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Complexity of LTL model checking LTLMEB.2-71

main steps of automata-based LTL model checking:

construction of an NBA A
for

persistence checking in the
product 7T ® A
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Complexity of LTL model checking LTLMEB.2-71

main steps of automata-based LTL model checking:

construction of an NBA A
for

persistence checking in the
product 7T ® A

«— O(exp(l¢l))

— O(size(T) - size(A))

complexity: O(size(T) - exp(|¢|))
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Complexity of LTL model checking LTLMEB.2-71

main steps of automata-based LTL model checking:

constructi?(l)wr Cf(;n NBA A — O(exp(|¢]))

ersistence checking in the . .
pers! oroduct T é i' — O(size(T) - size(A))

complexity: O(size(T) - exp(|¢|))

The LTL model checking problem is
PSPACE-complete
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Complexity of LTL model checking LTLMCB 271

LTL model checking problem

given: finite transition system 7°
LTL-formula ¢
question: does T |= ¢ hold ?
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Complexity of LTL model checking LTLMCB 271

LTL model checking problem

given: finite transition system 7°
LTL-formula ¢
question: does T = ¢ hold ?

we show
e just for fun: coNP-hardness
e PSPACE-completeness
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Recall: complexity classes
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Complexity classes P, NP

)

P = class of decision problem solvable in
deterministic polynomial time

NP

NP = class of decision problem solvable in
nondeterministic polynomial time
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Complexity classes P, NP

7)
NP

NPC = class of NP-complete problems
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Complexity classes P, NP

7)
NP

NPC = class of NP-complete problems
T

(1) Le NP
(2) Lis NP-hard, i.e., K <poj L for all K € NP
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Complexity classes P, NP

NP-hard
problems

7)
NP

NPC = class of NP-complete problems
T

(1) Le NP
(2) Lis NP-hard, i.e., K <poj L for all K € NP
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Complexity classes P, NP, coNP

NP-hard
problems

coNP

coNP = {L[:Le NP}

complement of L
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Complexity classes P, NP, coNP

NP-hard
problems

\
=

coNP
J
coNPC = class of coNP-complete problems
T
(1) L€ coNP

(2) L is coNP-hard, i.e., K <poy L for all K € coNP
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Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard
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Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
L ®
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard
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Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
L ® e/
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard
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Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems

LTL-MC LTL-MC
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard

19/187



coNP-hardness LTLMC3.2-72

The LTL model checking problem is coNP-hard
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coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC
/ AN

Hamilton path complement of the
problem LTL model checking problem
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coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC

/ AN
Hamilton path complement of the
problem LTL model checking problem

complement of the LTL model checking problem:

given: finite transition system 7, LTL-formula ¢
question: does T [~ ¢ hold ?
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coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC

/ AN
Hamilton path complement of the
problem LTL model checking problem
T
NP-complete

complement of the LTL model checking problem:

given: finite transition system 7, LTL-formula ¢
question: does T [~ ¢ hold ?
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coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC

/ AN
Hamilton path complement of the
problem LTL model checking problem

T
NP-complete NP-hard

complement of the LTL model checking problem:

given: finite transition system 7, LTL-formula ¢
question: does T [~ ¢ hold ?
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Hamilton path problem HP LTLMCS.2-728

HP Hamilton path problem:

given: finite directed graph G
question: does G has a Hamilton path ?, i.e., a
path that visits each node exactly once
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Hamilton path problem HP LTLMC3.2-728

HP Hamilton path problem:

given: finite directed graph G
question: does G has a Hamilton path ?, i.e., a
path that visits each node exactly once
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Hamilton path problem HP LTLMC3.2-728

HP Hamilton path problem:

given: finite directed graph G
question: does G has a Hamilton path ?, i.e., a
path that visits each node exactly once

G has a Hamilton path
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Hamilton path problem HP LTLMC3.2-728

HP Hamilton path problem:

given: finite directed graph G
question: does G has a Hamilton path ?, i.e., a
path that visits each node exactly once

has no Hamilton path
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Hamilton path problem HP LTLMC3.2-728

HP Hamilton path problem:

given: finite directed graph G
question: does G has a Hamilton path ?, i.e., a
path that visits each node exactly once

has no Hamilton path

HP is known to be NP-complete
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Polynomial reduction LTLNCB 273

HP  <,w LTL-MC
AN

Hamilton path complement of the
problem LTL model checking
problem
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Polynomial reduction

HP

Hamilton path
problem

finite directed
graph G

< poly

poly time
>

LTLMC3.2-73

LTL-MC
AN

complement of the
LTL model checking
problem

finite TS T
LTL formula ¢
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Polynomial reduction LTLNCB 273

HP  <,w LTL-MC
AN

Hamilton path complement of the
problem LTL model checking
problem
finite directed pwe finite TS T
graph G LTL formula ¢

G has a :
Hamilton path iff TH#e
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Polynomial reduction

HP

finite directed
graph G

G has a
Hamilton path

< poly

poly time
—

iff

LTLMC3.2-73

LTL-MC

finite TS T
LTL formula ¢

T

(I T)—)

