
Analyzing recursive probabilistic
Programs
Justin Winkens

30. June 2016

Justin Winkens | 29. Juni 2016 0/42Justin Winkens | 30. June 2016 1/42

1 Introduction

2 Preliminaries

3 Translating pGCL to pPDA

4 Analyzing Probabilistic Pushdown Automata

Table of contents

Justin Winkens | 30. June 2016 2/42

1 Introduction

2 Preliminaries

3 Translating pGCL to pPDA

4 Analyzing Probabilistic Pushdown Automata

Introduction

Justin Winkens | 30. June 2016 3/42

Input Probabilistic
Program

Output

Introduction

Probabilistic Programs

Justin Winkens | 30. June 2016 4/42

Input Probabilistic
Program

Output

Introduction

Probabilistic Programs

Justin Winkens | 30. June 2016 4/42

Input Probabilistic
Program

Output

TrueSkillTM

Introduction

Probabilistic Programs

Justin Winkens | 30. June 2016 4/42

Input Probabilistic
Program

Output

TrueSkillTM self-testing/
correcting

Introduction

Probabilistic Programs

Justin Winkens | 30. June 2016 4/42

Input Probabilistic
Program

Output

TrueSkillTM self-testing/
correcting

biology

Introduction

Probabilistic Programs

Justin Winkens | 30. June 2016 4/42

Input Probabilistic
Program

Output

TrueSkillTM self-testing/
correcting

biology networks

Introduction

Probabilistic Programs

Justin Winkens | 30. June 2016 4/42

Input Probabilistic
Program

Output

TrueSkillTM self-testing/
correcting

biology networks Picture

Introduction

Probabilistic Programs

Justin Winkens | 30. June 2016 4/42

1 algorithm quicksort(A) is

2 list less , equal , greater

3 if length(A) <= 1

4 return A

5 pivot := A[length(A)]

6 for x in A

7 if x < pivot then append x to less

8 if x = pivot then append x to equal

9 if x > pivot then append x to greater

10 return concat(quicksort(less), equal ,quicksort(greater))

Introduction

Recursive Probabilistic Programs

Justin Winkens | 30. June 2016 5/42

1 algorithm quicksort(A) is

2 list less , equal , greater

3 if length(A) <= 1

4 return A

5 pivot := A[length(A)]

6 for x in A

7 if x < pivot then append x to less

8 if x = pivot then append x to equal

9 if x > pivot then append x to greater

10 return concat(quicksort(less), equal ,quicksort(greater))

) Average case complexity O(n log n)

Introduction

Recursive Probabilistic Programs

Justin Winkens | 30. June 2016 5/42

1 algorithm quicksort(A) is

2 list less , equal , greater

3 if length(A) <= 1

4 return A

5 pivot := A[length(A)]

6 for x in A

7 if x < pivot then append x to less

8 if x = pivot then append x to equal

9 if x > pivot then append x to greater

10 return concat(quicksort(less), equal ,quicksort(greater))

) Average case complexity O(n log n)
) Worst case complexity O(n2

)

Introduction

Recursive Probabilistic Programs

Justin Winkens | 30. June 2016 5/42

1 algorithm quicksort(A) is

2 list less , equal , greater

3 if length(A) <= 1

4 return A

5 pivot := uniformSel(A)

6 for x in A

7 if x < pivot then append x to less

8 if x = pivot then append x to equal

9 if x > pivot then append x to greater

10 return concat(quicksort(less), equal ,quicksort(greater))

Introduction

Recursive Probabilistic Programs

Justin Winkens | 30. June 2016 5/42

1 algorithm quicksort(A) is

2 list less , equal , greater

3 if length(A) <= 1

4 return A

5 pivot := uniformSel(A)

6 for x in A

7 if x < pivot then append x to less

8 if x = pivot then append x to equal

9 if x > pivot then append x to greater

10 return concat(quicksort(less), equal ,quicksort(greater))

) Worst case far less likely!

Introduction

Recursive Probabilistic Programs

Justin Winkens | 30. June 2016 5/42

I We wish to...

I ...reason about a programs behavior
I ...estimate expected outcomes and runtimes
I ...quantify probabilities

I Recursive programs written in the probabilistic Guarded Command
Language

I Analysis by using probabilistic pushdown automata

Introduction

Recursive Probabilistic Programs

Justin Winkens | 30. June 2016 6/42

I We wish to...
I ...reason about a programs behavior

I ...estimate expected outcomes and runtimes
I ...quantify probabilities

I Recursive programs written in the probabilistic Guarded Command
Language

I Analysis by using probabilistic pushdown automata

Introduction

Recursive Probabilistic Programs

Justin Winkens | 30. June 2016 6/42

I We wish to...
I ...reason about a programs behavior
I ...estimate expected outcomes and runtimes

I ...quantify probabilities
I Recursive programs written in the probabilistic Guarded Command

Language
I Analysis by using probabilistic pushdown automata

Introduction

Recursive Probabilistic Programs

Justin Winkens | 30. June 2016 6/42

I We wish to...
I ...reason about a programs behavior
I ...estimate expected outcomes and runtimes
I ...quantify probabilities

I Recursive programs written in the probabilistic Guarded Command
Language

I Analysis by using probabilistic pushdown automata

Introduction

Recursive Probabilistic Programs

Justin Winkens | 30. June 2016 6/42

I We wish to...
I ...reason about a programs behavior
I ...estimate expected outcomes and runtimes
I ...quantify probabilities

I Recursive programs written in the probabilistic Guarded Command
Language

I Analysis by using probabilistic pushdown automata

Introduction

Recursive Probabilistic Programs

Justin Winkens | 30. June 2016 6/42

I We wish to...
I ...reason about a programs behavior
I ...estimate expected outcomes and runtimes
I ...quantify probabilities

I Recursive programs written in the probabilistic Guarded Command
Language

I Analysis by using probabilistic pushdown automata

Introduction

Recursive Probabilistic Programs

Justin Winkens | 30. June 2016 6/42

1 Introduction

2 Preliminaries

3 Translating pGCL to pPDA

4 Analyzing Probabilistic Pushdown Automata

Preliminaries

Justin Winkens | 30. June 2016 7/42

Control
Unit

p

... a b a d ...

Input tape

c

a

f
...

h

a

b

Stack

Preliminaries Probabilistic Pushdown Automata

Pushdown Automata

Justin Winkens | 30. June 2016 8/42

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as

I Q is a finite set of states.
I

� is a finite stack alphabet.
I ,!✓ (Q⇥ �)⇥ (Q⇥ �

⇤
) is a set of transitions such that

I for every pX 2 Q⇥ � there is at least one transition of the form
pX ,! q↵

I for every transition pX ,! q↵ we have that |↵| 2.

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 9/42

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as
I Q is a finite set of states.

I
� is a finite stack alphabet.

I ,!✓ (Q⇥ �)⇥ (Q⇥ �

⇤
) is a set of transitions such that

I for every pX 2 Q⇥ � there is at least one transition of the form
pX ,! q↵

I for every transition pX ,! q↵ we have that |↵| 2.

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 9/42

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as
I Q is a finite set of states.
I

� is a finite stack alphabet.

I ,!✓ (Q⇥ �)⇥ (Q⇥ �

⇤
) is a set of transitions such that

I for every pX 2 Q⇥ � there is at least one transition of the form
pX ,! q↵

I for every transition pX ,! q↵ we have that |↵| 2.

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 9/42

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as
I Q is a finite set of states.
I

� is a finite stack alphabet.
I ,!✓ (Q⇥ �)⇥ (Q⇥ �

⇤
) is a set of transitions such that

I for every pX 2 Q⇥ � there is at least one transition of the form
pX ,! q↵

I for every transition pX ,! q↵ we have that |↵| 2.

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 9/42

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as
I Q is a finite set of states.
I

� is a finite stack alphabet.
I ,!✓ (Q⇥ �)⇥ (Q⇥ �

⇤
) is a set of transitions such that

I for every pX 2 Q⇥ � there is at least one transition of the form
pX ,! q↵

I for every transition pX ,! q↵ we have that |↵| 2.

