Analyzing recursive probabilistic Programs

Justin Winkens

30. June 2016

Table of contents

- 3 Translating pGCL to pPDA
- 4 Analyzing Probabilistic Pushdown Automata


```
algorithm quicksort(A) is
1
     list less, equal, greater
2
     if length(A) \leq 1
3
         return A
4
     pivot := A[length(A)]
5
     for x in A
6
       if x < pivot then append x to less
7
       if x = pivot then append x to equal
8
       if x > pivot then append x to greater
9
     return concat(quicksort(less), equal,quicksort(greater))
10
```

```
algorithm quicksort(A) is
1
     list less, equal, greater
2
     if length(A) \leq 1
3
         return A
4
     pivot := A[length(A)]
5
     for x in A
6
       if x < pivot then append x to less
7
       if x = pivot then append x to equal
8
       if x > pivot then append x to greater
9
     return concat(quicksort(less), equal,quicksort(greater))
10
```

 \Rightarrow Average case complexity $O(n \log n)$

```
algorithm quicksort(A) is
1
     list less, equal, greater
2
     if length(A) \leq 1
3
         return A
4
     pivot := A[length(A)]
5
     for x in A
6
       if x < pivot then append x to less
7
       if x = pivot then append x to equal
8
       if x > pivot then append x to greater
9
     return concat(quicksort(less), equal,quicksort(greater))
10
```

⇒ Average case complexity $O(n \log n)$ ⇒ Worst case complexity $O(n^2)$

```
algorithm quicksort(A) is
1
     list less, equal, greater
2
     if length(A) \leq 1
3
         return A
4
     pivot := uniformSel(A)
5
     for x in A
6
       if x < pivot then append x to less
7
       if x = pivot then append x to equal
8
       if x > pivot then append x to greater
9
     return concat(quicksort(less), equal,quicksort(greater))
10
```

```
algorithm quicksort(A) is
1
     list less, equal, greater
2
     if length(A) \leq 1
3
         return A
4
     pivot := uniformSel(A)
5
     for x in A
6
       if x < pivot then append x to less
7
       if x = pivot then append x to equal
8
       if x > pivot then append x to greater
9
     return concat(quicksort(less), equal,quicksort(greater))
10
```

 \Rightarrow Worst case far less likely!

We wish to...

► We wish to...

...reason about a programs behavior

- We wish to...
 - ...reason about a programs behavior
 - ...estimate expected outcomes and runtimes

- We wish to...
 - ...reason about a programs behavior
 - ...estimate expected outcomes and runtimes
 - ...quantify probabilities

- We wish to...
 - ...reason about a programs behavior
 - ...estimate expected outcomes and runtimes
 - ...quantify probabilities
- Recursive programs written in the probabilistic Guarded Command Language

- We wish to...
 - ...reason about a programs behavior
 - ...estimate expected outcomes and runtimes
 - ...quantify probabilities
- Recursive programs written in the probabilistic Guarded Command Language
- Analysis by using probabilistic pushdown automata

Pushdown Automata

Definition: Probabilistic Pushdown Automaton (pPDA)

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple $\Delta=(Q,\Gamma,\hookrightarrow,\mathfrak{P})$ defined as

• Q is a finite set of states.

Definition: Probabilistic Pushdown Automaton (pPDA)

- Q is a finite set of states.
- Γ is a finite stack alphabet.

Definition: Probabilistic Pushdown Automaton (pPDA)

- Q is a finite set of states.
- Γ is a finite stack alphabet.
- ► $\hookrightarrow \subseteq (Q \times \Gamma) \times (Q \times \Gamma^*)$ is a set of transitions such that

Definition: Probabilistic Pushdown Automaton (pPDA)

- Q is a finite set of states.
- Γ is a finite stack alphabet.
- $\hookrightarrow \subseteq (Q \times \Gamma) \times (Q \times \Gamma^*)$ is a set of transitions such that
 - for every $pX \in Q \times \Gamma$ there is at least one transition of the form $pX \hookrightarrow q\alpha$

Definition: Probabilistic Pushdown Automaton (pPDA)

- Q is a finite set of states.
- Γ is a finite stack alphabet.
- $\blacktriangleright \, \hookrightarrow \subseteq (Q \times \Gamma) \times (Q \times \Gamma^*)$ is a set of transitions such that
 - for every $pX \in Q \times \Gamma$ there is at least one transition of the form $pX \hookrightarrow q\alpha$
 - for every transition $pX \hookrightarrow q\alpha$ we have that $|\alpha| \le 2$.

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple $\Delta=(Q,\Gamma,\hookrightarrow,\mathfrak{P})$ defined as

P is a function which assigns probabilities to transitions

Definition: Probabilistic Pushdown Automaton (pPDA)

- $\blacktriangleright \ \mathfrak{P}$ is a function which assigns probabilities to transitions
 - $\blacktriangleright \ \mathfrak{P}(pX \hookrightarrow q\alpha) \in [0,1]$

Definition: Probabilistic Pushdown Automaton (pPDA)

- $\blacktriangleright \ \mathfrak{P}$ is a function which assigns probabilities to transitions
 - $\blacktriangleright \ \mathfrak{P}(pX \hookrightarrow q\alpha) \in [0,1]$

$$\blacktriangleright \sum_{pX \hookrightarrow q\alpha} \mathfrak{P}(pX \hookrightarrow q\alpha) = 1$$

Definition: Probabilistic Pushdown Automaton (pPDA)

A probabilistic pushdown automaton (pPDA) is a tuple $\Delta=(Q,\Gamma,\hookrightarrow,\mathfrak{P})$ defined as

- \mathfrak{P} is a function which assigns probabilities to transitions
 - $\blacktriangleright \ \mathfrak{P}(pX \hookrightarrow q\alpha) \in [0,1]$

•
$$\sum_{pX \hookrightarrow q\alpha} \mathfrak{P}(pX \hookrightarrow q\alpha) = 1$$

• We write $pX \stackrel{x}{\hookrightarrow} q\alpha$ instead of $\mathfrak{P}(pX \hookrightarrow q\alpha) = x$

Example pPDA

Example pPDA

A pPDA Δ is given by:

- $\blacktriangleright \ Q = \{q\}$
- $\blacktriangleright \ \Gamma = \{I\}$
- $\blacktriangleright qI \stackrel{0.5}{\hookrightarrow} qII, qI \stackrel{0.5}{\hookrightarrow} q\epsilon$

Example pPDA

Example pPDA

A pPDA Δ is given by:

- $\blacktriangleright \ Q = \{q\}$
- $\blacktriangleright \Gamma = \{I\}$

•
$$qI \stackrel{0.5}{\hookrightarrow} qII, qI \stackrel{0.5}{\hookrightarrow} qe$$

What does this pPDA represent?

