = { Ako, Bko}
= P (Reach(Adp,C)) = [Adpe] = 1 means qualitative termination

[Adge] = Z x-[rYe] + Z x[rYe| 4+ Z Zx~[rYt]-[tZo]
Ado STy Ado Y Z AdySsry 7z t€Q
= p-[Aspe]

D

(Ady) — (Asodq)
1—p
(Ado) — (Bsod1)

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Let C be a set of target configurations with # = { Ako, Bko}
= P (Reach(Adp,C)) = [Adpe] = 1 means qualitative termination

[Adoe] = Z z-[rYe] + Z x-[rYe] 4+ Z ZCU~[7“Yt]-[tZo]
AdoSrY AdoSrY Z AdoSrY Z teQ
= p-[Asoe]+(1—p)-[Bsoe|

(Ado) % (Asody)

< 4(/(]> — <B.S‘()(11>

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Let C be a set of target configurations with # = { Ako, Bko}
= P (Reach(Adp,C)) = [Adpe] = 1 means qualitative termination

[Adge] = Z x-[rYe] + Z x-[rYe| 4+ Z Z (rY't]-[tZe]

AdoSrY AdoSrY Z AdoSry z 1€Q
= p-[Asoe] + (1—p)-[Bsoe]
+ Y. (a[rYA][AZe] + 2-[rY B]-[BZe])

AdoSrY Z

(Ado) &> (Asods)

(Ado) ¥ (Bsody)

Justin Winkens | 30. June 2016 39/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Let C be a set of target configurations with # = { Ako, Bko}
= P (Reach(Adp,C)) = [Adpe] = 1 means qualitative termination

[Adoe] = p-[Asoe] + (1—p)-[Bsoe]
+ (p-[AspA]-[Adye] + p-[AsoB]-[Bdye))
+ ((1—p)-[BspA]-[Adye] + (1—p)-[BsoB|-[Bdye])

/ \ P \
(f‘(/(,,\ — ’\AN(,(“,\'
1—p
<Ad(]> — <BS()(11>

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Let C be a set of target configurations with # = { Ako, Bko}
= P (Reach(Adp,C)) = [Adpe] = 1 means qualitative termination

[Adoe] = p-[Asoe] + (1—p)-[Bsoe]
+ (p-[AspA]-[Adye] + p-[AsoB]-[Bdye))
+ ((1—p)-[BspA]-[Adye] + (1—p)-[BsoB|-[Bdye])

= Remove zero summands

(Adpy) &Ly (Asody)
(Ady) l%p (Bsod1)

Justin Winkens | 30. June 2016 39/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Let C be a set of target configurations with # = { Ako, Bko}
= P (Reach(Adp,C)) = [Adpe] = 1 means qualitative termination

[Adoe] = p-[Asoe] + (1—p)-[Bsoe]

= We need to calculate [Aspe] and [Bsgpe]!

Justin Winkens | 30. June 2016 39/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

[Adoe] = p-[Asoe] + (1—p)-[Bsoe]
[Aspe] = s + (1—s)-[Bsgpe]
[BS()O] =t+(1-— t)-[ASoo]

Justin Winkens | 30. June 2016 40/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

[Adge] = p:[Aspe] + (1—p)-[Bspe]
[Asge] = s+ (1—s):[Bsge]
[BS().] =1+ (1 — t)-[ASOO]

(Adge) = p-{Asoe) + (1=p)-{Bsos)
(Asge) = s+ (1—s)-(Bsge)
(Bsoe) =t + (1 —1t)-(Asge)

Justin Winkens | 30. June 2016 40/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

(Adpe) = p-(Aspe) + (1—p)-(Bspe)
(Aspe) = s + (1—s)-(Bspe)
<BSoo> =t+(1-— t)-<ASoo>

Justin Winkens | 30. June 2016 40/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

(Adpe) = p-(Aspe) + (1—p)-(Bspe)
(Aspe) = s + (1—s)-(Bspe)
(Bsoe) =t + (1 —t)-(Asge)

p=1/2
s=1/2
t=1/3

Justin Winkens | 30. June 2016 40/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