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 9/42

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as
I Q is a finite set of states.
I

� is a finite stack alphabet.
I ,!✓ (Q⇥ �)⇥ (Q⇥ �

⇤
) is a set of transitions such that

I for every pX 2 Q⇥ � there is at least one transition of the form
pX ,! q↵

I for every transition pX ,! q↵ we have that |↵| 2.

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 9/42

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as
I P is a function which assigns probabilities to transitions

I P(pX ,! q↵) 2 [0, 1]

I
P

pX,!q↵

P(pX ,! q↵) = 1

I We write pX
x

,! q↵ instead of P(pX ,! q↵) = x

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 10/42

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as
I P is a function which assigns probabilities to transitions

I P(pX ,! q↵) 2 [0, 1]

I
P

pX,!q↵

P(pX ,! q↵) = 1

I We write pX
x

,! q↵ instead of P(pX ,! q↵) = x

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 10/42

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as
I P is a function which assigns probabilities to transitions

I P(pX ,! q↵) 2 [0, 1]

I
P

pX,!q↵

P(pX ,! q↵) = 1

I We write pX
x

,! q↵ instead of P(pX ,! q↵) = x

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 10/42

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as
I P is a function which assigns probabilities to transitions

I P(pX ,! q↵) 2 [0, 1]

I
P

pX,!q↵

P(pX ,! q↵) = 1

I We write pX
x

,! q↵ instead of P(pX ,! q↵) = x

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 10/42

Example pPDA

A pPDA � is given by:
I Q = {q}
I

� = {I}
I qI

0.5
,! qII , qI

0.5
,! q✏

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Justin Winkens | 30. June 2016 11/42

Example pPDA

A pPDA � is given by:
I Q = {q}
I

� = {I}
I qI

0.5
,! qII , qI

0.5
,! q✏

What does this pPDA represent?

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Justin Winkens | 30. June 2016 11/42

Example pPDA

A pPDA � is given by:
I Q = {q}
I

� = {I}
I qI

0.5
,! qII , qI

0.5
,! q✏

q"

qI

qII qIII qIIII ...

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Justin Winkens | 30. June 2016 11/42

Example pPDA

A pPDA � is given by:
I Q = {q}
I

� = {I}
I qI

0.5
,! qII , qI

0.5
,! q✏

q" qI qII

qIII qIIII ...

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Justin Winkens | 30. June 2016 11/42

Example pPDA

A pPDA � is given by:
I Q = {q}
I

� = {I}
I qI

0.5
,! qII , qI

0.5
,! q✏

q" qI qII qIII

qIIII ...

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Justin Winkens | 30. June 2016 11/42

Example pPDA

A pPDA � is given by:
I Q = {q}
I

� = {I}
I qI

0.5
,! qII , qI

0.5
,! q✏

q" qI qII qIII qIIII ...

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Justin Winkens | 30. June 2016 11/42

Example pPDA

A pPDA � is given by:
I Q = {q}
I

� = {I}
I qI

0.5
,! qII , qI

0.5
,! q✏

q" qI qII qIII qIIII ...

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

) Termination on empty stack!

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Justin Winkens | 30. June 2016 11/42

Example pPDA

A pPDA � is given by:
I Q = {q}
I

� = {I}
I qI

0.5
,! qII , qI

0.5
,! q✏

What could an unbounded random walk look like?

Preliminaries Probabilistic Pushdown Automata

Example pPDA

Justin Winkens | 30. June 2016 11/42

Definition: Regular Configurations

Let � = (Q,�, ,!,P) be a pPDA and C ✓ Q⇥�

⇤ a set of configurations.

We call C regular if p↵ 2 C iff the reversed stack of p↵ is accepted by a
deterministic finite-state automaton (DFA) A.

We call C simple if there exists a set H ✓ Q⇥ � such that p↵ 2 C iff
↵ 6= " and head(p↵) 2 H.

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 12/42

Definition: Regular Configurations

Let � = (Q,�, ,!,P) be a pPDA and C ✓ Q⇥�

⇤ a set of configurations.

We call C regular if p↵ 2 C iff the reversed stack of p↵ is accepted by a
deterministic finite-state automaton (DFA) A.

We call C simple if there exists a set H ✓ Q⇥ � such that p↵ 2 C iff
↵ 6= " and head(p↵) 2 H.

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 12/42

Definition: Regular Configurations

Let � = (Q,�, ,!,P) be a pPDA and C ✓ Q⇥�

⇤ a set of configurations.

We call C regular if p↵ 2 C iff the reversed stack of p↵ is accepted by a
deterministic finite-state automaton (DFA) A.

We call C simple if there exists a set H ✓ Q⇥ � such that p↵ 2 C iff
↵ 6= " and head(p↵) 2 H.

Preliminaries Probabilistic Pushdown Automata

Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 12/42

Definition: Paths and Runs
Let S be a set of states and !✓ S⇥S a binary and total relation and
P = (S,!).

I A path is a word w such that w(i) ! w(i+ 1) for every
i 2 {0, . . . , |w|� 1}

I A state t is reachable from s if there is a finite path w with w(0) = s
and w(|w|� 1) = t.

I A run is an infinite path.
I Runs(P,w) = set of all runs in P that start with w

Preliminaries Notions

Paths, Runs

Justin Winkens | 30. June 2016 13/42

Definition: Paths and Runs
Let S be a set of states and !✓ S⇥S a binary and total relation and
P = (S,!).
I A path is a word w such that w(i) ! w(i+ 1) for every

i 2 {0, . . . , |w|� 1}

I A state t is reachable from s if there is a finite path w with w(0) = s
and w(|w|� 1) = t.

I A run is an infinite path.
I Runs(P,w) = set of all runs in P that start with w

Preliminaries Notions

Paths, Runs

Justin Winkens | 30. June 2016 13/42

Definition: Paths and Runs
Let S be a set of states and !✓ S⇥S a binary and total relation and
P = (S,!).
I A path is a word w such that w(i) ! w(i+ 1) for every

i 2 {0, . . . , |w|� 1}
I A state t is reachable from s if there is a finite path w with w(0) = s

and w(|w|� 1) = t.

I A run is an infinite path.
I Runs(P,w) = set of all runs in P that start with w

Preliminaries Notions

Paths, Runs

Justin Winkens | 30. June 2016 13/42

Definition: Paths and Runs
Let S be a set of states and !✓ S⇥S a binary and total relation and
P = (S,!).
I A path is a word w such that w(i) ! w(i+ 1) for every

i 2 {0, . . . , |w|� 1}
I A state t is reachable from s if there is a finite path w with w(0) = s

and w(|w|� 1) = t.
I A run is an infinite path.

I Runs(P,w) = set of all runs in P that start with w

Preliminaries Notions

Paths, Runs

Justin Winkens | 30. June 2016 13/42

Definition: Paths and Runs
Let S be a set of states and !✓ S⇥S a binary and total relation and
P = (S,!).
I A path is a word w such that w(i) ! w(i+ 1) for every

i 2 {0, . . . , |w|� 1}
I A state t is reachable from s if there is a finite path w with w(0) = s

and w(|w|� 1) = t.
I A run is an infinite path.
I Runs(P,w) = set of all runs in P that start with w

Preliminaries Notions

Paths, Runs

Justin Winkens | 30. June 2016 13/42

Definition: Reachability

Let � = (Q,�, ,!,P) be a pPDA, pX 2 Q⇥ � an initial configuration
and C ✓ Q⇥ �

⇤ a set of target configurations.

I Reach(pX, C) set of all runs r 2 Runs(�, pX) with r(i) 2 C, i 2 N0

I P(Reach(pX, C))

Preliminaries Notions

Reachability

Justin Winkens | 30. June 2016 14/42

Definition: Reachability

Let � = (Q,�, ,!,P) be a pPDA, pX 2 Q⇥ � an initial configuration
and C ✓ Q⇥ �

⇤ a set of target configurations.

