```
Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
  syntax and semantics of LTL
   automata-based LTL model checking
  complexity of LTL model checking
Computation-Tree Logic
Equivalences and Abstraction
```

Complexity of LTL model checking

main steps of automata-based LTL model checking:

construction of an NBA ${\cal A}$ for $\neg \varphi$

persistence checking in the product $T \otimes A$

construction of an NBA \mathcal{A} for $\neg \varphi$

 $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$

construction of an NBA \mathcal{A} for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$ persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

construction of an NBA
$$\mathcal{A}$$
 for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

complexity: $\mathcal{O}(\operatorname{size}(T) \cdot \exp(|\varphi|))$

construction of an NBA
$$\mathcal{A}$$
 for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

complexity: $\mathcal{O}(\operatorname{size}(T) \cdot \exp(|\varphi|))$

product $T \otimes A$

The LTL model checking problem is **PSPACE**-complete

Complexity of LTL model checking

LTL model checking problem

given: finite transition system T

LTL-formula φ

question: does $T \models \varphi$ hold ?

Complexity of LTL model checking

LTL model checking problem

given: finite transition system T

LTL-formula φ

question: does $T \models \varphi$ hold ?

we show

- just for fun: **coNP**-hardness
- **PSPACE**-completeness

- P = class of decision problem solvable in deterministic polynomial time
- **NP** = class of decision problem solvable in nondeterministic polynomial time

NPC = class of NP-complete problems

NPC = class of NP-complete problems

- $(1) \quad \mathbf{L} \in \mathbf{NP}$
- (2) \boldsymbol{L} is \boldsymbol{NP} -hard, i.e., $\boldsymbol{K} \leq_{\boldsymbol{poly}} \boldsymbol{L}$ for all $\boldsymbol{K} \in \boldsymbol{NP}$

NPC = class of NP-complete problems

- $(1) \quad \mathbf{L} \in \mathbf{NP}$
- (2) L is NP-hard, i.e., $K \leq_{poly} L$ for all $K \in NP$

$$coNP = \{ \overline{L} : L \in NP \}$$
complement of L

LTLMC3.2-72A

coNPC = class of **coNP**-complete problems

- (1) $L \in coNP$
- (2) \boldsymbol{L} is \boldsymbol{coNP} -hard, i.e., $\boldsymbol{K} \leq_{\boldsymbol{poly}} \boldsymbol{L}$ for all $\boldsymbol{K} \in \boldsymbol{coNP}$

LTLMC3.2-72A

coNPC = class of **coNP**-complete problems

coNP-hardness

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

 $\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

proof by a polynomial reduction

$$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

complement of the **LTL** model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

proof by a polynomial reduction

complement of the **LTL** model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

proof by a polynomial reduction

complement of the **LTL** model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

LTLMC3.2-72B

HP Hamilton path problem:

given: finite directed graph G

question: does G has a Hamilton path ?, i.e., a

path that visits each node exactly once

given: finite directed graph G

question: does G has a Hamilton path ?, i.e., a

path that visits each node exactly once

given: finite directed graph G

question: does G has a Hamilton path ?, i.e., a

path that visits each node exactly once

G has a Hamilton path

given: finite directed graph G

question: does G has a Hamilton path ?, i.e., a

path that visits each node exactly once

has no Hamilton path

given: finite directed graph G

question: does G has a Hamilton path ?, i.e., a

path that visits each node exactly once

has no Hamilton path

HP is known to be **NP**-complete

 $\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

LTLMC3.2-73

 $\begin{array}{c|c} \textit{HP} & \leq_{\textit{poly}} & \overline{\textit{LTL-MC}} \\ \hline \text{finite directed} & & \text{poly time} \\ \hline \textit{graph } \textit{G} & & \\ \hline \textit{G} \text{ has a} \\ \hline \textit{Hamilton path} & & \text{iff} & \mathcal{T} \not\models \varphi \end{array}$