33/187



Polynomial reduction LTLMCS 273

HP  <,oy LTL-MC

poly time

finite directed 3 finite TS T
graph G LTL formula ¢
G has a :
Hamilton path i TFEy

states of T

Il

node-set V of G

34/187



Polynomial reduction LTLMCS 273

HP  <,oy LTL-MC

poly time

finite directed 3 finite TS T
graph G LTL formula ¢
G has a :
Hamilton path i TFEy

statesof 7 AP =V

Il

node-set V of G
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Polynomial reduction LTLMCS 273
HP  <poy LTL-MC
poly time finite TS T

finite directed N
graph G LTL formula ¢

G has a :
Hamilton path iff TH#e

node-set V of G = statesof T AP =V
additional trap state t

OwQ0
‘OD
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Polynomial reduction LTLMCS 273
HP  <poy LTL-MC
poly time finite TS T

finite directed N
graph G LTL formula ¢

G has a :
Hamilton path iff TH#e

Il

statesof 7 AP =V
additional trap state t

@,-‘® [v5)
p="1 (£

node-set V of G
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Polynomial reduction LTLMCS 273

HP  <poy LTL-MC

poly time

finite directed 3 finite TS T
graph G LTL formula ¢
G has a :
Hamilton path i TFEy

statesof 7 AP =V
additional trap state t

@,-‘® [v5)

o= A (Ov A O — O0Ow)) e'

veVv

Il

node-set V of G
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Polynomial reduction LTLMCS 273

HP  <poy LTL-MC

poly time

finite directed 3 finite TS T
graph G LTL formula ¢
G has a :
Hamilton path i TFEy

statesof 7 AP =V
additional trap state t

@,-‘® [v5)

=" é\v(Ov A O(v — OO-wv)) e'

Il

node-set V of G
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Complexity of LTL model checking LTLMCB.2-73

We just saw:

The LTL model checking problem is coNP-hard
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Complexity of LTL model checking LTLMCB.2-73

We just saw:

The LTL model checking problem is coNP-hard

We now prove:

The LTL model checking problem is
PSPACE -complete
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The complexity class PSPACE LEMC3.2-74
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The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

43/187



The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
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The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
T

DFS-based analysis of the computation tree
of an NP-algorithm
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The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
T

DFS-based analysis of the computation tree
of an NP-algorithm

space requirements:
recursion depth = height of computation tree
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The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
e PSPACE = coPSPACE

(holds for any deterministic complexity class)
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The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
e PSPACE = coPSPACE

(holds for any deterministic complexity class)

e PSPACE = NPSPACE (Savitch's Theorem)
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The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
e PSPACE = coPSPACE

(holds for any deterministic complexity class)

e PSPACE = NPSPACE (Savitch's Theorem)

T
To prove L € PSPACE it suffices to provide a

nondeterministic polynomially space-bounded
algorithm for the complement L of L
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Complexity classes P, NP, coNP, PSPACE  ......

( PSPACE h

)

- J

PSPACE = class of decision problems that are
decidable in deterministic polynomial space
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Complexity classes P, NP, coNP, PSPACE  ......

( PSPACE h
N\
coNP
) NP
_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space
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Complexity classes P, NP, coNP, PSPACE  ......

( PSPACE h
N\
S
coNP
) NP
_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space
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Complexity classes P, NP, coNP, PSPACE  ......

( PSPACE h
LTL-MC [TL-MC
N\
S
coNP
) NP
_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space
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PSPACE-completeness LTLMG3.2-75
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PSPACE-completeness LTLMG3.2-75

decision problem L is PSPACE-complete iff

(1) L€ PSPACE K <poy L
(2) L is PSPACE-hard «—] for all K € PSPACE
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PSPACE-completeness

LTLMC3.2-75

(1) Le PSPACE
(2) Lis PSPACE-hard «—

decision problem L is PSPACE-complete iff

K Spoly L
for all K € PSPACE

as PSPACE = coPSPACE:

L is PSPACE-hard <= L is PSPACE-hard
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PSPACE-completeness LTLMG3.2-75

decision problem L is PSPACE-complete iff

(1) L€ PSPACE K <poy L
(2) L is PSPACE-hard «—] for all K € PSPACE

as PSPACE = coPSPACE = NPSPACE:
L is PSPACE-hard <= L is PSPACE-hard
L € PSPACE < L e NPSPACE
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PSPACE-completeness of LTL-MC LTLMC3.2-75A

LTL-MC LTL model checking problem
“does 7 |= ¢ hold for all paths w of T 2"

LTL-MC = complement of LTL-MC
“does 7 £ ¢ hold for some path w of 7 ?”
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PSPACE-completeness of LTL-MC LTLMC3.2-75A

LTL-MC LTL model checking problem
“does 7 |= ¢ hold for all paths w of T 2"

LTL-MC = complement of LTL-MC
“does 7 [£ ¢ hold for some path w of T ?”
T

|
JLTL-MC existential LTL model checking problem

for 7 and LTL formula ¥ = -
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PSPACE-completeness of LTL-MC LTLMC3.2-75A

LTL-MC LTL model checking problem
“does 7 |= ¢ hold for all paths w of T 2"

LTL-MC = complement of LTL-MC
“does 7 [£ ¢ hold for some path w of T ?”
T

|
JLTL-MC existential LTL model checking problem

for 7 and LTL formula ¥ = -
“does m |= 1 hold for some path w of T ?”
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PSPACE-completeness of LTL-MC LTLMC3.2-75A

LTL-MC LTL model checking problem
“does 7 |= ¢ hold for all paths w of T 2"

LTL-MC = complement of LTL-MC
“does 7 [£ ¢ hold for some path w of T ?”
T

|
JLTL-MC existential LTL model checking problem

for 7 and LTL formula ¥ = -
“does m |= 1 hold for some path w of T ?”