Example pPDA

Example pPDA

A pPDA Δ is given by:

- $\blacktriangleright \ Q = \{q\}$
- $\blacktriangleright \Gamma = \{I\}$

•
$$qI \stackrel{0.5}{\hookrightarrow} qII, qI \stackrel{0.5}{\hookrightarrow} q\epsilon$$

(qI)
Example pPDA

A pPDA Δ is given by:

- $\blacktriangleright \ Q = \{q\}$
- $\blacktriangleright \Gamma = \{I\}$

•
$$qI \stackrel{0.5}{\hookrightarrow} qII, qI \stackrel{0.5}{\hookrightarrow} q\epsilon$$

Example pPDA

A pPDA Δ is given by:

 $\blacktriangleright \ Q = \{q\}$

$$\blacktriangleright \Gamma = \{I\}$$

•
$$qI \stackrel{0.5}{\hookrightarrow} qII, qI \stackrel{0.5}{\hookrightarrow} q\epsilon$$

Example pPDA

A pPDA Δ is given by:

 $\blacktriangleright \ Q = \{q\}$

$$\blacktriangleright \Gamma = \{I\}$$

•
$$qI \stackrel{0.5}{\hookrightarrow} qII, qI \stackrel{0.5}{\hookrightarrow} q\epsilon$$

Example pPDA

A pPDA Δ is given by:

 $\blacktriangleright \ Q = \{q\}$

$$\blacktriangleright \Gamma = \{I\}$$

•
$$qI \stackrel{0.5}{\hookrightarrow} qII, qI \stackrel{0.5}{\hookrightarrow} q\epsilon$$

\Rightarrow Termination on empty stack!

Example pPDA

A pPDA Δ is given by:

- $\blacktriangleright \ Q = \{q\}$
- $\blacktriangleright \Gamma = \{I\}$
- $qI \stackrel{0.5}{\hookrightarrow} qII, qI \stackrel{0.5}{\hookrightarrow} q\epsilon$

What could an unbounded random walk look like?

Probabilistic Pushdown Automata

Definition: Regular Configurations

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA and $\mathcal{C} \subseteq Q \times \Gamma^*$ a set of configurations.

Probabilistic Pushdown Automata

Definition: Regular Configurations

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA and $\mathcal{C} \subseteq Q \times \Gamma^*$ a set of configurations.

We call C regular if $p\alpha \in C$ iff the reversed stack of $p\alpha$ is accepted by a deterministic finite-state automaton (DFA) A.

Probabilistic Pushdown Automata

Definition: Regular Configurations

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA and $\mathcal{C} \subseteq Q \times \Gamma^*$ a set of configurations.

We call C regular if $p\alpha \in C$ iff the reversed stack of $p\alpha$ is accepted by a deterministic finite-state automaton (DFA) A.

We call C simple if there exists a set $\mathcal{H} \subseteq Q \times \Gamma$ such that $p\alpha \in C$ iff $\alpha \neq \varepsilon$ and $head(p\alpha) \in \mathcal{H}$.

Definition: Paths and Runs

Definition: Paths and Runs

Let \mathfrak{S} be a set of states and $\rightarrow \subseteq \mathfrak{S} \times \mathfrak{S}$ a binary and total relation and $P = (\mathfrak{S}, \rightarrow)$.

▶ A path is a word w such that $w(i) \to w(i+1)$ for every $i \in \{0, \dots, |w| - 1\}$

Definition: Paths and Runs

- ▶ A path is a word w such that $w(i) \to w(i+1)$ for every $i \in \{0, \ldots, |w| 1\}$
- A state t is reachable from s if there is a finite path w with w(0) = s and w(|w| − 1) = t.

Definition: Paths and Runs

- ▶ A path is a word w such that $w(i) \to w(i+1)$ for every $i \in \{0, \ldots, |w| 1\}$
- A state t is reachable from s if there is a finite path w with w(0) = s and w(|w| − 1) = t.
- A run is an infinite path.

Definition: Paths and Runs

- ▶ A path is a word w such that $w(i) \to w(i+1)$ for every $i \in \{0, \dots, |w| 1\}$
- A state t is reachable from s if there is a finite path w with w(0) = s and w(|w| − 1) = t.
- A run is an infinite path.
- Runs(P, w) = set of all runs in P that start with w

Reachability

Definition: Reachability

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $pX \in Q \times \Gamma$ an initial configuration and $\mathcal{C} \subseteq Q \times \Gamma^*$ a set of target configurations.

Definition: Reachability

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $pX \in Q \times \Gamma$ an initial configuration and $\mathcal{C} \subseteq Q \times \Gamma^*$ a set of target configurations.

▶ Reach(pX, C) set of all runs $r \in Runs(\Delta, pX)$ with $r(i) \in C$, $i \in \mathbb{N}_0$

Reachability

Definition: Reachability

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $pX \in Q \times \Gamma$ an initial configuration and $\mathcal{C} \subseteq Q \times \Gamma^*$ a set of target configurations.

- ► Reach(pX, C) set of all runs $r \in Runs(\Delta, pX)$ with $r(i) \in C$, $i \in \mathbb{N}_0$
- $\blacktriangleright \mathscr{P}(Reach(pX,\mathcal{C}))$

Termination

Definition: Termination

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $pX \in Q \times \Gamma$ an initial configuration and $q \in Q$ a (final) state.

Termination

Definition: Termination

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $pX \in Q \times \Gamma$ an initial configuration and $q \in Q$ a (final) state.

▶ $Reach(pX, \{q\varepsilon\})$ set of all runs $r \in Runs(\Delta, pX)$ with $r(i) = q\varepsilon$, $i \in \mathbb{N}_0$.

Termination

Definition: Termination

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $pX \in Q \times \Gamma$ an initial configuration and $q \in Q$ a (final) state.

- ▶ $Reach(pX, \{q\varepsilon\})$ set of all runs $r \in Runs(\Delta, pX)$ with $r(i) = q\varepsilon$, $i \in \mathbb{N}_0$.
- $\mathscr{P}(Reach(pX, \{q\varepsilon\})).$

Qualitative/Quantitative Reachability/Termination

Definition: Qualitative/Quantitative Reachability/Termination

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $pX \in Q \times \Gamma$ an initial configuration and $C \subseteq Q \times \Gamma^*$ a set of target configurations.