I Reach(pX, C) set of all runs r 2 Runs(�, pX) with r(i) 2 C, i 2 N0

I P(Reach(pX, C))

Preliminaries Notions

Reachability

Justin Winkens | 30. June 2016 14/42

Definition: Reachability

Let � = (Q,�, ,!,P) be a pPDA, pX 2 Q⇥ � an initial configuration
and C ✓ Q⇥ �

⇤ a set of target configurations.

I Reach(pX, C) set of all runs r 2 Runs(�, pX) with r(i) 2 C, i 2 N0

I P(Reach(pX, C))

Preliminaries Notions

Reachability

Justin Winkens | 30. June 2016 14/42

Definition: Termination
Let � = (Q,�, ,!,P) be a pPDA, pX 2 Q⇥ � an initial configuration
and q 2 Q a (final) state.

I Reach(pX, {q"}) set of all runs r 2 Runs(�, pX) with r(i) = q",
i 2 N0.

I P(Reach(pX, {q"})).

Preliminaries Notions

Termination

Justin Winkens | 30. June 2016 15/42

Definition: Termination
Let � = (Q,�, ,!,P) be a pPDA, pX 2 Q⇥ � an initial configuration
and q 2 Q a (final) state.

I Reach(pX, {q"}) set of all runs r 2 Runs(�, pX) with r(i) = q",
i 2 N0.

I P(Reach(pX, {q"})).

Preliminaries Notions

Termination

Justin Winkens | 30. June 2016 15/42

Definition: Termination
Let � = (Q,�, ,!,P) be a pPDA, pX 2 Q⇥ � an initial configuration
and q 2 Q a (final) state.

I Reach(pX, {q"}) set of all runs r 2 Runs(�, pX) with r(i) = q",
i 2 N0.

I P(Reach(pX, {q"})).

Preliminaries Notions

Termination

Justin Winkens | 30. June 2016 15/42

Definition: Qualitative/Quantitative Reachability/Termination

Let � = (Q,�, ,!,P) be a pPDA, pX 2 Q⇥ � an initial configuration
and C ✓ Q⇥ �

⇤ a set of target configurations.

I Qualitative reachability/termination: P(Reach(pX,C)) = 1?
I Quantitative reachability/termination: P(Reach(pX,C)) d for a

constant d 2 (0, 1)?

Preliminaries Notions

Qualitative/Quantitative Reachability/Termination

Justin Winkens | 30. June 2016 16/42

Definition: Qualitative/Quantitative Reachability/Termination

Let � = (Q,�, ,!,P) be a pPDA, pX 2 Q⇥ � an initial configuration
and C ✓ Q⇥ �

⇤ a set of target configurations.
I Qualitative reachability/termination: P(Reach(pX,C)) = 1?

I Quantitative reachability/termination: P(Reach(pX,C)) d for a
constant d 2 (0, 1)?

Preliminaries Notions

Qualitative/Quantitative Reachability/Termination

Justin Winkens | 30. June 2016 16/42

Definition: Qualitative/Quantitative Reachability/Termination

Let � = (Q,�, ,!,P) be a pPDA, pX 2 Q⇥ � an initial configuration
and C ✓ Q⇥ �

⇤ a set of target configurations.
I Qualitative reachability/termination: P(Reach(pX,C)) = 1?
I Quantitative reachability/termination: P(Reach(pX,C)) d for a

constant d 2 (0, 1)?

Preliminaries Notions

Qualitative/Quantitative Reachability/Termination

Justin Winkens | 30. June 2016 16/42

skip | abort | var x | x:=E | Q;R | {Q}[]{R} | {Q}[p]{R}
if(G){Q}else{R} | while(G){Q}

Preliminaries Probabilistic Guarded Command Language

Probabilistic Guarded Command Language

Justin Winkens | 30. June 2016 17/42

skip | abort | var x | x:=E | Q;R | {Q}[]{R} | {Q}[p]{R}
if(G){Q}else{R} | while(G){Q}

Preliminaries Probabilistic Guarded Command Language

Probabilistic Guarded Command Language

Justin Winkens | 30. June 2016 17/42

skip | abort | var x | x:=E | Q;R | {Q}[]{R} | {Q}[p]{R}
if(G){Q}else{R} | while(G){Q}

1 var flip := true;

2 flip (){

3 while(flip){

4 {skip ;}[0.5]{ flip = false;}

5 }

6 }

Preliminaries Probabilistic Guarded Command Language

Probabilistic Guarded Command Language

Justin Winkens | 30. June 2016 17/42

skip | abort | var x | x:=E | Q;R | {Q}[]{R} | {Q}[p]{R}
if(G){Q}else{R} | while(G){Q}

1 var flip := true;

2 flip (){

3 while(flip){

4 {skip ;}[0.5]{ flip = false;}

5 }

6 }

We allow function calls!

Preliminaries Probabilistic Guarded Command Language

Probabilistic Guarded Command Language

Justin Winkens | 30. June 2016 17/42

Preliminaries Probabilistic Guarded Command Language

Dueling Cowboys

Justin Winkens | 30. June 2016 18/42

1 var cowboy := A;

2 var duel:= true;

3

4 {cowboy := A;}[p]{ cowboy := B;}

5

6 while(duel){

7 if(cowboy = A){

8 {duel := false ;}[a]{ cowboy := B;}

9 }else{

10 {duel := false ;}[b]{ cowboy := A;}

11 }

12 }

Preliminaries Probabilistic Guarded Command Language

Dueling Cowboys (Orig.)

Justin Winkens | 30. June 2016 19/42

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

1 kill (){ //k0
2

3 }

How do we analyze this?

1 shoot (){ //s0
2 if(player == A){ //s1
3 {

4 kill (); //s3
5 }

6 [s]

7 {

8 player := B;

9 shoot (); //s4
10 }

11 }

12 else if(player == B){//s2
13 {

14 kill (); //s5
15 }

16 [t]

17 {

18 player := A;

19 shoot (); //s6
20 }

21 }

22 }

Preliminaries Probabilistic Guarded Command Language

Dueling Cowboys (Rec.)

Justin Winkens | 30. June 2016 20/42

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

1 kill (){ //k0
2

3 }

How do we analyze this?

1 shoot (){ //s0
2 if(player == A){ //s1
3 {

4 kill (); //s3
5 }

6 [s]

7 {

8 player := B;

9 shoot (); //s4
10 }

11 }

12 else if(player == B){//s2
13 {

14 kill (); //s5
15 }

16 [t]

17 {

18 player := A;

19 shoot (); //s6
20 }

21 }

22 }

Preliminaries Probabilistic Guarded Command Language

Dueling Cowboys (Rec.)

Justin Winkens | 30. June 2016 20/42

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

1 kill (){ //k0
2

3 }

How do we analyze this?

1 shoot (){ //s0
2 if(player == A){ //s1
3 {

4 kill (); //s3
5 }

6 [s]

7 {

8 player := B;

9 shoot (); //s4
10 }

11 }

12 else if(player == B){//s2
13 {

14 kill (); //s5
15 }

16 [t]

17 {

18 player := A;

19 shoot (); //s6
20 }

21 }

22 }

Preliminaries Probabilistic Guarded Command Language

Dueling Cowboys (Rec.)

Justin Winkens | 30. June 2016 20/42

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

1 kill (){ //k0
2

3 }

How do we analyze this?

1 shoot (){ //s0
2 if(player == A){ //s1
3 {

4 kill (); //s3
5 }

6 [s]

7 {

8 player := B;

9 shoot (); //s4
10 }

11 }

12 else if(player == B){//s2
13 {

14 kill (); //s5
15 }

16 [t]

17 {

18 player := A;

19 shoot (); //s6
20 }

21 }

22 }

Preliminaries Probabilistic Guarded Command Language

Dueling Cowboys (Rec.)