show: JLTL-MC € NPSPACE
dLTL-MC is PSPACE-hard
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PSPACE-completeness of LTL-MC LTLMC3.2-75A

LTL-MC LTL model checking problem
“does 7 |= ¢ hold for all paths w of T 2"

LTL-MC = complement of LTL-MC
“does 7 [£ ¢ hold for some path w of T ?”
T

|
JLTL-MC existential LTL model checking problem

for 7 and LTL formula ¥ = -
“does m |= 1 hold for some path w of T ?”

show: JLTL-MC € NPSPACE —> |LTL-MC € PSPACE

dLTL-MC is PSPACE-hard
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PSPACE-completeness of LTL-MC LTLMC3.2-75A

LTL-MC LTL model checking problem
“does 7 |= ¢ hold for all paths w of T 2"

LTL-MC = complement of LTL-MC
“does 7 [£ ¢ hold for some path w of T ?”
T

|
JLTL-MC existential LTL model checking problem

for 7 and LTL formula ¥ = -
“does m |= 1 hold for some path w of T ?”

show: ILTL-MC € NPSPACE ITL-MC is
ALTL-MC is PSPACE-hard = | PSPACE-hard
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Existential LTL model checking problem  ucsoms

given: T be a finite transition system
@ an LTL formula

question: does there exist a path w in 7 withw | ?

64 /187



Existential LTL model checking problem  ucsoms

given: T be a finite transition system
@ an LTL formula

question: does there exist a path w in T withw |z ?

goal: find a criterion for the existence of a path 7
in 7 with 7 |= ¢ that can be checked
nondeterministically in poly-space
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Existential LTL model checking problem  ucsoms

given: T be a finite transition system
@ an LTL formula

question: does there exist a path w in T withw |z ?

goal: find a criterion for the existence of a path 7
in 7 with 7 |= ¢ that can be checked
nondeterministically in poly-space

idea: use the GNBA G for ¢
(constructed by our LTL-2-GNBA algorithm)
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Existential LTL model checking

finite transition
system 7

LTLMC3.2-75F

LTL formula ¢

existential LTL model checking

thereisapathmin7 st. 1= ?

S

yes

AN

no




Existential LTL model checking LTLAC3. 275

finite transition LTL formula ¢
system 7

existential LTL model checking

check whether there is a path 1 in 7T s.it. 1@
by a nondeterministic poly-space algorithm

SN

yes no
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Existential LTL model checking

finite transition
system 7

LTLMC3.2-75F

LTL formula ¢

GNBA G for ¢

existential LTL model checking

check whether there is a path 1 in 7T s.it. 1@
by a nondeterministic poly-space algorithm

S

yes

AN

no
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Existential LTL model checking LTLAC3. 275

finite transition LTL formula ¢
system 7

GNBA G for ¢

K nondeterministic poly-space algorithm \

guess an ultimatively periodic path

T = Uy...Up—1(Up--thpym)* N T ®G
check whether 7 = A OOF
\ FeF J
/ \

yes no
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Recall: elementary formula-sets

LTLMC3.2-75C

closure cl(p):
e set of all subformulas of ¢ and their negations
e 1 and —— are identified

elementary formula-sets: subsets B of cl(y)
e maximal consistent w.r.t. propositional logic
e locally consistent w.r.t. U

For ¢ = aU(—a A b), the elementary sets are:

{ a, b,~(=aAb),¢} { a, b,~(=aAb),—p}
{ a, b, _'(_'a A b)1 (ID} { a, —b, _'(_'a A b)7 _'(P}
{_'37 b, —aAb, (P} {_'37 —b, _'(_'a A b)7 _'(P}
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Recall: GNBA for LTL-formula ¢

G =(Q,2%",6,Q, F)
state space: Q@ = {B C cl(y) : B is elementary }
initial states: @y = {B EQ:p€ B}
transition relation: for B € Q and A € 24P:
if A# BN AP then §(B,A) =2
if A= BN AP then §(B, A) = set of all B' € Q s.t.
Oy eB iff pebB
Uy € B iff (o€ B)V (11 € BAY1 Uy, € B)

acceptance set F = {Fy,uy, : 1 Ut € cl(¢)}
where Fy uy, = {B €EQ: 11U éBVise€ B}
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Criterion for existential LTL properties LTLMCS.2-75E
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Criterion for existential LTL properties LTLMCS.2-75E

There exists a path m in 7 with 7 |= ¢ iff

there exist
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Criterion for existential LTL properties LTLMCS.2-75E
There exists a path m in 7 with 7 |= ¢ iff
there exist
e an initial finite path fragment sy ...Sy...Spm in T

e arun ByB;...Byy1...Byime1 in G for the word
trace(spSy---Sn---Sntm)
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Criterion for existential LTL properties LTLMCS.2-75E
There exists a path m in 7 with 7 |= ¢ iff
there exist
e an initial finite path fragment sy ...Sy...Spm in T

e arun ByB;...Byy1...Byime1 in G for the word
trace(spSy---Sn---Sntm)

such that
(1) <5na Bn+l) = (5n+m, Bn+m+1>
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Criterion for existential LTL properties LTLMCS.2-75E
There exists a path m in 7 with 7 |= ¢ iff
there exist
e an initial finite path fragment sy ...Sy...Spm in T

e arun ByB;...Byy1...Byime1 in G for the word
trace(spSy---Sn---Sntm)

such that

(1) <5m Bn+l) = (5n+m, Bn+m+1>

(2) whenever Y1 Uy € Bpy1 U... U Bpypy then
¢2 € Bn+1U---UBn+m
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Criterion for existential LTL properties LTLMCS.2-75E