Qualitative/Quantitative Reachability/Termination

Definition: Qualitative/Quantitative Reachability/Termination

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $pX \in Q \times \Gamma$ an initial configuration and $C \subseteq Q \times \Gamma^*$ a set of target configurations.

• Qualitative reachability/termination: $\mathscr{P}(Reach(pX, C)) = 1$?

Qualitative/Quantitative Reachability/Termination

Definition: Qualitative/Quantitative Reachability/Termination

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $pX \in Q \times \Gamma$ an initial configuration and $C \subseteq Q \times \Gamma^*$ a set of target configurations.

- Qualitative reachability/termination: $\mathscr{P}(Reach(pX, C)) = 1$?
- ▶ Quantitative reachability/termination: $\mathscr{P}(Reach(pX, C)) \leq d$ for a constant $d \in (0, 1)$?

skip | abort | var x | x:=E | Q;R | {Q}[] {R} | {Q}[p] {R} if (G) {Q}else {R} | while (G) {Q}

skip | abort | var x | x:=E | Q;R | $\{Q\}[]\{R\}$ | $\{Q\}[p]\{R\}$ if (G) $\{Q\}$ else $\{R\}$ | while (G) $\{Q\}$

```
skip | abort | var x | X:=E | Q;R | {Q}[] {R} | {Q}[p] {R}
if(G) {Q}else{R} | while(G) {Q}
```

```
1 var flip := true;
2 flip(){
3 while(flip){
4 {skip;}[0.5]{flip = false;}
5 }
6 }
```

```
skip | abort | var x | X:=E | Q;R | {Q}[] {R} | {Q}[p] {R}
if(G) {Q}else{R} | while(G) {Q}
```

```
1 var flip := true;
2 flip(){
3 while(flip){
4 {skip;}[0.5]{flip = false;}
5 }
6 }
```

We allow function calls!

Dueling Cowboys

Dueling Cowboys (Orig.)

```
var cowboy := A;
1
2 var duel:= true;
3
   \{cowboy := A;\}[p]\{cowboy := B;\}
4
5
   while(duel){
6
       if(cowboy = A){
7
            {duel := false;}[a]{cowboy := B;}
8
       }else{
9
            {duel := false;}[b]{cowboy := A;}
10
       }
11
   }
12
```

Dueling Cowboys (Rec.)

Dueling Cowboys (Rec.)

shoot(){		//s0
if(play	/er == A){	//s1
-	kill():	//s3
1		,,
, [•]		
[3]		
ι	-	
	player :=	в;
	<pre>shoot();</pre>	//s4
}		
}		
else if	f(player ==	B){//s2
{		
	kill();	//s5
}		
, [+]		
{		
ι		
	player	н,
	snoot();	// 50
}		
}		
}		

Dueling Cowboys (Rec.)

<pre>shoot(){</pre>		//s0
if(play	ver == A){	//s1
}		
•	kill():	1/53
1	,	,,
ر ۲-٦		
[8]		
ł		
	player :=	В;
	<pre>shoot();</pre>	//s4
}		
}		
else if	(plaver ==	B) ${//s2}$
}	1 5	
c c	bill().	// 55
ı	KIII(),	// 30
۲ ۲. ۲		
Ltj		
{		
	player :=	Α;
	<pre>shoot();</pre>	//s6
}		
}		
}		
2		

Dueling Cowboys (Rec.)

```
1 kill(){ //k0
2
3 }
```

How do we analyze this?

	//s0
yer == A){	//s1
kill();	//s3
1	
-	
	р.
player :=	ь;
shoot();	//s4
f(player ==	B){//s2
kill();	//s5
1	
-	
nlaver :=	۸.
player	л, //аб
511001();	// 50
	<pre>yer == A){ kill();] player := shoot(); f(player == kill();] player := shoot();</pre>

Translating pGCL to pPDA

2 Steps:

Translating pGCL to pPDA

2 Steps:

1. Translate pGCL program to control flow graph

Translating pGCL to pPDA

2 Steps:

- 1. Translate pGCL program to control flow graph
- 2. Translate control flow graph to pPDA
• Pick control points (k0,d0,d1,s0,...,s6) as nodes

- ▶ Pick control points (k0,d0,d1,s0,...,s6) as nodes
- Connect nodes by edges if control flows from one node to the next

- ▶ Pick control points (k0,d0,d1,s0,...,s6) as nodes
- Connect nodes by edges if control flows from one node to the next
- Label edges with statements and transition probability (if \neq 1)

- ▶ Pick control points (k0,d0,d1,s0,...,s6) as nodes
- Connect nodes by edges if control flows from one node to the next
- Label edges with statements and transition probability (if \neq 1)

- ▶ Pick control points (k0,d0,d1,s0,...,s6) as nodes
- Connect nodes by edges if control flows from one node to the next
- Label edges with statements and transition probability (if \neq 1)

- ▶ Pick control points (k0,d0,d1,s0,...,s6) as nodes
- Connect nodes by edges if control flows from one node to the next
- Label edges with statements and transition probability (if \neq 1)

- ▶ Pick control points (k0,d0,d1,s0,...,s6) as nodes
- Connect nodes by edges if control flows from one node to the next
- Label edges with statements and transition probability (if \neq 1)

- ▶ Pick control points (k0,d0,d1,s0,...,s6) as nodes
- Connect nodes by edges if control flows from one node to the next
- Label edges with statements and transition probability (if \neq 1)

1 - p

player := B

shoot()

```
shoot(){
                                   //s0
1
            if(player == A){
                                   //s1
2
3
                 ſ
                      kill();
                                   //s3
4
                 }
5
                 [s]
6
                 ſ
7
                      player := B;
8
                      shoot(); //s4
9
                 }
10
            }
11
            else if(player == B){//s2
12
                 {
13
                      kill(); //s5
14
                 }
15
                 [t]
16
17
                 ſ
                      player := A;
18
                      shoot(); //s6
19
                 }
20
            }
21
22
   }
```

```
shoot(){
                                   //s0
1
            if(player == A){
                                   //s1
2
3
                 ſ
                      kill();
                                   //s3
4
                 }
5
                 [s]
6
                 ſ
7
                      player := B;
8
                      shoot(); //s4
9
                 }
10
            }
11
            else if(player == B){//s2
12
                 {
13
                      kill(); //s5
14
                 }
15
                 [t]
16
17
                 ſ
                      player := A;
18
                      shoot(); //s6
19
                 }
20
            }
21
22
   }
```

 (s_0)

```
shoot(){
                                    //s0
1
             if(player == A){
                                    //s1
2
3
                      kill();
                                    //s3
4
                 }
5
                 [s]
6
                 ſ
                      player := B;
8
                      shoot(); //s4
9
                 }
10
             }
11
             else if(player == B){//s2
12
                 {
13
                      kill():
                                    //s5
14
                 }
15
                 [t]
16
17
                 ſ
                      player := A;
18
                      shoot(); //s6
19
                 }
20
            }
21
22
   }
```


- 1 kill(){ //k0
- 2
- 3 }

1 kill(){ //k0 2 3 }

- 1 kill(){ //k0
- 3 }

Why do we have this method?