Justin Winkens | 30. June 2016 20/42

1 Introduction

2 Preliminaries

3 Translating pGCL to pPDA

4 Analyzing Probabilistic Pushdown Automata

Translating pGCL to pPDA

Justin Winkens | 30. June 2016 21/42

2 Steps:

1. Translate pGCL program to control flow graph
2. Translate control flow graph to pPDA

Translating pGCL to pPDA

Translating pGCL to pPDA

Justin Winkens | 30. June 2016 22/42

2 Steps:
1. Translate pGCL program to control flow graph

2. Translate control flow graph to pPDA

Translating pGCL to pPDA

Translating pGCL to pPDA

Justin Winkens | 30. June 2016 22/42

2 Steps:
1. Translate pGCL program to control flow graph
2. Translate control flow graph to pPDA

Translating pGCL to pPDA

Translating pGCL to pPDA

Justin Winkens | 30. June 2016 22/42

I Pick control points (k0,d0,d1,s0,...,s6) as nodes

I Connect nodes by edges if control flows from one node to the next
I Label edges with statements and transition probability (if 6= 1)

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

d0

d1

1� p
player := B

shoot()

p
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 23/42

I Pick control points (k0,d0,d1,s0,...,s6) as nodes
I Connect nodes by edges if control flows from one node to the next

I Label edges with statements and transition probability (if 6= 1)

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

d0

d1

1� p
player := B

shoot()

p
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 23/42

I Pick control points (k0,d0,d1,s0,...,s6) as nodes
I Connect nodes by edges if control flows from one node to the next
I Label edges with statements and transition probability (if 6= 1)

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

d0

d1

1� p
player := B

shoot()

p
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 23/42

I Pick control points (k0,d0,d1,s0,...,s6) as nodes
I Connect nodes by edges if control flows from one node to the next
I Label edges with statements and transition probability (if 6= 1)

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

d0

d1

1� p
player := B

shoot()

p
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 23/42

I Pick control points (k0,d0,d1,s0,...,s6) as nodes
I Connect nodes by edges if control flows from one node to the next
I Label edges with statements and transition probability (if 6= 1)

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

d0

d1

1� p
player := B

shoot()

p
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 23/42

I Pick control points (k0,d0,d1,s0,...,s6) as nodes
I Connect nodes by edges if control flows from one node to the next
I Label edges with statements and transition probability (if 6= 1)

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

d0

d1

1� p
player := B

shoot()

p
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 23/42

I Pick control points (k0,d0,d1,s0,...,s6) as nodes
I Connect nodes by edges if control flows from one node to the next
I Label edges with statements and transition probability (if 6= 1)

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

d0

d1

1� p
player := B

shoot()

p
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 23/42

I Pick control points (k0,d0,d1,s0,...,s6) as nodes
I Connect nodes by edges if control flows from one node to the next
I Label edges with statements and transition probability (if 6= 1)

1 var player := A;

2 duel (){ //d0
3 {player :=A;}[p]{ player :=B;}

4 shoot (); //d1
5 }

d0

d1

1� p
player := B

shoot()

p
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 23/42

1 shoot (){ //s0
2 if(player == A){ //s1
3 {

4 kill (); //s3
5 }

6 [s]

7 {

8 player := B;

9 shoot (); //s4
10 }

11 }

12 else if(player == B){//s2
13 {

14 kill (); //s5
15 }

16 [t]

17 {

18 player := A;

19 shoot (); //s6
20 }

21 }

22 }

s0

s1 s2

s3 s4 s5 s6

if else if

s
kill()

1� s
player := B

shoot()

t
kill()

1� t
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 24/42

1 shoot (){ //s0
2 if(player == A){ //s1
3 {

4 kill (); //s3
5 }

6 [s]

7 {

8 player := B;

9 shoot (); //s4
10 }

11 }

12 else if(player == B){//s2
13 {

14 kill (); //s5
15 }

16 [t]

17 {

18 player := A;

19 shoot (); //s6
20 }

21 }

22 }

s0

s1 s2

s3 s4 s5 s6

if else if

s
kill()

1� s
player := B

shoot()

t
kill()

1� t
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 24/42

1 shoot (){ //s0
2 if(player == A){ //s1
3 {

4 kill (); //s3
5 }

6 [s]

7 {

8 player := B;

9 shoot (); //s4
10 }

11 }

12 else if(player == B){//s2
13 {

14 kill (); //s5
15 }

16 [t]

17 {

18 player := A;

19 shoot (); //s6
20 }

21 }

22 }

s0

s1 s2

s3 s4 s5 s6

if else if

s
kill()

1� s
player := B

shoot()

t
kill()

1� t
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 24/42

1 shoot (){ //s0
2 if(player == A){ //s1
3 {

4 kill (); //s3
5 }

6 [s]

7 {

8 player := B;

9 shoot (); //s4
10 }

11 }

12 else if(player == B){//s2
13 {

14 kill (); //s5
15 }

16 [t]

17 {

18 player := A;

19 shoot (); //s6
20 }

21 }

22 }

s0

s1 s2

s3 s4

s5 s6

if else if

s
kill()

1� s
player := B

shoot()

t
kill()

1� t
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 24/42

1 shoot (){ //s0
2 if(player == A){ //s1
3 {

4 kill (); //s3
5 }

6 [s]

7 {

8 player := B;

9 shoot (); //s4
10 }

11 }

12 else if(player == B){//s2
13 {

14 kill (); //s5
15 }

16 [t]

17 {

18 player := A;

19 shoot (); //s6
20 }

21 }

22 }

s0

s1 s2

s3 s4 s5 s6

if else if

s
kill()

1� s
player := B

shoot()

t
kill()

1� t
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 24/42

1 shoot (){ //s0
2 if(player == A){ //s1
3 {

4 kill (); //s3
5 }

6 [s]

7 {

8 player := B;

9 shoot (); //s4
10 }

11 }

12 else if(player == B){//s2
13 {

14 kill (); //s5
15 }

16 [t]

17 {

18 player := A;

19 shoot (); //s6
20 }

21 }

22 }

s0

s1 s2

s3 s4 s5 s6

if else if

s
kill()

1� s
player := B

shoot()

t
kill()

1� t
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 24/42

1 kill (){ //k0
2

3 }

k0

Why do we have this method?
I It yields an “easy” head (pk0) for analysis
I All configuration with head pk0 terminate
) Picking good control points and methods is key!

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 25/42

1 kill (){ //k0
2

3 }

k0

Why do we have this method?
I It yields an “easy” head (pk0) for analysis
I All configuration with head pk0 terminate
) Picking good control points and methods is key!

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 25/42

1 kill (){ //k0
2

3 }

k0

Why do we have this method?

I It yields an “easy” head (pk0) for analysis
I All configuration with head pk0 terminate
) Picking good control points and methods is key!

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 25/42

1 kill (){ //k0
2

3 }

k0

Why do we have this method?
I It yields an “easy” head (pk0) for analysis

I All configuration with head pk0 terminate
) Picking good control points and methods is key!

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 25/42

1 kill (){ //k0
2

3 }

k0

Why do we have this method?
I It yields an “easy” head (pk0) for analysis
I All configuration with head pk0 terminate

) Picking good control points and methods is key!

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 25/42

1 kill (){ //k0
2

3 }

k0

Why do we have this method?
I It yields an “easy” head (pk0) for analysis
I All configuration with head pk0 terminate
) Picking good control points and methods is key!

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 25/42

d0

d1

1� p
player := B

shoot()

p
player := A

shoot()

k0

s0

s1 s2

s3 s4 s5 s6

if else if

s
kill()

1� s
player := B

shoot()

t
kill()

1� t
player := A

shoot()

Translating pGCL to pPDA

pGCL ! Control Flow Graph

Justin Winkens | 30. June 2016 26/42

Reminder: pPDA

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as
I Q is a finite set of states.
I

� is a finite stack alphabet.
I ,!✓ (Q⇥ �)⇥ (Q⇥ �

⇤
) is a set of transitions

I P is a function which assigns probabilities to transitions

How does this relate to control flow graphs?