There exists a path m in 7 with 7 |= ¢ iff
there exist
e an initial finite path fragment sy ...Sy...Spm in T

e arun ByB;...Byy1...Byime1 in G for the word
trace(spSy---Sn---Sntm)

such that

(1) <5m Bn+l) = (5n+m, Bn+m+1>

(2) whenever Y1 Uy € Bpy1 U... U Bpypy then
¢2 € Bn+1U---UBn+m

(3) n<|§|- 2l
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Criterion for existential LTL properties LTLMCS.2-75E

There exists a path m in 7 with 7 |= ¢ iff
there exist
e an initial finite path fragment sy ...Sy...Spm in T

e arun ByB;...Byy1...Byime1 in G for the word
trace(spSy---Sn---Sntm)

such that

(1) <5m Bn+l) = (5n+m, Bn+m+1>

(2) whenever Y1 Uy € Bpy1 U... U Bpypy then
¢2 € Bn+1U---UBn+m

(3) n<|S|-21<N and m < |§| - 219N |y
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NPSPACE -algorithm for ALTL-MC
The existential LTL model checking problem

given: finite TS 7, LTL formula ¢
question: is there a path m € Paths(T) with w |= ¢ ?
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NPSPACE -algorithm for ALTL-MC
The existential LTL model checking problem

given: finite TS 7, LTL formula ¢
question: is there a path m € Paths(T) with w |= ¢ ?

is solvable by a nondeterministic polynomially
space-bounded algorithm:
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NPSPACE -algorithm for ALTL-MC
The existential LTL model checking problem

given: finite TS 7, LTL formula ¢
question: is there a path m € Paths(T) with w |= ¢ ?

is solvable by a nondeterministic polynomially
space-bounded algorithm:

e guess nondeterministically an ultimatively periodic
path m =woun ... Up1(Up- .. Upsm)” f T®G

3

GNBA for ¢ obtained by our LTL-2-GNBA algorithm
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NPSPACE -algorithm for ALTL-MC
The existential LTL model checking problem

given: finite TS 7, LTL formula ¢
question: is there a path m € Paths(T) with w |= ¢ ?

is solvable by a nondeterministic polynomially
space-bounded algorithm:

e guess nondeterministically an ultimatively periodic
path m =woun ... Up1(Up- .. Upsm)” f T®G

T
GNBA for ¢ obtained by our LTL-2-GNBA algorithm

e check whether the guessed path meets the
acceptance condition of G
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NPSPACE -algorithm for ALTL-MC

guess two natural numbersn,m< kst. m>1
where k = |§] - 2l . ||
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NPSPACE -algorithm for ALTL-MC

guess two natural numbersn,m< kst. m>1
where k = |§] - 2l . ||
gUESS Sp .. .Sp- - Sp+m € Pathsg,(T)
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NPSPACE -algorithm for ALTL-MC

guess two natural numbersn,m< kst. m>1
where k = |§] - 2l . ||

gUESS Sp .. .Sp- - Sp+m € Pathsg,(T)

guess n+m+2 subsets By, ..., By, .. ., Botmt1 of cl(p)
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NPSPACE -algorithm for ALTL-MC

guess two natural numbersn,m< kst. m>1
where k = |§] - 2l . ||

gUESS Sp .. .Sp- - Sp+m € Pathsg,(T)

guess n+m+2 subsets By, ..., By, .. ., Botmt1 of cl(p)

check whether the following three conditions hold:
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NPSPACE -algorithm for ALTL-MC

guess two natural numbersn,m< kst. m>1
where k = |§] - 2l . ||

gUESS Sp .. .Sp- - Sp+m € Pathsg,(T)

guess n+m+2 subsets By, ..., By, .. ., Botmt1 of cl(p)

check whether the following three conditions hold:

® (Sn, Brt1) = (Sn+m> Borm+1)
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NPSPACE -algorithm for ALTL-MC
guess two natural numbersn,m< kst. m>1
where k = |S] - 21 . |
gUESS Sp .. .Sp- - Sp+m € Pathsg,(T)
guess n+m+2 subsets By, ..., By, .. ., Botmt1 of cl(p)
check whether the following three conditions hold:
® (Sn, Brt1) = (Sn+m> Borm+1)

e By...B,...Buyimy1 is an initial run for
trace(sy..-Sp---Sn+m+1) in GNBA G
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NPSPACE -algorithm for ALTL-MC

guess two natural numbersn,m< kst. m>1
where k = |§] - 2l . ||

gUESS Sp .. .Sp- - Sp+m € Pathsg,(T)

guess n+m+2 subsets By, ..., By, .. ., Botmt1 of cl(p)

check whether the following three conditions hold:

® {Sn, Buoy1) = (Sn+m» Bormi1)
e By...B,...Buyimy1 is an initial run for
trace(sy..-Sp---Sn+m+1) in GNBA G

e {vr:hlUre U B} € U B

n<i<n+m n<i<n+m
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NPSPACE -algorithm for ALTL-MC