1 kill(){ //k0 2 3 }

Why do we have this method?

It yields an "easy" head (pk₀) for analysis

1 kill(){ //k0
2
3 }

Why do we have this method?

- It yields an "easy" head (pk₀) for analysis
- All configuration with head pk₀ terminate

1 kill(){ //k0
2
3 }

Why do we have this method?

- It yields an "easy" head (pk₀) for analysis
- All configuration with head pk₀ terminate
- \Rightarrow Picking good control points and methods is key!

Reminder: pPDA

A probabilistic pushdown automaton (pPDA) is a tuple $\Delta=(Q,\Gamma,\hookrightarrow,\mathfrak{P})$ defined as

- Q is a finite set of states.
- Γ is a finite stack alphabet.
- $\hookrightarrow \subseteq (Q \times \Gamma) \times (Q \times \Gamma^*)$ is a set of transitions
- \$\mathcal{P}\$ is a function which assigns probabilities to transitions
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$

Reminder: pPDA

A probabilistic pushdown automaton (pPDA) is a tuple $\Delta=(Q,\Gamma,\hookrightarrow,\mathfrak{P})$ defined as

- Q is a finite set of states.
- Γ is a finite stack alphabet.
- $\hookrightarrow \subseteq (Q \times \Gamma) \times (Q \times \Gamma^*)$ is a set of transitions
- \$\mathcal{P}\$ is a function which assigns probabilities to transitions
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$

How does this relate to control flow graphs?

Exception in thread "main" [ava.lang.NullPointerException at main.Main.ThereWeAre(Main.java:54) at main.Main.itsComin(Main.java:50) at main.Main.inb4NullPointerException(Main.java:46) at main.Main.goingToBeLegendary(Main.java:42) at main.Main.waitForIt(Main.java:38) at main.Main.getReadyForErrors(Main.java:34) at main.Main.isThisEverGonnaStop(Main.java:30) at main.Main.Kappa(Main.java:25) at main.Main.probabilisticProgramsYEAH(Main.java:22) at main.Main.seminarAtI2(Main.java:18) at main.Main.onWeGo(Main.java:14) at main.Main.letsGo(Main.java:10) at main.Main.main(Main.java:6)

► Q: Variable assignments

- ► *Q*: Variable assignments
- Γ : Nodes in the graph

- ► Q: Variable assignments
- Γ: Nodes in the graph
- \mathfrak{P} : Probabilities of the edges

- ► Q: Variable assignments
- Γ: Nodes in the graph
- \mathfrak{P} : Probabilities of the edges
- ► ⇔: ???

• construct every pair $Q \times \Gamma$

- construct every pair $Q \times \Gamma$
- ▶ for each pair $\langle q, \gamma \rangle \in Q \times \Gamma$ consider edges of the control flow graph:

- construct every pair $Q \times \Gamma$
- for each pair $\langle q, \gamma \rangle \in Q \times \Gamma$ consider edges of the control flow graph:
 - $\blacktriangleright \ \langle q,\gamma\rangle \hookrightarrow \langle q',\gamma'\rangle \text{ if no function call between }\gamma \text{ and }\gamma'$

- construct every pair $Q \times \Gamma$
- for each pair $\langle q, \gamma \rangle \in Q \times \Gamma$ consider edges of the control flow graph:
 - $\blacktriangleright \ \langle q,\gamma\rangle \hookrightarrow \langle q',\gamma'\rangle \text{ if no function call between }\gamma \text{ and }\gamma'$
 - $\langle q, \gamma \rangle \hookrightarrow \langle q', \varphi \gamma' \rangle$ if function call between γ and γ'

- construct every pair $Q \times \Gamma$
- ▶ for each pair $\langle q, \gamma \rangle \in Q \times \Gamma$ consider edges of the control flow graph:
 - $\blacktriangleright \ \langle q,\gamma\rangle \hookrightarrow \langle q',\gamma'\rangle \text{ if no function call between }\gamma \text{ and }\gamma'$
 - $\langle q, \gamma \rangle \hookrightarrow \langle q', \varphi \gamma' \rangle$ if function call between γ and γ'
 - γ' return address
 - φ entry point of function call

- construct every pair $Q \times \Gamma$
- ▶ for each pair $\langle q, \gamma \rangle \in Q \times \Gamma$ consider edges of the control flow graph:
 - $\blacktriangleright \ \langle q,\gamma\rangle \hookrightarrow \langle q',\gamma'\rangle \text{ if no function call between }\gamma \text{ and }\gamma'$
 - $\langle q, \gamma \rangle \hookrightarrow \langle q', \varphi \gamma' \rangle$ if function call between γ and γ'
 - γ' return address
 - φ entry point of function call
 - $\blacktriangleright \ \langle q,\gamma\rangle \hookrightarrow \langle q',\varepsilon\rangle \text{ if function call terminates }$

$$\begin{array}{c} \langle As_0 \rangle \stackrel{1}{\rightarrow} \langle As_1 \rangle \\ \langle Bs_0 \rangle \stackrel{1}{\rightarrow} \langle Bs_2 \rangle \\ \langle As_1 \rangle \stackrel{s}{\rightarrow} \langle Ak_0 s_3 \rangle \\ \langle As_1 \rangle \stackrel{1-s}{\rightarrow} \langle Bs_0 s_4 \rangle \\ \langle As_3 \rangle \stackrel{1}{\rightarrow} \langle A\varepsilon \rangle \\ \langle As_4 \rangle \stackrel{1}{\rightarrow} \langle A\varepsilon \rangle \\ \langle Bs_4 \rangle \stackrel{1}{\rightarrow} \langle A\varepsilon \rangle \\ \langle Bs_2 \rangle \stackrel{t}{\rightarrow} \langle Bc_0 s_5 \rangle \\ \langle Bs_2 \rangle \stackrel{1-t}{\rightarrow} \langle As_0 s_6 \rangle \\ \langle Bs_5 \rangle \stackrel{1}{\rightarrow} \langle B\varepsilon \rangle \\ \langle Bs_6 \rangle \stackrel{1}{\rightarrow} \langle B\varepsilon \rangle \\ \langle As_6 \rangle \stackrel{1}{\rightarrow} \langle A\varepsilon \rangle \end{array}$$