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 27/42

Reminder: pPDA

A probabilistic pushdown automaton (pPDA) is a tuple � = (Q,�, ,!,P)

defined as
I Q is a finite set of states.
I

� is a finite stack alphabet.
I ,!✓ (Q⇥ �)⇥ (Q⇥ �

⇤
) is a set of transitions

I P is a function which assigns probabilities to transitions

How does this relate to control flow graphs?

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 27/42

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 28/42

I Q: Variable assignments

I
�: Nodes in the graph

I P: Probabilities of the edges
I ,!: ???

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 29/42

I Q: Variable assignments
I

�: Nodes in the graph

I P: Probabilities of the edges
I ,!: ???

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 29/42

I Q: Variable assignments
I

�: Nodes in the graph
I P: Probabilities of the edges

I ,!: ???

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 29/42

I Q: Variable assignments
I

�: Nodes in the graph
I P: Probabilities of the edges
I ,!: ???

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 29/42

I construct every pair Q⇥ �

I for each pair hq, �i 2 Q⇥ � consider edges of the control flow graph:
I hq, �i ,! hq0, �0i if no function call between � and �0

I hq, �i ,! hq0,'�0i if function call between � and �0

I �0 return address
I ' entry point of function call

I hq, �i ,! hq0, "i if function call terminates

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 30/42

I construct every pair Q⇥ �

I for each pair hq, �i 2 Q⇥ � consider edges of the control flow graph:

I hq, �i ,! hq0, �0i if no function call between � and �0

I hq, �i ,! hq0,'�0i if function call between � and �0

I �0 return address
I ' entry point of function call

I hq, �i ,! hq0, "i if function call terminates

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 30/42

I construct every pair Q⇥ �

I for each pair hq, �i 2 Q⇥ � consider edges of the control flow graph:
I hq, �i ,! hq0, �0i if no function call between � and �0

I hq, �i ,! hq0,'�0i if function call between � and �0

I �0 return address
I ' entry point of function call

I hq, �i ,! hq0, "i if function call terminates

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 30/42

I construct every pair Q⇥ �

I for each pair hq, �i 2 Q⇥ � consider edges of the control flow graph:
I hq, �i ,! hq0, �0i if no function call between � and �0

I hq, �i ,! hq0,'�0i if function call between � and �0

I �0 return address
I ' entry point of function call

I hq, �i ,! hq0, "i if function call terminates

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 30/42

I construct every pair Q⇥ �

I for each pair hq, �i 2 Q⇥ � consider edges of the control flow graph:
I hq, �i ,! hq0, �0i if no function call between � and �0

I hq, �i ,! hq0,'�0i if function call between � and �0

I �0 return address
I ' entry point of function call

I hq, �i ,! hq0, "i if function call terminates

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 30/42

I construct every pair Q⇥ �

I for each pair hq, �i 2 Q⇥ � consider edges of the control flow graph:
I hq, �i ,! hq0, �0i if no function call between � and �0

I hq, �i ,! hq0,'�0i if function call between � and �0

I �0 return address
I ' entry point of function call

I hq, �i ,! hq0, "i if function call terminates

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 30/42

k0

hAk0i 1
,! hA"i

hBk0i 1
,! hB"i

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 31/42

k0 hAk0i 1
,! hA"i

hBk0i 1
,! hB"i

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 31/42

d0

d1

1� p
player := B

shoot()

p
player := A

shoot()

hAd0i p
,! hAs0d1i

hAd0i 1�p
,! hBs0d1i

hAd1i 1
,! hA"i

hBd1i 1
,! hB"i

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 32/42

d0

d1

1� p
player := B

shoot()

p
player := A

shoot()

hAd0i p
,! hAs0d1i

hAd0i 1�p
,! hBs0d1i

hAd1i 1
,! hA"i

hBd1i 1
,! hB"i

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 32/42

s0

s1 s2

s3 s4 s5 s6

if else if

s
kill()

1� s
player := B

shoot()

t
kill()

1� t
player := A

shoot()

hAs0i 1
,! hAs1i

hBs0i 1
,! hBs2i

hAs1i s
,! hAk0s3i

hAs1i 1�s
,! hBs0s4i

hAs3i 1
,! hA"i

hAs4i 1
,! hA"i

hBs4i 1
,! hB"i

hBs2i t
,! hBk0s5i

hBs2i 1�t
,! hAs0s6i

hBs5i 1
,! hB"i

hBs6i 1
,! hB"i

hAs6i 1
,! hA"i

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 33/42

s0

s1 s2

s3 s4 s5 s6

if else if

s
kill()

1� s
player := B

shoot()

t
kill()

1� t
player := A

shoot()

hAs0i 1
,! hAs1i

hBs0i 1
,! hBs2i

hAs1i s
,! hAk0s3i

hAs1i 1�s
,! hBs0s4i

hAs3i 1
,! hA"i

hAs4i 1
,! hA"i

hBs4i 1
,! hB"i

hBs2i t
,! hBk0s5i

hBs2i 1�t
,! hAs0s6i

hBs5i 1
,! hB"i

hBs6i 1
,! hB"i

hAs6i 1
,! hA"i

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 33/42

hAd0i p
,! hAs0d1i

hAd0i 1�p
,! hBs0d1i

hAd1i 1
,! hA"i

hBd1i 1
,! hB"i

hAs0i 1
,! hAs1i

hBs0i 1
,! hBs2i

hAs1i s
,! hAk0s3i

hAs1i 1�s
,! hBs0s4i

hAs3i 1
,! hA"i

hAs4i 1
,! hA"i

hBs4i 1
,! hB"i

hBs2i t
,! hBk0s5i

hBs2i 1�t
,! hAs0s6i

hBs5i 1
,! hB"i

hBs6i 1
,! hB"i

hAs6i 1
,! hA"i

hAk0i 1
,! hA"i

hBk0i 1
,! hB"i

Translating pGCL to pPDA

Control Flow Graph ! pPDA

Justin Winkens | 30. June 2016 34/42

1 Introduction

2 Preliminaries

3 Translating pGCL to pPDA

4 Analyzing Probabilistic Pushdown Automata

Analyzing Probabilistic Pushdown Automata

Justin Winkens | 30. June 2016 35/42

Properties of pPDA

Let � = (Q,�, ,!,P) be a pPDA, pX 2 Q⇥ � an initial configuration
and C ✓ Q⇥ �

⇤ a set of target configurations.
I Qualitative reachability/termination: P(Reach(pX,C)) = 1?
I Quantitative reachability/termination: P(Reach(pX,C)) d for a

constant d 2 (0, 1)?

Analyzing Probabilistic Pushdown Automata

Reminder: Properties of pPDA

Justin Winkens | 30. June 2016 36/42

We solve this problem for a simple set of target configurations.

) Extensible to regular sets of target configurations

Notation
Let � = (Q,�, ,!,P) be a pPDA, C ✓ Q⇥ �

⇤ a simple set of target
configurations and H be the associated set of heads.

I
[pX•] = P(Reach(pX, C))

I
[pXq] = probability of all r 2 Reach(pX, {q"}) that do not visit C

For pX 2 H:
I

[pX•] = 1

I
[pXq] = 0

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 37/42

We solve this problem for a simple set of target configurations.
) Extensible to regular sets of target configurations

Notation
Let � = (Q,�, ,!,P) be a pPDA, C ✓ Q⇥ �

⇤ a simple set of target
configurations and H be the associated set of heads.

I
[pX•] = P(Reach(pX, C))

I
[pXq] = probability of all r 2 Reach(pX, {q"}) that do not visit C

For pX 2 H:
I

[pX•] = 1

I
[pXq] = 0

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 37/42

We solve this problem for a simple set of target configurations.
) Extensible to regular sets of target configurations

Notation
Let � = (Q,�, ,!,P) be a pPDA, C ✓ Q⇥ �

⇤ a simple set of target
configurations and H be the associated set of heads.