LTLMC3.2-76

guess two natural numbersn,m< kst. m>1
where k = |§] - 2l . ||
gUESS Sp .. .Sp- - Sp+m € Pathsg,(T)
guess n+m+2 subsets By, ..., By, .. ., Botmt1 of cl(p)
check whether the following three conditions hold:
i <5n7 Bn+1) = (5n+ma Bn+m+1>

e By...B,...Buyimy1 is an initial run for
trace(sy..-Sp---Sn+m+1) in GNBA G
e {4p:hUhe U B} € U B

n<i<n+m n<i<n+m

If so then return “yes". Otherwise return “no”.
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PSPACE-completeness of ALTL-MC

We saw that:

The existential LTL model checking problem

given: finite TS 7, LTL formula ¢
question: is there a path min 7 withm = ¢ ?

belongs to NPSPACE
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PSPACE-completeness of ALTL-MC

We saw that:

The existential LTL model checking problem

given: finite TS 7, LTL formula ¢
question: is there a path min 7 withm = ¢ ?

belongs to NPSPACE = PSPACE
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PSPACE-completeness of ALTL-MC

We saw that:

The existential LTL model checking problem

given: finite TS 7, LTL formula ¢
question: is there a path min 7 withm = ¢ ?

belongs to NPSPACE = PSPACE

It remains to prove the PSPACE-hardness

94 /187



PSPACE-hardness of ILTL-MC LTLMC3.2-78

we show that for all problems K € PSPACE:
K <poly ALTL-MC
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PSPACE-hardness of ILTL-MC LTLMC3.2-78

we show that for all problems K € PSPACE:
K <poty ALTL-MC

Let

e M be a deterministic Turing machine (DTM)
that decides K,

e P a polynomial

such that M started with an input word w visits at
most P(|w|) tape cells
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PSPACE-hardness of ILTL-MC LTLMC3.2-78

we show that for all problems K € PSPACE:
K <poly ALTL-MC

Given DTM M that decides K with polynomial
space bound P(n), provide a polynomial reduction:

: poly time
input word w N TS T
for M LTL-formula ¢
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PSPACE-hardness of ILTL-MC LTLMC3.2-78

we show that for all problems K € PSPACE:
K <poty ALTL-MC

Given DTM M that decides K with polynomial
space bound P(n), provide a polynomial reduction:

: poly time
input word w N TS T
for M LTL-formula ¢

M accepts w, it there is path m of 7
e, weK with ™ = ¢
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Polynomial reduction w — (7, ¢)

DTM M visits at the most the tape cells 1,2, ..., P(n)
for inputs of length n (where P is a polynomial)
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Polynomial reduction w — (7, ¢)

DTM M visits at the most the tape cells 1,2, ..., P(n)
for inputs of length n (where P is a polynomial)

$ A |... A ]A, LU ... (U
1 2 n n+1

initial tape configuration for input w = A; A>.. . A,
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Polynomial reduction w — (7, ¢)

DTM M visits at the most the tape cells 1,2, ..., P(n)
for inputs of length n (where P is a polynomial)

$ A |... A ]A, LU ... (U
1 2 n n+1

initial tape configuration for input w = A; A>.. . A,

I

L
$

blank symbol of M

I

symbol for the left border of the tape
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Polynomial reduction w — (7, ¢)

DTM M visits at the most the tape cells 1,2, ..., P(n)
for inputs of length n (where P is a polynomial)

$ A |... A ]A, LU ... (U
1 2 n n+l P(n)

initial tape configuration for input w = A; A>.. . A,

blank symbol of M

I

U

$
w.l.o.g. P(n) > n

I

symbol for the left border of the tape

102 /187



Polynomial reduction w — (7, ¢)

DTM M visits at the most the tape cells 1,2, ..., P(n)
for inputs of length n (where P is a polynomial)

$ A |... A ]A, LU ... (U
1 2 n n+l P(n)

not visited

initial tape configuration for input w = A; A>.. . A,

blank symbol of M

I

U

$
w.l.o.g. P(n) > n

I

symbol for the left border of the tape
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Polynomial reduction w — (7, ¢)

DTM M visits at the most the tape cells 1,2, ..., P(n)
for inputs of length n (where P is a polynomial)

$ A |... A ]A, LU ... (U
1 2 n n+l P(n)

not visited
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Polynomial reduction w — (7, ¢)

DTM M visits at the most the tape cells 1,2, ..., P(n)
for inputs of length n (where P is a polynomial)

$ A |... A ]A, LU ... (U
1 2 n n+l P(n)

not visited

states of 7: 0,1,..., P(n),
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Polynomial reduction w — (7, ¢)

DTM M visits at the most the tape cells 1,2, ..., P(n)
for inputs of length n (where P is a polynomial)

$ A |... A ]A, LU ... (U
1 2 n n+l P(n)

not visited

states of 7: 0,1,...,P(n), {(q,A,i), (x,A,i)

106 /187



Polynomial reduction w — (7, ¢)

DTM M visits at the most the tape cells 1,2, ..., P(n)
for inputs of length n (where P is a polynomial)

$ A |... A ]A, LU ... (U
1 2 n n+l P(n)

not visited

states of 7: 0,1,...,P(n), {(q,A,i), (x,A,i)
where g is a state of M, A a tape symbol, 1 < i < P(n)

107 /187



Polynomial reduction w — (7, ¢)

DTM M visits at the most the tape cells 1,2, ..., P(n)
for inputs of length n (where P is a polynomial)

$ A |... A ]A, LU ... (U
1 2 n n+l P(n)

not visited

idea: TS T encodes each of M by a
path fragment from state 0 to state P(n)
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Polynomial reduction w — (7, ¢)

LTLMC3.2-79

A|B )
1 2 3 P(n) T
not visited
TS T
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Polynomial reduction w — (7, ¢)