LTLMC3.2-73

 $\begin{array}{c|cccc} & HP & \leq_{poly} & \overline{LTL\text{-}MC} \\ & \text{finite directed} & \text{poly time} & & \text{finite TS } \mathcal{T} \\ & & \text{LTL formula } \varphi & \\ \hline & & & \text{LTL formula } \varphi & \\ \hline & & & \text{of } G & \cong & \text{states of } \mathcal{T} \\ \end{array}$

LTLMC3.2-73

 $\begin{array}{cccc} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & &$

LTLMC3.2-73

node-set **V** of **G**

=

states of T AP = V additional trap state t

Polynomial reduction

LTLMC3.2-73

$$\varphi = ?$$

Polynomial reduction

LTLMC3.2-73

node-set V of G $\widehat{=}$ states of T AP = V additional trap state t

Polynomial reduction

LTLMC3.2-73

node-set V of G $\widehat{=}$ states of T AP = V additional trap state t

Complexity of LTL model checking

We just saw:

The LTL model checking problem is coNP-hard

Complexity of LTL model checking

We just saw:

The LTL model checking problem is coNP-hard

We now prove:

The LTL model checking problem is PSPACE-complete

The complexity class *PSPACE*

LTLMC3.2-74

The complexity class *PSPACE*

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

The complexity class *PSPACE*

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

NP ⊆ PSPACE

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

NP ⊆ PSPACE

DFS-based analysis of the computation tree of an *NP*-algorithm

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

NP ⊆ PSPACE

DFS-based analysis of the computation tree of an *NP*-algorithm

space requirements:

LTLMC3.2-74

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

- NP ⊂ PSPACE
- PSPACE = coPSPACE(holds for any deterministic complexity class)

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

- NP ⊆ PSPACE
- PSPACE = coPSPACE
 (holds for any deterministic complexity class)
- **PSPACE** = **NPSPACE** (Savitch's Theorem)

LTLMC3.2-74

The complexity class *PSPACE*

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

- NP ⊆ PSPACE
- PSPACE = coPSPACE
 (holds for any deterministic complexity class)
- PSPACE = NPSPACE (Savitch's Theorem)

To prove $L \in PSPACE$ it suffices to provide a nondeterministic polynomially space-bounded algorithm for the complement \overline{L} of L

decision problem **L** is **PSPACE**-complete iff

- (1) $L \in PSPACE$
- (2) L is PSPACE-hard +

 $K \leq_{poly} L$ for all $K \in PSPACE$

decision problem L is PSPACE-complete iff (1) $L \in PSPACE$ (2) L is PSPACE-hard \longleftarrow for all $K \in PSPACE$

as PSPACE = coPSPACE:

L is PSPACE-hard $\iff \overline{L}$ is PSPACE-hard

decision problem **L** is **PSPACE**-complete iff

- (1) $L \in PSPACE$
- (2) \boldsymbol{L} is \boldsymbol{PSPACE} -hard $\boldsymbol{\leftarrow}$

 $K \leq_{poly} L$ for all $K \in PSPACE$

as PSPACE = coPSPACE = NPSPACE:

L is **PSPACE**-hard $\iff \overline{L}$ is **PSPACE**-hard

 $L \in PSPACE \iff \overline{L} \in NPSPACE$

LTL-MC LTL model checking problem "does $\pi \models \varphi$ hold for all paths π of T?"

 $\overline{LTL-MC} = \text{complement of } LTL-MC$ "does $\pi \not\models \varphi$ hold for some path π of T?"

```
LTL-MC LTL model checking problem "does \pi \models \varphi hold for all paths \pi of T?"
```

```
\overline{LTL-MC} = \text{complement of } LTL-MC
"does \pi \not\models \varphi hold for some path \pi of T?"
```

 $\exists LTL\text{-}MC$ existential LTL model checking problem for T and LTL formula $\psi = \neg \varphi$

```
LTL-MC LTL model checking problem "does \pi \models \varphi hold for all paths \pi of T?"
```

```
\overline{LTL-MC} = \text{complement of } LTL-MC
"does \pi \not\models \varphi hold for some path \pi of T?"
```