<

$$\begin{array}{c} \left\langle Bs_{2} \right\rangle \stackrel{1-t}{\hookrightarrow} \left\langle As_{0}s_{6} \right\rangle \\ \left\langle Bs_{5} \right\rangle \stackrel{1}{\hookrightarrow} \left\langle B\varepsilon \right\rangle \\ \left\langle Bs_{6} \right\rangle \stackrel{1}{\hookrightarrow} \left\langle B\varepsilon \right\rangle \\ \left\langle As_{6} \right\rangle \stackrel{1}{\hookrightarrow} \left\langle A\varepsilon \right\rangle \\ \left\langle Ak_{0} \right\rangle \stackrel{1}{\hookrightarrow} \left\langle A\varepsilon \right\rangle \\ \left\langle Bk_{0} \right\rangle \stackrel{1}{\hookrightarrow} \left\langle B\varepsilon \right\rangle \end{array}$$

Analyzing Probabilistic Pushdown Automata

Reminder: Properties of pPDA

Properties of pPDA

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $pX \in Q \times \Gamma$ an initial configuration and $\mathcal{C} \subseteq Q \times \Gamma^*$ a set of target configurations.

- Qualitative reachability/termination: $\mathscr{P}(Reach(pX, C)) = 1$?
- ▶ Quantitative reachability/termination: $\mathscr{P}(Reach(pX, C)) \leq d$ for a constant $d \in (0, 1)$?

We solve this problem for a simple set of target configurations.

We solve this problem for a simple set of target configurations. \Rightarrow Extensible to regular sets of target configurations

We solve this problem for a simple set of target configurations. \Rightarrow Extensible to regular sets of target configurations

Notation

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $\mathcal{C} \subseteq Q \times \Gamma^*$ a simple set of target configurations and \mathcal{H} be the associated set of heads.

We solve this problem for a simple set of target configurations. \Rightarrow Extensible to regular sets of target configurations

Notation

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $\mathcal{C} \subseteq Q \times \Gamma^*$ a simple set of target configurations and \mathcal{H} be the associated set of heads.

$$\blacktriangleright \ [pX\bullet] = \mathscr{P}(Reach(pX,\mathcal{C}))$$

We solve this problem for a simple set of target configurations. \Rightarrow Extensible to regular sets of target configurations

Notation

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $\mathcal{C} \subseteq Q \times \Gamma^*$ a simple set of target configurations and \mathcal{H} be the associated set of heads.

$$\blacktriangleright \ [pX\bullet] = \mathscr{P}(Reach(pX,\mathcal{C}))$$

• [pXq] =probability of all $r \in Reach(pX, \{q\varepsilon\})$ that do not visit C

We solve this problem for a simple set of target configurations. \Rightarrow Extensible to regular sets of target configurations

Notation

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $\mathcal{C} \subseteq Q \times \Gamma^*$ a simple set of target configurations and \mathcal{H} be the associated set of heads.

$$\blacktriangleright \ [pX\bullet] = \mathscr{P}(Reach(pX,\mathcal{C}))$$

• [pXq] =probability of all $r \in Reach(pX, \{q\varepsilon\})$ that do not visit C

We solve this problem for a simple set of target configurations. \Rightarrow Extensible to regular sets of target configurations

Notation

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA, $\mathcal{C} \subseteq Q \times \Gamma^*$ a simple set of target configurations and \mathcal{H} be the associated set of heads.

$$\blacktriangleright [pX\bullet] = \mathscr{P}(Reach(pX,\mathcal{C}))$$

• [pXq] =probability of all $r \in Reach(pX, \{q\varepsilon\})$ that do not visit C

$$\blacktriangleright \ [pX\bullet] = 1$$

$$\blacktriangleright \ [pXq] = 0$$

$$[pX\bullet] = \sum_{pX \stackrel{x}{\hookrightarrow} rY} x \cdot [rY\bullet] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} x \cdot [rY\bullet] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot [rYt] \cdot [tZ\bullet]$$

$$[pX\bullet] = \sum_{pX \stackrel{x}{\hookrightarrow} rY} x \cdot [rY\bullet] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} x \cdot [rY\bullet] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot [rYt] \cdot [tZ\bullet]$$
$$[pXq] = \sum_{pX \stackrel{x}{\hookrightarrow} q\varepsilon} x + \sum_{pX \stackrel{x}{\hookrightarrow} rY} x \cdot [rYq] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot [rYt] \cdot [tZq]$$

For $pX \notin \mathcal{H}$:

$$[pX\bullet] = \sum_{pX \stackrel{x}{\hookrightarrow} rY} x \cdot [rY\bullet] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} x \cdot [rY\bullet] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot [rYt] \cdot [tZ\bullet]$$
$$[pXq] = \sum_{pX \stackrel{x}{\hookrightarrow} q\varepsilon} x + \sum_{pX \stackrel{x}{\hookrightarrow} rY} x \cdot [rYq] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot [rYt] \cdot [tZq]$$

1. Construct equations for all $[pX\bullet]$ and [pXq] needed.

$$[pX\bullet] = \sum_{pX \stackrel{x}{\hookrightarrow} rY} x \cdot [rY\bullet] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} x \cdot [rY\bullet] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot [rYt] \cdot [tZ\bullet]$$
$$[pXq] = \sum_{pX \stackrel{x}{\hookrightarrow} q\varepsilon} x + \sum_{pX \stackrel{x}{\hookrightarrow} rY} x \cdot [rYq] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot [rYt] \cdot [tZq]$$

- 1. Construct equations for all $[pX\bullet]$ and [pXq] needed.
- 2. Replace all $[pX\bullet]$ and [pXq] by fresh random variables $\langle pX\bullet\rangle$ and $\langle pXq\rangle$

$$[pX\bullet] = \sum_{pX \stackrel{x}{\hookrightarrow} rY} x \cdot [rY\bullet] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} x \cdot [rY\bullet] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot [rYt] \cdot [tZ\bullet]$$
$$[pXq] = \sum_{pX \stackrel{x}{\hookrightarrow} q\varepsilon} x + \sum_{pX \stackrel{x}{\hookrightarrow} rY} x \cdot [rYq] + \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot [rYt] \cdot [tZq]$$

- 1. Construct equations for all $[pX\bullet]$ and [pXq] needed.
- 2. Replace all $[pX\bullet]$ and [pXq] by fresh random variables $\langle pX\bullet\rangle$ and $\langle pXq\rangle$
- 3. Solve the system of recursive equations for least solution.