AB .. |[DIE] ...
1 2 3 i P(n) 1

not visited
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Polynomial reduction w — (7, ¢)

LTLMC3.2-79

A

1 2 3 i P(n)

not visited

suppose (g, D) = (p, B, +1)
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Polynomial reduction w — (7, ¢)

AB .. |[DIE] ...
1 2 3 i P(n) 1

not visited

path fragment for the configuration ABC... q D...
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Polynomial reduction w — (7, ¢)

A[B ... |DJET ...
1 2 3 i P(n) 1

not visited

0 (x,A1)

path fragment for the configuration ABC... q D...
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Polynomial reduction w — (7, ¢)

A[B ... |DJET ...
1 2 3 i P(n) 1

not visited

0 (x,A,1) 1

path fragment for the configuration ABC... q D...
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Polynomial reduction w — (7, ¢)

AlB ... |DJET ...
1 2 3 i P(n) 1

not visited

0 (x,A,1) 1 (x,B,2)

path fragment for the configuration ABC... q D...
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Polynomial reduction w — (7, ¢)

AlB ... |DJET ...
1 2 3 i P(n) 1

not visited

0 (x,A,1) 1 (x,B,2) 2

path fragment for the configuration ABC... q D...

116 /187



Polynomial reduction w — (7, ¢)

AB .. |D[E] ...
1 2 3 i P(n) 1

not visited

0 (x,A, 1)1 (%,B,2) 2 ... (i—1)

path fragment for the configuration ABC... q D...
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Polynomial reduction w — (7, ¢)

AlB ... [ID[ET ...
1 2 3 i P(n) 1

not visited

0 (x,A,1) 1 (x,B,2) 2 ... (i-1){q, D, i)

path fragment for the configuration ABC... q D...
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Polynomial reduction w — (7, ¢)

AlB ... |[DTET ...
1 2 3 i P(n) 1

not visited

(x, C, P(n))

0 (x,A, 1) 1 (x,B,2) 2 ... (i-1){q, D, i) i ... P(n)

path fragment for the configuration ABC... q D...
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Polynomial reduction w — (7, ¢)

LTLMC3.2-79

A ... | D|E]| ...

1 2 3 i P(n) T
not visited
(*, C, P(n))

0 (x,A, 1) 1 (x,B,2) 2 ... (i-1){q, D, i) i ...

suppose (g, D) = (p, B, +1)

P(n)
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Polynomial reduction w — (7, ¢)

A|B ... |B|E| ...
1 2 3 i i+1 P(n) T
T not visited
o7
(Q

0 (x,A, 1)1 (%,B,2)2...{(q,D,i) i {x,E,i+1) ... P(n)
0 suppose 4(q, D) = (p, B, +1)
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Polynomial reduction w — (7, ¢)

A | B ... |B|E| ...
1 2 3 i i+1 P(n) T
T not visited
-
(Q

0 (x,A, 1)1 (%,B,2)2...{(q,D,i) i {x,E,i+1) ... P(n)
0 (x,A1)
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Polynomial reduction w — (7, ¢)

A | B ... |B|E| ...
1 2 3 i i+1 P(n) T
T not visited
-
(Q

0 (x,A, 1)1 (%,B,2)2...{(q,D,i) i {x,E,i+1) ... P(n)
0 (x,A,1) 1
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Polynomial reduction w — (7, ¢)

A| B ... |B|E| ...
1 2 3 i i+1 P(n) T
T not visited
-
(Q

0 (x,A, 1)1 (%,B,2)2...{(q,D,i) i {x,E,i+1) ... P(n)
0 (x,A,1) 1 (x,B,2)
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Polynomial reduction w — (7, ¢)

A| B ... |B|E| ...
1 2 3 i i+1 P(n) T
T not visited
-
(Q

0 (x,A, 1)1 (%,B,2)2...{(q,D,i) i {x,E,i+1) ... P(n)
0 (x,A,1) 1 (x,B,2) 2
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Polynomial reduction w — (7, ¢)

A|B ... |B|E| ...
1 2 3 i i+1 P(n) T

T not visited
TS T

@

0 (x,A, 1)1 (%,B,2)2...{(q,D,i) i {x,E,i+1) ... P(n)
0 (x,A, 1)1 (x,B,2) 2 ... (x,B,i) i
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Polynomial reduction w — (7, ¢)

A|B ... |B|E| ...
1 2 3 i i+1 P(n) T

T not visited
-

(Q

0 (x,A, 1)1 (%,B,2)2...{(q,D,i) i {x,E,i+1) ... P(n)
0 (x,A, 1)1 (x,B,2) 2 ... (x,B,i) i (p, E,i+1)
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Polynomial reduction w — (7, ¢)

A|B ... |B|E| ...
1 2 3 i i+1 P(n) T

T not visited
-

(Q

0 (x,A, 1)1 (%,B,2)2...{(q,D,i) i {x,E,i+1) ... P(n)
0 (x,A, 1)1 (x,B,2) 2 ... (x,B,i) i (p, E,i+1) ...
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Polynomial reduction w — (7, ¢)

A|B ... |B|E| ...
1 2 3 i i+1 P(n) T
T not visited
o7
(Q
:
(x, C, P(n))

0 (x,A, 1)1 (%,B,2)2...{(q,D,i) i {x,E,i+1) ... P(n)
0 (x,A, 1)1 (x,B,2) 2 ... (x,B,i) i {(p, E,i+1) ... P(n)
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Polynomial reduction w — (7, ¢) LTIMG3.2-78