 $\exists LTL ext{-}MC$ existential LTL model checking problem for T and LTL formula $\psi = \neg \varphi$

"does $\pi \models \psi$ hold for some path π of T?"

```
LTL-MC LTL model checking problem
      "does \pi \models \varphi hold for all paths \pi of T?"
LTL-MC = complement of LTL-MC
      "does \pi \not\models \varphi hold for some path \pi of T?"
  ∃LTL-MC existential LTL model checking problem
                  for T and LTL formula \psi = \neg \varphi
      "does \pi \models \psi hold for some path \pi of T?"
```

show: ∃LTL-MC ∈ NPSPACE

∃LTL-MC is PSPACE-hard

```
LTL-MC LTL model checking problem
      "does \pi \models \varphi hold for all paths \pi of T?"
LTL-MC = complement of LTL-MC
      "does \pi \not\models \varphi hold for some path \pi of T?"
  ∃LTL-MC existential LTL model checking problem
                  for T and LTL formula \psi = \neg \varphi
      "does \pi \models \psi hold for some path \pi of T?"
```

show: $\exists LTL\text{-}MC \in NPSPACE \implies LTL\text{-}MC \in PSPACE$ $\exists LTL\text{-}MC \text{ is } PSPACE\text{-}hard$

LTL-MC LTL model checking problem "does $\pi \models \varphi$ hold for all paths π of T?" LTL-MC = complement of LTL-MC "does $\pi \not\models \varphi$ hold for some path π of T?" ∃LTL-MC existential LTL model checking problem for T and LTL formula $\psi = \neg \varphi$ "does $\pi \models \psi$ hold for some path π of T?"

show: $\exists LTL\text{-}MC \in NPSPACE$ $\exists LTL\text{-}MC \text{ is } PSPACE\text{-}\text{hard} \Longrightarrow$

LTL-MC is *PSPACE*-hard

LTLMC3.2-75B

given: T be a finite transition system

φ an LTL formula

question: does there exist a path π in T with $\pi \models \varphi$?

Existential LTL model checking problem

given: T be a finite transition system

φ an LTL formula

question: does there exist a path π in T with $\pi \models \varphi$?

goal: find a criterion for the existence of a path π in T with $\pi \models \varphi$ that can be checked nondeterministically in poly-space

Existential LTL model checking problem

given: T be a finite transition system

φ an LTL formula

question: does there exist a path π in T with $\pi \models \varphi$?

goal: find a criterion for the existence of a path π in T with $\pi \models \varphi$ that can be checked nondeterministically in poly-space

idea: use the **GNBA** $\mathcal G$ for φ (constructed by our LTL-2-GNBA algorithm)

LTLMC3.2-75F

 $\mathtt{LTLMC3.2-75F}$

LTLMC3.2-75F

LTLMC3.2-75F

Recall: elementary formula-sets

closure $cl(\varphi)$:

- set of all subformulas of φ and their negations
- ψ and $\neg \neg \psi$ are identified

elementary formula-sets: subsets B of $cl(\varphi)$

- maximal consistent w.r.t. propositional logic
- locally consistent w.r.t. U

```
For \varphi = a \cup (\neg a \wedge b), the elementary sets are:

\{a, b, \neg (\neg a \wedge b), \varphi\} \{a, b, \neg (\neg a \wedge b), \neg \varphi\}

\{a, \neg b, \neg (\neg a \wedge b), \varphi\} \{a, \neg b, \neg (\neg a \wedge b), \neg \varphi\}

\{\neg a, b, \neg a \wedge b, \varphi\} \{\neg a, \neg b, \neg (\neg a \wedge b), \neg \varphi\}
```

$$\mathcal{G}=(Q,2^{AP},\delta,Q_0,\mathcal{F})$$
 state space: $Q=\left\{B\subseteq cl(\varphi):B\text{ is elementary }
ight\}$ initial states: $Q_0=\left\{B\in Q:\varphi\in B\right\}$ transition relation: for $B\in Q$ and $A\in 2^{AP}$: if $A\neq B\cap AP$ then $\delta(B,A)=\varnothing$ if $A=B\cap AP$ then $\delta(B,A)=$ set of all $B'\in Q$ s.t.