Let C be a set of target configurations with $\mathcal{H} = \{Ak_0, Bk_0\}$

$$[Ad_0\bullet] = \sum_{Ad_0 \stackrel{x}{\hookrightarrow} rY} x \cdot [rY\bullet] + \sum_{Ad_0 \stackrel{x}{\hookrightarrow} rYZ} x \cdot [rY\bullet] + \sum_{Ad_0 \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot [rYt] \cdot [tZ\bullet]$$

$$[Ad_0\bullet] = \sum_{Ad_0 \stackrel{x}{\hookrightarrow} rY} x \cdot [rY\bullet] + \sum_{Ad_0 \stackrel{x}{\hookrightarrow} rYZ} x \cdot [rY\bullet] + \sum_{Ad_0 \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot [rYt] \cdot [tZ\bullet]$$

$$[Ad_{0}\bullet] = \sum_{Ad_{0}\stackrel{x}{\hookrightarrow}rY} x \cdot [rY\bullet] + \sum_{Ad_{0}\stackrel{x}{\hookrightarrow}rYZ} x \cdot [rY\bullet] + \sum_{Ad_{0}\stackrel{x}{\hookrightarrow}rYZ} \sum_{t\in Q} x \cdot [rYt] \cdot [tZ\bullet]$$
$$= p \cdot [As_{0}\bullet]$$

$$\begin{array}{c} \langle Ad_0 \rangle \stackrel{p}{\hookrightarrow} \langle As_0d_1 \rangle \\ \langle Ad_0 \rangle \stackrel{1-p}{\hookrightarrow} \langle Bs_0d_1 \rangle \end{array}$$

$$\begin{split} [Ad_0\bullet] &= \sum_{Ad_0\stackrel{x}{\leftrightarrow}rY} x \cdot [rY\bullet] + \sum_{Ad_0\stackrel{x}{\leftrightarrow}rYZ} x \cdot [rY\bullet] + \sum_{Ad_0\stackrel{x}{\leftrightarrow}rYZ} \sum_{t\in Q} x \cdot [rYt] \cdot [tZ\bullet] \\ &= p \cdot [As_0\bullet] + (1-p) \cdot [Bs_0\bullet] \end{split}$$

$$\begin{array}{c} \langle Ad_0 \rangle \stackrel{p}{\hookrightarrow} \langle As_0d_1 \rangle \\ \langle Ad_0 \rangle \stackrel{1-p}{\hookrightarrow} \langle Bs_0d_1 \rangle \end{array}$$

Let C be a set of target configurations with $\mathcal{H} = \{Ak_0, Bk_0\}$ $\Rightarrow \mathscr{P}(Reach(Ad_0, C)) = [Ad_0 \bullet] = 1$ means qualitative termination

$$[Ad_{0}\bullet] = \sum_{Ad_{0}\stackrel{x}{\rightarrow}rY} x \cdot [rY\bullet] + \sum_{Ad_{0}\stackrel{x}{\rightarrow}rYZ} x \cdot [rY\bullet] + \sum_{Ad_{0}\stackrel{x}{\rightarrow}rYZ} \sum_{t\in Q} x \cdot [rYt] \cdot [tZ\bullet]$$
$$= p \cdot [As_{0}\bullet] + (1-p) \cdot [Bs_{0}\bullet]$$
$$+ \sum_{Ad_{0}\stackrel{x}{\rightarrow}rYZ} (x \cdot [rYA] \cdot [AZ\bullet] + x \cdot [rYB] \cdot [BZ\bullet])$$

$$\begin{split} [Ad_0\bullet] &= p \cdot [As_0\bullet] + (1-p) \cdot [Bs_0\bullet] \\ &+ (p \cdot [As_0A] \cdot [Ad_1\bullet] + p \cdot [As_0B] \cdot [Bd_1\bullet]) \\ &+ ((1-p) \cdot [Bs_0A] \cdot [Ad_1\bullet] + (1-p) \cdot [Bs_0B] \cdot [Bd_1\bullet]) \end{split}$$

$$\begin{array}{c} \langle Ad_0 \rangle \stackrel{p}{\hookrightarrow} \langle As_0d_1 \rangle \\ \langle Ad_0 \rangle \stackrel{1-p}{\hookrightarrow} \langle Bs_0d_1 \rangle \end{array}$$

Let C be a set of target configurations with $\mathcal{H} = \{Ak_0, Bk_0\}$ $\Rightarrow \mathscr{P}(Reach(Ad_0, C)) = [Ad_0 \bullet] = 1$ means qualitative termination

$$\begin{split} [Ad_0\bullet] &= p \cdot [As_0\bullet] + (1-p) \cdot [Bs_0\bullet] \\ &+ (p \cdot [As_0A] \cdot [Ad_1\bullet] + p \cdot [As_0B] \cdot [Bd_1\bullet]) \\ &+ ((1-p) \cdot [Bs_0A] \cdot [Ad_1\bullet] + (1-p) \cdot [Bs_0B] \cdot [Bd_1\bullet]) \end{split}$$

 \Rightarrow Remove zero summands

$$\begin{array}{c} \langle Ad_0 \rangle \stackrel{p}{\hookrightarrow} \langle As_0d_1 \rangle \\ \langle Ad_0 \rangle \stackrel{1-p}{\hookrightarrow} \langle Bs_0d_1 \rangle \end{array}$$