Let M be a DTM with polynomial space bound P(n)

e state space @ e tape alphabet I
e initial state qo e input alphabet X C I
e set of accept states F e blank symbol LI

transition function d : @xI' —» QxIx{-1,0,+1}
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Polynomial reduction w — (7, ¢) LTIMG3.2-78

Let M be a DTM with polynomial space bound P(n)

e state space @ e tape alphabet I
e initial state qo e input alphabet X C I
e set of accept states F e blank symbol LI

transition function d : @xI' —» QxIx{-1,0,+1}

: poly time
input word w ) TS T

for M LTL-formula ¢
M accepts w, it there is path m of 7

e, weK with ™ = ¢
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Polynomial reduction w — (7, ¢) LTIMG3.2-78

Let M =(Q,%,T,8,qo,U, F) be a DTM with
polynomial space bound P(n), and w € *, |w|=n.

Transition system 7 % (S Act,—, Sp, AP, L) where

132/187



Polynomial reduction w — (7, ¢) LTIMG3.2-78

Let M =(Q,%,T,8,qo,U, F) be a DTM with
polynomial space bound P(n), and w € *, |w|=n.
Transition system 7 % (S Act,—, Sp, AP, L) where

S ={0,1,...,P(n)} U {{q, A, i), (x,A,i): g € Q,
Ael,1<i<P(n)}
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Polynomial reduction w — (7, ¢) LTIMG3.2-78

Let M =(Q,%,T,8,qo,U, F) be a DTM with
polynomial space bound P(n), and w € *, |w|=n.
Transition system 7 % (S Act,—, Sp, AP, L) where

S ={0,1,...,P(n)} U {{ q,A,I>,<*,A,I).: qe€ Q,
5 = {0} Ael,1<i<P(n)}
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Polynomial reduction w — (7, ¢) LTIMG3.2-78

Let M =(Q,%,T,8,qo,U, F) be a DTM with
polynomial space bound P(n), and w € *, |w|=n.

Transition system 7 % (S Act,—, Sp, AP, L) where

S ={0,1,...,P(n)} U {{ q,A,I>,<*,A,I).: qe€ Q,
5 = {0} Ael,1<i<P(n)}

AP = S with obvious labeling function
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Polynomial reduction w — (7, ¢) LTIMG3.2-78

Let M =(Q,%,T,8,qo,U, F) be a DTM with
polynomial space bound P(n), and w € *, |w|=n.

Transition system 7 % (S Act,—, Sp, AP, L) where

S ={0,1,...,P(n)} U {{ q,A,I>,<*,A,I).: qe€ Q,
5 = {0} Ael,1<i<P(n)}

AP = S with obvious labeling function
transitions: i—1 — {(q, A, i) } for 1 <i < P(n)
(a,A, iy — i and g € QU {x}
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Polynomial reduction w — (7, ¢) LTIMG3.2-78

Let M =(Q,%,T,8,qo,U, F) be a DTM with
polynomial space bound P(n), and w € *, |w|=n.

Transition system 7 % (S Act,—, Sp, AP, L) where

S ={0,1,...,P(n)} U {{ q,A,I>,<*,A,I).: qe€ Q,
5 = {0} Ael,1<i<P(n)}

AP = S with obvious labeling function
transitions: i—1 — (q,A,i) P(n)—0
(q,A iy — i
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Polynomial reduction w — (7, ¢) LTIMG3.2-78

Let M =(Q,%,T,8,qo,U, F) be a DTM with
polynomial space bound P(n), and w € *, |w|=n.

Transition system 7 % (S Act,—, Sp, AP, L) where

S ={0,1,...,P(n)} U {{ q,A,I>,<*,A,I>.: qe€ Q,
5 = {0} Ael,1<i<P(n)}

AP = S with obvious labeling function
transitions: i—1 — (q,A,i) P(n)—0
(q,A iy — i

def
LTL formula ¢ = @&+ A @5 A\ Peonf N Paccept
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Complexity of LTL model checking problem ...«
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Complexity of LTL model checking problem ...«

We saw that:

The existential LTL model checking problem
given: finite TS 7, LTL formula ¢
question: is there a path min 7 with Tt = ¢ ?

is PSPACE-complete.
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Complexity of LTL model checking problem ...«

We saw that:

The existential LTL model checking problem

given: finite TS 7, LTL formula ¢
question: is there a path min 7 with Tt = ¢ ?

is PSPACE-complete.

As PSPACE = coPSPACE we get:

The LTL model checking problem

given: finite TS 7, LTL formula ¢
question: does w |= ¢ hold for all paths 7w in T ?

is PSPACE-complete.
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Summary: LTL model checking problem
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Summary: LTL model checking problem

The LTL model checking problem is

e solvable by an automata-based approach
complexity: O(size(T) - exp(|¢|))
e PSPACE-complete
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Summary: LTL model checking problem

The LTL model checking problem is

e solvable by an automata-based approach
complexity: O(size(T) - exp(|¢|))
e PSPACE-complete

proof of the lower bound:
generic reduction from poly-space bounded DTM

proof of the upper bound:
uses the LTL-2-GNBA algorithm
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Summary: LTL model checking problem

The LTL model checking problem is

e solvable by an automata-based approach
complexity: O(size(T) - exp(|¢|))
e PSPACE-complete

proof of the lower bound:
generic reduction from poly-space bounded DTM

proof of the upper bound:
uses the LTL-2-GNBA algorithm

additionally we proved coNP-hardness
using an LTL-encoding of the Hamilton-path problem
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NBA are more powerful than LTL LTLMC3.2-66
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NBA are more powerful than LTL LTLMC3.2-66

There is no LTL formula ¢ over AP = {a} s.t.