$$\bigcirc \psi \in B \quad \text{iff} \quad \psi \in B'$$

$$\psi_1 \cup \psi_2 \in B \quad \text{iff} \quad (\psi_2 \in B) \vee (\psi_1 \in B \wedge \psi_1 \cup \psi_2 \in B')$$

acceptance set
$$\mathcal{F} = \left\{ F_{\psi_1 \cup \psi_2} : \psi_1 \cup \psi_2 \in cl(\varphi) \right\}$$

where $F_{\psi_1 \cup \psi_2} = \left\{ B \in Q : \psi_1 \cup \psi_2 \notin B \lor \psi_2 \in B \right\}$

LTLMC3.2-75E

There exists a path π in T with $\pi \models \varphi$ iff there exist

There exists a path π in T with $\pi \models \varphi$ iff there exist

- an initial finite path fragment $s_0 \dots s_n \dots s_{n+m}$ in T
- a run $B_0 B_1 \dots B_{n+1} \dots B_{n+m+1}$ in \mathcal{G} for the word $trace(s_0 s_1 \dots s_n \dots s_{n+m})$

There exists a path π in T with $\pi \models \varphi$ iff there exist

- an initial finite path fragment $s_0 \dots s_n \dots s_{n+m}$ in T
- a run $B_0 B_1 \dots B_{n+1} \dots B_{n+m+1}$ in $\mathcal G$ for the word $trace(s_0 s_1 \dots s_n \dots s_{n+m})$

such that

$$(1) \langle s_n, B_{n+1} \rangle = \langle s_{n+m}, B_{n+m+1} \rangle$$

There exists a path π in T with $\pi \models \varphi$ iff there exist

- an initial finite path fragment $s_0 \dots s_n \dots s_{n+m}$ in T
- a run $B_0 B_1 \dots B_{n+1} \dots B_{n+m+1}$ in \mathcal{G} for the word $trace(s_0 s_1 \dots s_n \dots s_{n+m})$

such that

$$(1) \langle s_n, B_{n+1} \rangle = \langle s_{n+m}, B_{n+m+1} \rangle$$

(2) whenever $\psi_1 \cup \psi_2 \in B_{n+1} \cup \ldots \cup B_{n+m}$ then $\psi_2 \in B_{n+1} \cup \ldots \cup B_{n+m}$

There exists a path π in T with $\pi \models \varphi$ iff there exist

- an initial finite path fragment $s_0 \dots s_n \dots s_{n+m}$ in T
- a run $B_0 B_1 \dots B_{n+1} \dots B_{n+m+1}$ in $\mathcal G$ for the word $trace(s_0 s_1 \dots s_n \dots s_{n+m})$

such that

$$(1) \langle s_n, B_{n+1} \rangle = \langle s_{n+m}, B_{n+m+1} \rangle$$

- (2) whenever $\psi_1 \cup \psi_2 \in B_{n+1} \cup \ldots \cup B_{n+m}$ then $\psi_2 \in B_{n+1} \cup \ldots \cup B_{n+m}$
- (3) $n < |S| \cdot 2^{|cl(\varphi)|}$