Let C be a set of target configurations with $\mathcal{H} = \{Ak_0, Bk_0\}$ $\Rightarrow \mathscr{P}(Reach(Ad_0, C)) = [Ad_0 \bullet] = 1$ means qualitative termination

$$[Ad_0\bullet] = p \cdot [As_0\bullet] + (1-p) \cdot [Bs_0\bullet]$$

 \Rightarrow We need to calculate $[As_0 \bullet]$ and $[Bs_0 \bullet]!$

$$[Ad_0\bullet] = p \cdot [As_0\bullet] + (1-p) \cdot [Bs_0\bullet]$$
$$[As_0\bullet] = s + (1-s) \cdot [Bs_0\bullet]$$
$$[Bs_0\bullet] = t + (1-t) \cdot [As_0\bullet]$$

$$\begin{aligned} [Ad_0\bullet] &= p \cdot [As_0\bullet] + (1-p) \cdot [Bs_0\bullet] \\ [As_0\bullet] &= s + (1-s) \cdot [Bs_0\bullet] \\ [Bs_0\bullet] &= t + (1-t) \cdot [As_0\bullet] \end{aligned}$$

$$\begin{split} \langle Ad_0 \bullet \rangle &= p \cdot \langle As_0 \bullet \rangle + (1 - p) \cdot \langle Bs_0 \bullet \rangle \\ \langle As_0 \bullet \rangle &= s + (1 - s) \cdot \langle Bs_0 \bullet \rangle \\ \langle Bs_0 \bullet \rangle &= t + (1 - t) \cdot \langle As_0 \bullet \rangle \end{split}$$

$$\langle Ad_0 \bullet \rangle = p \cdot \langle As_0 \bullet \rangle + (1-p) \cdot \langle Bs_0 \bullet \rangle \langle As_0 \bullet \rangle = s + (1-s) \cdot \langle Bs_0 \bullet \rangle \langle Bs_0 \bullet \rangle = t + (1-t) \cdot \langle As_0 \bullet \rangle$$

$$\langle Ad_0 \bullet \rangle = p \cdot \langle As_0 \bullet \rangle + (1-p) \cdot \langle Bs_0 \bullet \rangle$$
$$\langle As_0 \bullet \rangle = s + (1-s) \cdot \langle Bs_0 \bullet \rangle$$
$$\langle Bs_0 \bullet \rangle = t + (1-t) \cdot \langle As_0 \bullet \rangle$$
$$- n = 1/2$$

$$p = 1/2 \\ s = 1/2 \\ t = 1/3$$

$$\langle Ad_0 \bullet \rangle = p \cdot \langle As_0 \bullet \rangle + (1-p) \cdot \langle Bs_0 \bullet \rangle$$
$$\langle As_0 \bullet \rangle = s + (1-s) \cdot \langle Bs_0 \bullet \rangle$$
$$\langle Bs_0 \bullet \rangle = t + (1-t) \cdot \langle As_0 \bullet \rangle$$
$$p = 1/2$$
$$s = 1/2$$
$$t = 1/3$$
$$\langle Ad_0 \bullet \rangle = 1, \langle As_0 \bullet \rangle = 1, \langle Bs_0 \bullet \rangle = 1$$

$$\langle Ad_0 \bullet \rangle = p \cdot \langle As_0 \bullet \rangle + (1-p) \cdot \langle Bs_0 \bullet \rangle \\ \langle As_0 \bullet \rangle = s + (1-s) \cdot \langle Bs_0 \bullet \rangle \\ \langle Bs_0 \bullet \rangle = t + (1-t) \cdot \langle As_0 \bullet \rangle$$

$$p = 1/2$$

$$s = 0$$

$$t = 0$$

$$\langle Ad_0 \bullet \rangle = \mathbf{0}, \langle As_0 \bullet \rangle = \mathbf{0}, \langle Bs_0 \bullet \rangle = \mathbf{0}$$
• We know that the duel ends if both s, t > 0

- We know that the duel ends if both s, t > 0
- ▶ What is the probability that e.g. A wins the duel?

- We know that the duel ends if both s, t > 0
- ▶ What is the probability that e.g. A wins the duel?

 $\blacktriangleright \Rightarrow [Ad_0A] = ?, \mathcal{C} = \emptyset$

- We know that the duel ends if both s, t > 0
- What is the probability that e.g. A wins the duel?
- $\blacktriangleright \Rightarrow [Ad_0A] = ?, \mathcal{C} = \emptyset$
- Same equations apply!

$$[Ad_0A] = p \cdot [As_0A] + (1-p)[Bs_0A]$$
$$[As_0A] = s + (1-s)[Bs_0A]$$
$$[Bs_0A] = (1-t)[As_0A]$$

- We know that the duel ends if both s, t > 0
- What is the probability that e.g. A wins the duel?
- $\blacktriangleright \Rightarrow [Ad_0A] = ?, \mathcal{C} = \emptyset$
- Same equations apply!

$$\langle Ad_0A \rangle = p \cdot \langle As_0A \rangle + (1-p) \langle Bs_0A \rangle$$
$$\langle As_0A \rangle = s + (1-s) \langle Bs_0A \rangle$$
$$\langle Bs_0A \rangle = (1-t) \langle As_0A \rangle$$

- We know that the duel ends if both s, t > 0
- ▶ What is the probability that e.g. A wins the duel?
- $\blacktriangleright \Rightarrow [Ad_0A] = ?, \mathcal{C} = \emptyset$
- Same equations apply!

$$p = 1/2, s = 1/2, t = 1/2$$

- We know that the duel ends if both s, t > 0
- ▶ What is the probability that e.g. A wins the duel?
- $\blacktriangleright \Rightarrow [Ad_0A] = ?, \mathcal{C} = \emptyset$
- Same equations apply!

$$p = 1/2, s = 1/2, t = 1/2$$

 pPDA nice way to model and analyze systems that use probability as well as recursion

- pPDA nice way to model and analyze systems that use probability as well as recursion
- 2 formulae enough to study quantitative and qualitative reachability

- pPDA nice way to model and analyze systems that use probability as well as recursion
- 2 formulae enough to study quantitative and qualitative reachability
- Can be done efficiently in polynomial space

- pPDA nice way to model and analyze systems that use probability as well as recursion
- 2 formulae enough to study quantitative and qualitative reachability
- Can be done efficiently in polynomial space
- Construction technique to pPBA allows analysis in polynomial time.

Definition: Runtime

Let Δ be a transition system with a set of configurations S and target configurations T.

Definition: Runtime

Let Δ be a transition system with a set of configurations S and target configurations T.

Let $f: S \to \mathbb{R}_{\geq 0}$ be a function that assigns run times to states.

Definition: Runtime

Let Δ be a transition system with a set of configurations S and target configurations T. Let $f: S \to \mathbb{R}_{\geq 0}$ be a function that assigns run times to states.

For every run $r \in Runs(\Delta)$ we define k_r as the least $n \in \mathbb{N}_0$ such that $r(n) \in T$.

Definition: Runtime

Let Δ be a transition system with a set of configurations S and target configurations T.

Let $f: S \to \mathbb{R}_{\geq 0}$ be a function that assigns run times to states. For every run $r \in Runs(\Delta)$ we define k_r as the least $n \in \mathbb{N}_0$ such that $r(n) \in T$.

$$Time(\Delta) = \sum_{i=0}^{k_r} f(r(i))$$
.

Definition: Runtime

Let Δ be a transition system with a set of configurations S and target configurations T.