Words(p) = set of words AgA1A,... € (24P)“ s.t.
a€ Ay foralli e N

(without proof)
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NBA are more powerful than LTL LTLMC3.2-66

There is no LTL formula ¢ over AP = {a} s.t.

Words(p) = set of words AgA1A,... € (24P)“ s.t.
a€ Ay foralli e N

NBA A: (without proof)

a1

true
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NBA are more powerful than LTL LTLMC3.2-66

There is no LTL formula ¢ over AP = {a} s.t.

Words(p) = set of words AgA1A,... € (24P)“ s.t.
a€ Ay foralli e N

(without proof)

NBA A: 3

a1

true

LTL formulapy = a A O(a— OQa) ?
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NBA are more powerful than LTL LTLMC3.2-66

There is no LTL formula ¢ over AP = {a} s.t.

Words(p) = set of words AgA1A,... € (24P)“ s.t.
a€ Ay foralli e N

(without proof)

NBA A: 3

a1

true

LTL formulapy = a A O(a— OQa) ?
o = {a}{a} {a} @ {a}¥ [ ¢, buto € L,(A)
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LTL satisfiability problem LTLMC3.2-80
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LTL satisfiability problem LTLMC3.2-80

given: LTL formula ¢ over AP
question: is ( satisfiable ?
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LTL satisfiability problem LTLMC3.2-80

given: LTL formula ¢ over AP
question: is ¢ satisfiable, i.e., is Words(p) # @ ?
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LTL satisfiability problem LTLMC3.2-80

given: LTL formula ¢ over AP
question: is ¢ satisfiable, i.e., is Words(p) # @ ?

examples: ¢Oa A OOQ—a  unsatisfiable

auUb A O-b unsatisfiable
QOa A aU(Ob) satisfiable
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LTL satisfiability problem LTLMCB.2-80

given: LTL formula ¢ over AP
question: is ¢ satisfiable, i.e., is Words(p) # @ ?

automata-based satisfiability checking algorithm:

construct an NBA A = (Q,24°, 8, Qo, F) for ¢
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LTL satisfiability problem LTLMCB.2-80

given: LTL formula ¢ over AP
question: is ¢ satisfiable, i.e., is Words(p) # @ ?

automata-based satisfiability checking algorithm:

construct an NBA A = (Q,24°, 8, Qo, F) for ¢
check whether £,(A) # &

156 /187



LTL satisfiability problem LTLMCB.2-80

given: LTL formula ¢ over AP
question: is ¢ satisfiable, i.e., is Words(p) # @ ?

automata-based satisfiability checking algorithm:

construct an NBA A = (Q,24°, 8, Qo, F) for ¢
check whether £,(A) # &
T

nested DFS: check whether A £ OO-F
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LTL satisfiability problem LTLMCB.2-80

given: LTL formula ¢ over AP
question: is ¢ satisfiable, i.e., is Words(p) # @ ?

automata-based satisfiability checking algorithm:

construct an NBA A = (Q,24°, 8, Qo, F) for ¢
check whether £,(A) # &
T

nested DFS: check whether A £ OO-F

if yes, return “yes”, otherwise “no”
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LTL satisfiability problem LTLMCB.2-80

given: LTL formula ¢ over AP
question: is ¢ satisfiable, i.e., is Words(p) # @ ?

automata-based satisfiability checking algorithm:

construct an NBA A = (Q,24°, 8, Qo, F) for ¢
check whether £,(A) # &
T

nested DFS: check whether A £ OO-F

if yes, return “yes”, otherwise “no”

complexity: O(exp(|¢|))
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LTL satisfiability problem LTLMC3.2-80

given: LTL formula ¢ over AP
question: is ¢ satisfiable, i.e., is Words(p) # @ ?

automata-based satisfiability checking algorithm:

construct an NBA A = (Q,24°, 8, Qo, F) for ¢
check whether £,(A) # &
T

nested DFS: check whether A £ OO-F

if yes, return “yes”, otherwise “no”

complexity: O(exp(|e|)) ... and PSPACE-complete
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LTL validity problem LTLMCB.2-80A
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LTL Validity prObIem LTLMC3.2-80A

given: LTL formula ¢ over AP
question: is ¢ valid, i.e. is Words(p) = (24P)“ 7
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LTL Validity prOblem LTLMC3.2-80A

given: LTL formula ¢ over AP
question: is ¢ valid, i.e. is Words(p) = (24P)“ 7

is solvable by a LTL satisfiability checker as
@ is valid iff = is not satisfiable
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LTL Validity prOblem LTLMC3.2-80A

given: LTL formula ¢ over AP
question: is ¢ valid, i.e. is Words(p) = (24P)“ 7

is solvable by a LTL satisfiability checker as
@ is valid iff = is not satisfiable

complexity: O(exp(|¢|))
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LTL Validity prOblem LTLMC3.2-80A

given: LTL formula ¢ over AP
question: is ¢ valid, i.e. is Words(p) = (24P)“ 7

is solvable by a LTL satisfiability checker as
@ is valid iff = is not satisfiable

complexity: O(exp(|e|)) ... and PSPACE-complete
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