(Adpe) = p-(Aspe) + (1—p)-(Bspe)
(Aspe) = s + (1—s)-(Bspe)
<BSoo> =t+(1-— t)-<ASoo>

p=1/2
s=1/2
t=1/3

<Ad00> = 1 <A800> = <BSoo> =1

Justin Winkens | 30. June 2016 40/42

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

(Adge) = p-(Aspe) + (1—p)-(Bspe)
(Aspe) = s + (1—s)-(Bspe)
(Bsoe) =t + (1 —t)-(Asge)

p=1/2
s=0
t=0

(Adge) = 0, (Asge) = 0, (Bspe) =0

Justin Winkens | 30. June 2016 40/42

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

—We know that the duel ends if both s, > 0

Justin Winkens | 30. June 2016 41/42

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

—We know that the duel ends if both s, > 0
[—What is the probability that e.g. A wins the duel?

Justin Winkens | 30. June 2016 41/42

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

—We know that the duel ends if both s, > 0
[—What is the probability that e.g. A wins the duel?
L2 [AdpA] =7,C =10

Justin Winkens | 30. June 2016 41/42

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

—We know that the duel ends if both s, > 0
[—What is the probability that e.g. A wins the duel?
C % [AdpA] =2,C =0

[—$ame equations apply!

[AdoA] = p - [AsoA] + (1 — p)[BsoA]
[AsgA] = s+ (1 — s)[BsoA]
[BsoA] = (1 — t)[AspA]

Justin Winkens | 30. June 2016 41/42

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

—We know that the duel ends if both s, > 0
[—What is the probability that e.g. A wins the duel?
C % [AdpA] =2,C =0

[—$ame equations apply!

(AdoA) = p - (AsoA) + (1 — p)(BsoA)
(AsgA) = s+ (1 — s)(BsoA)
(BsgA) = (1 —t){AspA)

Justin Winkens | 30. June 2016 41/42

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

—We know that the duel ends if both s, > 0

[—What is the probability that e.g. A wins the duel?

C % [AdpA] =2,C =0

[—$ame equations apply!
p=1/2,s=1/2,t=1/2

Justin Winkens | 30. June 2016 41/42

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

—We know that the duel ends if both s, > 0

[—What is the probability that e.g. A wins the duel?

C % [AdpA] =2,C =0

[—$ame equations apply!
p=1/2,s=1/2,t=1/2

(AdoA) = 1/2
(AsoA) =2/3
(BsoA) = 1/3

Justin Winkens | 30. June 2016 41/42

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Conclusion

[PpPDA nice way to model and analyze systems that use probability as
well as recursion

Justin Winkens | 30. June 2016 42/42

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Conclusion

[PpPDA nice way to model and analyze systems that use probability as
well as recursion

2 formulae enough to study quantitative and qualitative reachability

Justin Winkens | 30. June 2016 42/42

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Conclusion

[PpPDA nice way to model and analyze systems that use probability as
well as recursion

2 formulae enough to study quantitative and qualitative reachability
—Can be done efficiently in polynomial space

Justin Winkens | 30. June 2016 42/42

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Conclusion

[PpPDA nice way to model and analyze systems that use probability as
well as recursion

2 formulae enough to study quantitative and qualitative reachability
[—Can be done efficiently in polynomial space
C—Construction technique to pPBA allows analysis in polynomial time.

Justin Winkens | 30. June 2016 42/42

Expected Runtime

Definition: Runtime

Let A be a transition system with a set of configurations S and target
configurations 7.

Justin Winkens | 30. June 2016

Expected Runtime

Definition: Runtime

Let A be a transition system with a set of configurations S and target
configurations 7.
Let f: S — R>q be a function that assigns run times to states.

Justin Winkens | 30. June 2016

Expected Runtime

Definition: Runtime

Let A be a transition system with a set of configurations S and target
configurations 7.

Let f: S — R>q be a function that assigns run times to states.

For every run r € Runs(A) we define k, as the least n € Ny such that
r(n) eT.

Justin Winkens | 30. June 2016

Expected Runtime

Definition: Runtime

Let A be a transition system with a set of configurations S and target
configurations 7.