Let $f: S \to \mathbb{R}_{\geq 0}$ be a function that assigns run times to states. For every run $r \in Runs(\Delta)$ we define k_r as the least $n \in \mathbb{N}_0$ such that $r(n) \in T$.

$$Time(\Delta) = \sum_{i=0}^{k_r} f(r(i))$$
.

 $\Rightarrow k_r$ depends on probability

Definition: Runtime

Let Δ be a transition system with a set of configurations S and target configurations T.

Let $f: S \to \mathbb{R}_{\geq 0}$ be a function that assigns run times to states. For every run $r \in Runs(\Delta)$ we define k_r as the least $n \in \mathbb{N}_0$ such that $r(n) \in T$.

$$Time(\Delta) = \sum_{i=0}^{k_r} f(r(i))$$
.

 $\Rightarrow k_r \text{ depends on probability} \\\Rightarrow \mathbb{E}(Time(\Delta)), \ \mathbb{E}(Time(\Delta)|Reach(pX, \mathcal{C}))$

Definition: Expected Runtime pPDA

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA. $E_{pXq} = \mathbb{E}(Time(\Delta)|Reach(pX, \{q\varepsilon\}))$ conditional expected runtime

Definition: Expected Runtime pPDA

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA. $E_{pXq} = \mathbb{E}(Time(\Delta)|Reach(pX, \{q\varepsilon\}))$ conditional expected runtime

$$\begin{split} \langle E_{pXq} \rangle &= f(pX) + \sum_{pX \stackrel{x}{\hookrightarrow} rY} x \cdot \frac{[rYq]}{[pXq]} \cdot \langle E_{rYq} \rangle \\ &+ \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot \frac{[rYt] \cdot [tZq]}{[pXq]} \cdot (\langle E_{rYt} \rangle + \langle E_{tZq} \rangle) \end{split}$$

Definition: Expected Runtime pPDA

Let $\Delta = (Q, \Gamma, \hookrightarrow, \mathfrak{P})$ be a pPDA. $E_{pXq} = \mathbb{E}(Time(\Delta)|Reach(pX, \{q\varepsilon\}))$ conditional expected runtime

$$\langle E_{pXq} \rangle = f(pX) + \sum_{pX \stackrel{x}{\hookrightarrow} rY} x \cdot \frac{[rYq]}{[pXq]} \cdot \langle E_{rYq} \rangle$$

$$+ \sum_{pX \stackrel{x}{\hookrightarrow} rYZ} \sum_{t \in Q} x \cdot \frac{[rYt] \cdot [tZq]}{[pXq]} \cdot (\langle E_{rYt} \rangle + \langle E_{tZq} \rangle)$$

 \Rightarrow Here: f(pX) = 1 for all $pX \in Q \times \Gamma \Rightarrow$ discrete time

$$\begin{aligned} \mathscr{P}(Reach(rY, \{q\varepsilon\}) | Reach(pX, \{q\varepsilon\})) &= \frac{\mathscr{P}(Reach(rY, \{q\varepsilon\}) \cap Reach(pX, \{q\varepsilon\}))}{\mathscr{P}(Reach(pX, \{q\varepsilon\}))} \\ &= \frac{\mathscr{P}(Reach(rY, \{q\varepsilon\}))}{\mathscr{P}(Reach(pX, \{q\varepsilon\}))} \\ &= \frac{[rYq]}{[pXq]} \end{aligned}$$

Expected runtime for all runs that start in Ad_0 and end in $A\varepsilon$:

Expected runtime for all runs that start in Ad_0 and end in $A\varepsilon$:

$$\langle E_{As_0A} \rangle = 1 + \frac{[As_1A]}{[As_0A]} \cdot \langle E_{As_1A} \rangle$$

$$\langle E_{As_1A} \rangle = 1 + \frac{s}{[As_1A]} \cdot (\langle E_{Ak_0A} \rangle + \langle E_{As_3A} \rangle) + (1-s) \cdot \frac{[Bs_0A]}{[As_1A]} (\langle E_{Bs_0A} \rangle)$$

$$\langle E_{Bs_0A} \rangle = 1 + \frac{[Bs_2A]}{[Bs_0A]} \cdot \langle E_{Bs_2A} \rangle$$

$$\langle E_{Bs_2A} \rangle = 1 + (1-t) \cdot \frac{[As_0A]}{[Bs_2A]} \cdot (\langle E_{As_0A} \rangle + \langle E_{As_6A} \rangle)$$

$$\langle E_{Ad_1A} \rangle = 1$$

$$\langle E_{As_3A} \rangle = 1$$

$$\langle E_{As_6A} \rangle = 1$$

Let's assume p = s = t = 1/2

Let's assume p = s = t = 1/2

$$\begin{split} \langle E_{Ad_0A} \rangle &= 2 + \frac{2}{3} \cdot \langle As_0A \rangle + \frac{1}{3} \cdot \langle Bs_0A \rangle \\ \langle E_{As_0A} \rangle &= 1 + \langle E_{As_1A} \rangle \\ \langle E_{As_1A} \rangle &= \frac{5}{2} + \frac{1}{4} \langle E_{Bs_0A} \rangle \\ \langle E_{Bs_0A} \rangle &= 1 + \langle E_{Bs_2A} \rangle \\ \langle E_{Bs_2A} \rangle &= 2 + \langle E_{As_0A} \rangle \end{split}$$

Let's assume p = s = t = 1/2

$$\langle E_{Ad_0A} \rangle = 2 + \frac{2}{3} \cdot \langle As_0A \rangle + \frac{1}{3} \cdot \langle Bs_0A \rangle$$

$$\langle E_{As_0A} \rangle = 1 + \langle E_{As_1A} \rangle$$

$$\langle E_{As_1A} \rangle = \frac{5}{2} + \frac{1}{4} \langle E_{Bs_0A} \rangle$$

$$\langle E_{Bs_0A} \rangle = 1 + \langle E_{Bs_2A} \rangle$$

$$\langle E_{Bs_2A} \rangle = 2 + \langle E_{As_0A} \rangle$$

 $\Rightarrow \langle E_{Ad_0A} \rangle = 26/3 = 8.\overline{66}$

Quantitative System Parametrized

$$\langle Ad_0A \rangle = \frac{-p - (1 - p) \cdot (1 - t)}{2(st - s - t)}$$
$$\langle As_0A \rangle = \frac{-1}{2(st - s - t)}$$
$$\langle Bs_0A \rangle = \frac{-(1 - t)}{2(st - s - t)}$$