I
[pX•] = P(Reach(pX, C))

I
[pXq] = probability of all r 2 Reach(pX, {q"}) that do not visit C

For pX 2 H:
I

[pX•] = 1

I
[pXq] = 0

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 37/42

We solve this problem for a simple set of target configurations.
) Extensible to regular sets of target configurations

Notation
Let � = (Q,�, ,!,P) be a pPDA, C ✓ Q⇥ �

⇤ a simple set of target
configurations and H be the associated set of heads.

I
[pX•] = P(Reach(pX, C))

I
[pXq] = probability of all r 2 Reach(pX, {q"}) that do not visit C

For pX 2 H:
I

[pX•] = 1

I
[pXq] = 0

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 37/42

We solve this problem for a simple set of target configurations.
) Extensible to regular sets of target configurations

Notation
Let � = (Q,�, ,!,P) be a pPDA, C ✓ Q⇥ �

⇤ a simple set of target
configurations and H be the associated set of heads.

I
[pX•] = P(Reach(pX, C))

I
[pXq] = probability of all r 2 Reach(pX, {q"}) that do not visit C

For pX 2 H:
I

[pX•] = 1

I
[pXq] = 0

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 37/42

We solve this problem for a simple set of target configurations.
) Extensible to regular sets of target configurations

Notation
Let � = (Q,�, ,!,P) be a pPDA, C ✓ Q⇥ �

⇤ a simple set of target
configurations and H be the associated set of heads.

I
[pX•] = P(Reach(pX, C))

I
[pXq] = probability of all r 2 Reach(pX, {q"}) that do not visit C

For pX 2 H:

I
[pX•] = 1

I
[pXq] = 0

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 37/42

We solve this problem for a simple set of target configurations.
) Extensible to regular sets of target configurations

Notation
Let � = (Q,�, ,!,P) be a pPDA, C ✓ Q⇥ �

⇤ a simple set of target
configurations and H be the associated set of heads.

I
[pX•] = P(Reach(pX, C))

I
[pXq] = probability of all r 2 Reach(pX, {q"}) that do not visit C

For pX 2 H:
I

[pX•] = 1

I
[pXq] = 0

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 37/42

For pX /2 H:

[pX•] =
X

pX
x

,!rY

x·[rY •]+
X

pX
x

,!rY Z

x·[rY •]+
X

pX
x

,!rY Z

X

t2Q
x·[rY t]·[tZ•]

[pXq] =
X

pX
x

,!q"

x+

X

pX
x

,!rY

x · [rY q] +
X

pX
x

,!rY Z

X

t2Q
x · [rY t] · [tZq]

1. Construct equations for all [pX•] and [pXq] needed.
2. Replace all [pX•] and [pXq] by fresh random variables hpX•i and

hpXqi
3. Solve the system of recursive equations for least solution.

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 38/42

For pX /2 H:

[pX•] =
X

pX
x

,!rY

x·[rY •]+
X

pX
x

,!rY Z

x·[rY •]+
X

pX
x

,!rY Z

X

t2Q
x·[rY t]·[tZ•]

[pXq] =
X

pX
x

,!q"

x+

X

pX
x

,!rY

x · [rY q] +
X

pX
x

,!rY Z

X

t2Q
x · [rY t] · [tZq]

1. Construct equations for all [pX•] and [pXq] needed.
2. Replace all [pX•] and [pXq] by fresh random variables hpX•i and

hpXqi
3. Solve the system of recursive equations for least solution.

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 38/42

For pX /2 H:

[pX•] =
X

pX
x

,!rY

x·[rY •]+
X

pX
x

,!rY Z

x·[rY •]+
X

pX
x

,!rY Z

X

t2Q
x·[rY t]·[tZ•]

[pXq] =
X

pX
x

,!q"

x+

X

pX
x

,!rY

x · [rY q] +
X

pX
x

,!rY Z

X

t2Q
x · [rY t] · [tZq]

1. Construct equations for all [pX•] and [pXq] needed.
2. Replace all [pX•] and [pXq] by fresh random variables hpX•i and

hpXqi
3. Solve the system of recursive equations for least solution.

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 38/42

For pX /2 H:

[pX•] =
X

pX
x

,!rY

x·[rY •]+
X

pX
x

,!rY Z

x·[rY •]+
X

pX
x

,!rY Z

X

t2Q
x·[rY t]·[tZ•]

[pXq] =
X

pX
x

,!q"

x+

X

pX
x

,!rY

x · [rY q] +
X

pX
x

,!rY Z

X

t2Q
x · [rY t] · [tZq]

1. Construct equations for all [pX•] and [pXq] needed.

2. Replace all [pX•] and [pXq] by fresh random variables hpX•i and
hpXqi

3. Solve the system of recursive equations for least solution.

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 38/42

For pX /2 H:

[pX•] =
X

pX
x

,!rY

x·[rY •]+
X

pX
x

,!rY Z

x·[rY •]+
X

pX
x

,!rY Z

X

t2Q
x·[rY t]·[tZ•]

[pXq] =
X

pX
x

,!q"

x+

X

pX
x

,!rY

x · [rY q] +
X

pX
x

,!rY Z

X

t2Q
x · [rY t] · [tZq]

1. Construct equations for all [pX•] and [pXq] needed.
2. Replace all [pX•] and [pXq] by fresh random variables hpX•i and

hpXqi

3. Solve the system of recursive equations for least solution.

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 38/42

For pX /2 H:

[pX•] =
X

pX
x

,!rY

x·[rY •]+
X

pX
x

,!rY Z

x·[rY •]+
X

pX
x

,!rY Z

X

t2Q
x·[rY t]·[tZ•]

[pXq] =
X

pX
x

,!q"

x+

X

pX
x

,!rY

x · [rY q] +
X

pX
x

,!rY Z

X

t2Q
x · [rY t] · [tZq]

1. Construct equations for all [pX•] and [pXq] needed.
2. Replace all [pX•] and [pXq] by fresh random variables hpX•i and

hpXqi
3. Solve the system of recursive equations for least solution.

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Reachability/Termination

Justin Winkens | 30. June 2016 38/42

Let C be a set of target configurations with H = {Ak0, Bk0}

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 39/42

Let C be a set of target configurations with H = {Ak0, Bk0}
) P(Reach(Ad0, C)) = [Ad0•] = 1 means qualitative termination

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 39/42

Let C be a set of target configurations with H = {Ak0, Bk0}
) P(Reach(Ad0, C)) = [Ad0•] = 1 means qualitative termination

[Ad0•] =
X

Ad0
x

,!rY

x·[rY •] +
X

Ad0
x

,!rY Z

x·[rY •] +
X

Ad0
x

,!rY Z

X

t2Q
x·[rY t]·[tZ•]

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 39/42

Let C be a set of target configurations with H = {Ak0, Bk0}
) P(Reach(Ad0, C)) = [Ad0•] = 1 means qualitative termination

[Ad0•] =
X

Ad0
x

,!rY

x·[rY •] +
X

Ad0
x

,!rY Z

x·[rY •] +
X

Ad0
x

,!rY Z

X

t2Q
x·[rY t]·[tZ•]

hAd0i p

,! hAs0d1i
hAd0i 1�p

,! hBs0d1i

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 39/42

Let C be a set of target configurations with H = {Ak0, Bk0}
) P(Reach(Ad0, C)) = [Ad0•] = 1 means qualitative termination

[Ad0•] =
X

Ad0
x

,!rY

x·[rY •] +
X

Ad0
x

,!rY Z

x·[rY •] +
X

Ad0
x

,!rY Z

X

t2Q
x·[rY t]·[tZ•]

= p·[As0•]

hAd0i p

,! hAs0d1i
hAd0i 1�p

,! hBs0d1i

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 39/42

Let C be a set of target configurations with H = {Ak0, Bk0}
) P(Reach(Ad0, C)) = [Ad0•] = 1 means qualitative termination