Let f: S — R>q be a function that assigns run times to states.

For every run r € Runs(A) we define k, as the least n € Ny such that
r(n) eT.

Justin Winkens | 30. June 2016

Expected Runtime

Definition: Runtime

Let A be a transition system with a set of configurations S and target
configurations 7.

Let f: S — R>q be a function that assigns run times to states.

For every run r € Runs(A) we define k, as the least n € Ny such that
r(n) eT.

Time(A) = Z f(r@)) .

= k, depends on probability

Justin Winkens | 30. June 2016

Expected Runtime

Definition: Runtime

Let A be a transition system with a set of configurations S and target
configurations 7.

Let f: S — R>q be a function that assigns run times to states.

For every run r € Runs(A) we define k, as the least n € Ny such that
r(n) eT.

Time(A) = Z f(r@)) .

= k, depends on probability
= E(Time(A)), E(Time(A)|Reach(pX,C))

Justin Winkens | 30. June 2016

Expected Runtime

Definition: Expected Runtime pPDA

Let A = (Q,T',—,’B) be a pPDA.
E,xq = E(Time(A)|Reach(pX, {ge})) conditional expected runtime

Justin Winkens | 30. June 2016

Expected Runtime

Definition: Expected Runtime pPDA

Let A = (Q,T',—,’B) be a pPDA.
E,xq = E(Time(A)|Reach(pX, {ge})) conditional expected runtime

(Eox) = f0X)+ L o+ 8 (B

+ 2 e W - ((Epve) + (Euzg))

Justin Winkens | 30. June 2016

Expected Runtime

Definition: Expected Runtime pPDA

Let A = (Q,T',—,’B) be a pPDA.
E,xq = E(Time(A)|Reach(pX, {ge})) conditional expected runtime

[rYq]

(Bpxq) = f(pX) + EI: 48 o [pXq] (Eryq)
pX—=rY
+ ; %x pXd ((Eryt) + (Bizq))
pX—=rYZ

= Here: f(pX) = 1forall pX € Q x ' = discrete time

Justin Winkens | 30. June 2016

Expected Runtime

P(Reach(rY, {qe})|Reach(pX,{qe})) = «W(ReaCh;?éizii)(;;?;iSI)7X7 {a=}))

P(Reach(rY,{qe}))
P(Reach(pX,{qe}))
[rYq]

[pXq]

Justin Winkens | 30. June 2016

Expected Runtime

Expected runtime for all runs that start in Adp and end in Ae:

Justin Winkens | 30. June 2016

Expected Runtime

Expected runtime for all runs that start in Adp and end in Ae:

[As1A4]

(Easga) =1+ Asod] (Eas, A)

(Ban) = 14 T (Ea) 4 (B + (1= 5) - F22 (B
(Bpan) =1+ {520 B

(Bpa) =1+ (1=) 15200 () + (o)

<EAd1A> =1

(Eakoa) =1

(Eassa) =1

(Basea) =1

Justin Winkens | 30. June 2016

Expected Runtime

Letsassumep=s=t=1/2

Justin Winkens | 30. June 2016

Expected Runtime

Letsassumep=s=t=1/2

2
(Eadoa) =2+ 3 (AsgA) + = - (BspA)
<EA80A> =1+ <EAS1A>
5 1
<EA81A> = 5 + Z<EBSOA>
<EBSOA> =1+ <E382A>
(Epsya) =2+ (Easea)

Justin Winkens | 30. June 2016

Expected Runtime

Letsassumep=s=t=1/2

2
(Eadoa) =2+ 3 (AsgA) + = - (BspA)
<EA80A> =1+ <EAS1A>
5 1
<EA81A> = 5 + Z<EBSOA>
<EBSOA> =1+ <E382A>
(Epsya) =2+ (Easea)

= <EAdOA> = 26/3 = 8.66

Justin Winkens | 30. June 2016

Quantitative System Parametrized

p—(1-p)-(1-1)

(Adod) = — 2(st — s —t)
(Asod) = 2(st js»)
(Bsod) = —— L=V

Justin Winkens | 30. June 2016

	Anhang