[Ad0•] =
X

Ad0
x

,!rY

x·[rY •] +
X

Ad0
x

,!rY Z

x·[rY •] +
X

Ad0
x

,!rY Z

X

t2Q
x·[rY t]·[tZ•]

= p·[As0•]+(1�p)·[Bs0•]

hAd0i p

,! hAs0d1i
hAd0i 1�p

,! hBs0d1i

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 39/42

Let C be a set of target configurations with H = {Ak0, Bk0}
) P(Reach(Ad0, C)) = [Ad0•] = 1 means qualitative termination

[Ad0•] =
X

Ad0
x

,!rY

x·[rY •] +
X

Ad0
x

,!rY Z

x·[rY •] +
X

Ad0
x

,!rY Z

X

t2Q
x·[rY t]·[tZ•]

= p·[As0•] + (1�p)·[Bs0•]
+

X

Ad0
x

,!rY Z

(x·[rY A]·[AZ•] + x·[rY B]·[BZ•])

hAd0i p

,! hAs0d1i
hAd0i 1�p

,! hBs0d1i

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 39/42

Let C be a set of target configurations with H = {Ak0, Bk0}
) P(Reach(Ad0, C)) = [Ad0•] = 1 means qualitative termination

[Ad0•] = p·[As0•] + (1�p)·[Bs0•]
+ (p·[As0A]·[Ad1•] + p·[As0B]·[Bd1•])
+ ((1�p)·[Bs0A]·[Ad1•] + (1�p)·[Bs0B]·[Bd1•])

hAd0i p

,! hAs0d1i
hAd0i 1�p

,! hBs0d1i

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 39/42

Let C be a set of target configurations with H = {Ak0, Bk0}
) P(Reach(Ad0, C)) = [Ad0•] = 1 means qualitative termination

[Ad0•] = p·[As0•] + (1�p)·[Bs0•]
+ (p·[As0A]·[Ad1•] + p·[As0B]·[Bd1•])
+ ((1�p)·[Bs0A]·[Ad1•] + (1�p)·[Bs0B]·[Bd1•])

) Remove zero summands

hAd0i p

,! hAs0d1i
hAd0i 1�p

,! hBs0d1i

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 39/42

Let C be a set of target configurations with H = {Ak0, Bk0}
) P(Reach(Ad0, C)) = [Ad0•] = 1 means qualitative termination

[Ad0•] = p·[As0•] + (1�p)·[Bs0•]

) We need to calculate [As0•] and [Bs0•]!

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 39/42

[Ad0•] = p·[As0•] + (1�p)·[Bs0•]
[As0•] = s+ (1�s)·[Bs0•]
[Bs0•] = t+ (1� t)·[As0•]

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 40/42

[Ad0•] = p·[As0•] + (1�p)·[Bs0•]
[As0•] = s+ (1�s)·[Bs0•]
[Bs0•] = t+ (1� t)·[As0•]

hAd0•i = p·hAs0•i+ (1�p)·hBs0•i
hAs0•i = s+ (1�s)·hBs0•i
hBs0•i = t+ (1� t)·hAs0•i

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 40/42

hAd0•i = p·hAs0•i+ (1�p)·hBs0•i
hAs0•i = s+ (1�s)·hBs0•i
hBs0•i = t+ (1� t)·hAs0•i

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 40/42

hAd0•i = p·hAs0•i+ (1�p)·hBs0•i
hAs0•i = s+ (1�s)·hBs0•i
hBs0•i = t+ (1� t)·hAs0•i

p = 1/2

s = 1/2

t = 1/3

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 40/42

hAd0•i = p·hAs0•i+ (1�p)·hBs0•i
hAs0•i = s+ (1�s)·hBs0•i
hBs0•i = t+ (1� t)·hAs0•i

hAd0•i = 1, hAs0•i = 1, hBs0•i = 1

p = 1/2

s = 1/2

t = 1/3

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 40/42

hAd0•i = p·hAs0•i+ (1�p)·hBs0•i
hAs0•i = s+ (1�s)·hBs0•i
hBs0•i = t+ (1� t)·hAs0•i

hAd0•i = 0, hAs0•i = 0, hBs0•i = 0

p = 1/2

s = 0

t = 0

Analyzing Probabilistic Pushdown Automata Qualitative Reachability/Termination

Qualitative Term./Reach. Dueling Cowboys

Justin Winkens | 30. June 2016 40/42

I We know that the duel ends if both s, t > 0

I What is the probability that e.g. A wins the duel?
I) [Ad0A] =?, C = ;
I Same equations apply!

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

Justin Winkens | 30. June 2016 41/42

I We know that the duel ends if both s, t > 0

I What is the probability that e.g. A wins the duel?

I) [Ad0A] =?, C = ;
I Same equations apply!

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

Justin Winkens | 30. June 2016 41/42

I We know that the duel ends if both s, t > 0

I What is the probability that e.g. A wins the duel?
I) [Ad0A] =?, C = ;

I Same equations apply!

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

Justin Winkens | 30. June 2016 41/42

I We know that the duel ends if both s, t > 0

I What is the probability that e.g. A wins the duel?
I) [Ad0A] =?, C = ;
I Same equations apply!

[Ad0A] = p · [As0A] + (1� p)[Bs0A]

[As0A] = s+ (1� s)[Bs0A]

[Bs0A] = (1� t)[As0A]

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

Justin Winkens | 30. June 2016 41/42

I We know that the duel ends if both s, t > 0

I What is the probability that e.g. A wins the duel?
I) [Ad0A] =?, C = ;
I Same equations apply!

hAd0Ai = p · hAs0Ai+ (1� p)hBs0Ai
hAs0Ai = s+ (1� s)hBs0Ai
hBs0Ai = (1� t)hAs0Ai

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

Justin Winkens | 30. June 2016 41/42

I We know that the duel ends if both s, t > 0

I What is the probability that e.g. A wins the duel?
I) [Ad0A] =?, C = ;
I Same equations apply!

p = 1/2, s = 1/2, t = 1/2

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

Justin Winkens | 30. June 2016 41/42

I We know that the duel ends if both s, t > 0

I What is the probability that e.g. A wins the duel?
I) [Ad0A] =?, C = ;
I Same equations apply!

p = 1/2, s = 1/2, t = 1/2

hAd0Ai = 1/2

hAs0Ai = 2/3

hBs0Ai = 1/3

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Quantitative Term./Reach Dueling Cowboys

Justin Winkens | 30. June 2016 41/42

I pPDA nice way to model and analyze systems that use probability as
well as recursion

I 2 formulae enough to study quantitative and qualitative reachability
I Can be done efficiently in polynomial space
I Construction technique to pPBA allows analysis in polynomial time.

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Conclusion

Justin Winkens | 30. June 2016 42/42

I pPDA nice way to model and analyze systems that use probability as
well as recursion

I 2 formulae enough to study quantitative and qualitative reachability

I Can be done efficiently in polynomial space
I Construction technique to pPBA allows analysis in polynomial time.

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Conclusion

Justin Winkens | 30. June 2016 42/42

I pPDA nice way to model and analyze systems that use probability as
well as recursion

I 2 formulae enough to study quantitative and qualitative reachability
I Can be done efficiently in polynomial space

I Construction technique to pPBA allows analysis in polynomial time.

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Conclusion

Justin Winkens | 30. June 2016 42/42

I pPDA nice way to model and analyze systems that use probability as
well as recursion

I 2 formulae enough to study quantitative and qualitative reachability
I Can be done efficiently in polynomial space
I Construction technique to pPBA allows analysis in polynomial time.

Analyzing Probabilistic Pushdown Automata Quantitative Reachability/Termination

Conclusion

Justin Winkens | 30. June 2016 42/42

Definition: Runtime
Let � be a transition system with a set of configurations S and target
configurations T .

Let f : S ! R�0 be a function that assigns run times to states.
For every run r 2 Runs(�) we define kr as the least n 2 N0 such that
r(n) 2 T .

T ime(�) =

k
rX

i=0

f(r(i)) .

) kr depends on probability
) E(T ime(�)), E(T ime(�)|Reach(pX, C))

Expected Runtime

Justin Winkens | 30. June 2016 1/6

Definition: Runtime
Let � be a transition system with a set of configurations S and target
configurations T .
Let f : S ! R�0 be a function that assigns run times to states.

For every run r 2 Runs(�) we define kr as the least n 2 N0 such that
r(n) 2 T .

T ime(�) =

k
rX

i=0

f(r(i)) .

) kr depends on probability
) E(T ime(�)), E(T ime(�)|Reach(pX, C))

Expected Runtime

Justin Winkens | 30. June 2016 1/6

Definition: Runtime
Let � be a transition system with a set of configurations S and target
configurations T .
Let f : S ! R�0 be a function that assigns run times to states.
For every run r 2 Runs(�) we define kr as the least n 2 N0 such that
r(n) 2 T .

T ime(�) =

k
rX

i=0

f(r(i)) .

) kr depends on probability
) E(T ime(�)), E(T ime(�)|Reach(pX, C))

Expected Runtime

Justin Winkens | 30. June 2016 1/6

Definition: Runtime
Let � be a transition system with a set of configurations S and target
configurations T .
Let f : S ! R�0 be a function that assigns run times to states.
For every run r 2 Runs(�) we define kr as the least n 2 N0 such that
r(n) 2 T .

T ime(�) =

k
rX

i=0

f(r(i)) .

) kr depends on probability
) E(T ime(�)), E(T ime(�)|Reach(pX, C))

Expected Runtime

Justin Winkens | 30. June 2016 1/6

Definition: Runtime
Let � be a transition system with a set of configurations S and target
configurations T .
Let f : S ! R�0 be a function that assigns run times to states.
For every run r 2 Runs(�) we define kr as the least n 2 N0 such that
r(n) 2 T .

T ime(�) =

k
rX

i=0

f(r(i)) .

) kr depends on probability

) E(T ime(�)), E(T ime(�)|Reach(pX, C))

Expected Runtime

Justin Winkens | 30. June 2016 1/6

Definition: Runtime
Let � be a transition system with a set of configurations S and target
configurations T .
Let f : S ! R�0 be a function that assigns run times to states.
For every run r 2 Runs(�) we define kr as the least n 2 N0 such that
r(n) 2 T .

T ime(�) =

k
rX

i=0

f(r(i)) .

) kr depends on probability
) E(T ime(�)), E(T ime(�)|Reach(pX, C))

Expected Runtime

Justin Winkens | 30. June 2016 1/6

Definition: Expected Runtime pPDA

Let � = (Q,�, ,!,P) be a pPDA.
EpXq = E(T ime(�)|Reach(pX, {q"})) conditional expected runtime

hEpXqi = f(pX) +

X

pX
x

,!rY

x · [rY q]

[pXq]
· hErY qi

+

X

pX
x

,!rY Z

X

t2Q
x · [rY t] · [tZq]

[pXq]
· (hErY ti+ hEtZqi)

) Here: f(pX) = 1 for all pX 2 Q⇥ �) discrete time

Expected Runtime

Justin Winkens | 30. June 2016 2/6

Definition: Expected Runtime pPDA

Let � = (Q,�, ,!,P) be a pPDA.
EpXq = E(T ime(�)|Reach(pX, {q"})) conditional expected runtime

hEpXqi = f(pX) +

X

pX
x

,!rY

x · [rY q]

[pXq]
· hErY qi

+

X

pX
x

,!rY Z

X

t2Q
x · [rY t] · [tZq]

[pXq]
· (hErY ti+ hEtZqi)

) Here: f(pX) = 1 for all pX 2 Q⇥ �) discrete time

Expected Runtime

Justin Winkens | 30. June 2016 2/6

Definition: Expected Runtime pPDA

Let � = (Q,�, ,!,P) be a pPDA.
EpXq = E(T ime(�)|Reach(pX, {q"})) conditional expected runtime

hEpXqi = f(pX) +

X

pX
x

,!rY

x · [rY q]

[pXq]
· hErY qi

+

X

pX
x

,!rY Z

X

t2Q
x · [rY t] · [tZq]

[pXq]
· (hErY ti+ hEtZqi)

) Here: f(pX) = 1 for all pX 2 Q⇥ �) discrete time

Expected Runtime

Justin Winkens | 30. June 2016 2/6

P(Reach(rY, {q"})|Reach(pX, {q"})) = P(Reach(rY, {q"}) \Reach(pX, {q"}))
P(Reach(pX, {q"}))

=

P(Reach(rY, {q"}))
P(Reach(pX, {q"}))

=

[rY q]

[pXq]

Expected Runtime

Justin Winkens | 30. June 2016 3/6

Expected runtime for all runs that start in Ad0 and end in A":

hEAs0Ai = 1 +

[As1A]

[As0A]

· hEAs1Ai

hEAs1Ai = 1 +

s

[As1A]

· (hEAk0Ai+ hEAs3Ai) + (1� s) · [Bs0A]

[As1A]

(hEBs0Ai)

hEBs0Ai = 1 +

[Bs2A]

[Bs0A]
· hEBs2Ai

hEBs2Ai = 1 + (1� t) · [As0A]

[Bs2A]

· (hEAs0Ai+ hEAs6Ai)

hEAd1Ai = 1

hEAk0Ai = 1

hEAs3Ai = 1

hEAs6Ai = 1

Expected Runtime

Justin Winkens | 30. June 2016 4/6

Expected runtime for all runs that start in Ad0 and end in A":

hEAs0Ai = 1 +

[As1A]

[As0A]

· hEAs1Ai

hEAs1Ai = 1 +

s

[As1A]

· (hEAk0Ai+ hEAs3Ai) + (1� s) · [Bs0A]

[As1A]

(hEBs0Ai)

hEBs0Ai = 1 +

[Bs2A]

[Bs0A]
· hEBs2Ai

hEBs2Ai = 1 + (1� t) · [As0A]

[Bs2A]

· (hEAs0Ai+ hEAs6Ai)

hEAd1Ai = 1

hEAk0Ai = 1

hEAs3Ai = 1

hEAs6Ai = 1

Expected Runtime

Justin Winkens | 30. June 2016 4/6

Let’s assume p = s = t = 1/2

hEAd0Ai = 2 +

2

3

· hAs0Ai+ 1

3

· hBs0Ai
hEAs0Ai = 1 + hEAs1Ai
hEAs1Ai =

5

2

+

1

4

hEBs0Ai
hEBs0Ai = 1 + hEBs2Ai
hEBs2Ai = 2 + hEAs0Ai

) hEAd0Ai = 26/3 = 8.66

Expected Runtime

Justin Winkens | 30. June 2016 5/6

Let’s assume p = s = t = 1/2

hEAd0Ai = 2 +

2

3

· hAs0Ai+ 1

3

· hBs0Ai
hEAs0Ai = 1 + hEAs1Ai
hEAs1Ai =

5

2

+

1

4

hEBs0Ai
hEBs0Ai = 1 + hEBs2Ai
hEBs2Ai = 2 + hEAs0Ai

) hEAd0Ai = 26/3 = 8.66

Expected Runtime

Justin Winkens | 30. June 2016 5/6

Let’s assume p = s = t = 1/2

hEAd0Ai = 2 +

2

3

· hAs0Ai+ 1

3

· hBs0Ai
hEAs0Ai = 1 + hEAs1Ai
hEAs1Ai =

5

2

+

1

4

hEBs0Ai
hEBs0Ai = 1 + hEBs2Ai
hEBs2Ai = 2 + hEAs0Ai

) hEAd0Ai = 26/3 = 8.66

Expected Runtime

Justin Winkens | 30. June 2016 5/6

hAd0Ai = �p� (1� p) · (1� t)

2(st� s� t)

hAs0Ai = �1

2(st� s� t)

hBs0Ai = �(1� t)

2(st� s� t)

Quantitative System Parametrized

Justin Winkens | 30. June 2016 6/6

	Anhang