There exists a path π in T with $\pi \models \varphi$ iff there exist

- an initial finite path fragment $s_0 \dots s_n \dots s_{n+m}$ in T
- a run $B_0 B_1 \dots B_{n+1} \dots B_{n+m+1}$ in \mathcal{G} for the word $trace(s_0 s_1 \dots s_n \dots s_{n+m})$

such that

- $(1) \langle s_n, B_{n+1} \rangle = \langle s_{n+m}, B_{n+m+1} \rangle$
- (2) whenever $\psi_1 \cup \psi_2 \in B_{n+1} \cup \ldots \cup B_{n+m}$ then $\psi_2 \in B_{n+1} \cup \ldots \cup B_{n+m}$
- (3) $n < |S| \cdot 2^{|cl(\varphi)|}$ and $m \le |S| \cdot 2^{|cl(\varphi)|} \cdot |\varphi|$

```
given: finite TS \mathcal{T}, LTL formula \varphi question: is there a path \pi \in Paths(\mathcal{T}) with \pi \models \varphi?
```

```
given: finite TS \mathcal{T}, LTL formula \varphi question: is there a path \pi \in Paths(\mathcal{T}) with \pi \models \varphi?
```

is solvable by a nondeterministic polynomially space-bounded algorithm:

```
given: finite TS \mathcal{T}, LTL formula \varphi question: is there a path \pi \in Paths(\mathcal{T}) with \pi \models \varphi?
```

is solvable by a nondeterministic polynomially space-bounded algorithm:

• guess nondeterministically an ultimatively periodic path $\pi = u_0 \ u_1 \dots u_{n-1} (u_n \dots u_{n+m})^{\omega}$ of $T \otimes G$ GNBA for φ obtained by our LTL-2-GNBA algorithm

```
given: finite TS \mathcal{T}, LTL formula \varphi question: is there a path \pi \in Paths(\mathcal{T}) with \pi \models \varphi?
```

is solvable by a nondeterministic polynomially space-bounded algorithm:

- guess nondeterministically an ultimatively periodic path $\pi = u_0 \ u_1 \dots u_{n-1} (u_n \dots u_{n+m})^{\omega}$ of $T \otimes \mathcal{G}$ GNBA for φ obtained by our LTL-2-GNBA algorithm
- ullet check whether the guessed path meets the acceptance condition of ${oldsymbol{\mathcal{G}}}$

guess two natural numbers $n, m \le k$ s.t. $m \ge 1$ where $k = |S| \cdot 2^{|cl(\varphi)|} \cdot |\varphi|$

guess two natural numbers $n, m \le k$ s.t. $m \ge 1$ where $k = |S| \cdot 2^{|cl(\varphi)|} \cdot |\varphi|$ guess $s_0 \dots s_n \dots s_{n+m} \in Paths_{fin}(T)$

```
guess two natural numbers n, m \le k s.t. m \ge 1
where k = |S| \cdot 2^{|cl(\varphi)|} \cdot |\varphi|
guess s_0 \dots s_n \dots s_{n+m} \in Paths_{fin}(T)
guess n+m+2 subsets B_0, \dots, B_n, \dots, B_{n+m+1} of cl(\varphi)
```

```
guess two natural numbers n, m \le k s.t. m \ge 1 where k = |S| \cdot 2^{|cl(\varphi)|} \cdot |\varphi| guess s_0 \dots s_n \dots s_{n+m} \in Paths_{fin}(T) guess n+m+2 subsets B_0, \dots, B_n, \dots, B_{n+m+1} of cl(\varphi) check whether the following three conditions hold:
```

$$\bullet \quad \langle \mathbf{s}_{n}, B_{n+1} \rangle = \langle \mathbf{s}_{n+m}, B_{n+m+1} \rangle$$

- $\langle s_n, B_{n+1} \rangle = \langle s_{n+m}, B_{n+m+1} \rangle$
- $B_0 \dots B_n \dots B_{n+m+1}$ is an initial run for $trace(s_0 \dots s_n \dots s_{n+m+1})$ in GNBA \mathcal{G}

- $\langle s_n, B_{n+1} \rangle = \langle s_{n+m}, B_{n+m+1} \rangle$
- $B_0 \dots B_n \dots B_{n+m+1}$ is an initial run for $trace(s_0 \dots s_n \dots s_{n+m+1})$ in GNBA \mathcal{G}
- $\{\psi_2 : \psi_1 \cup \psi_2 \in \bigcup_{n < i \le n+m} B_i\} \subseteq \bigcup_{n < i \le n+m} B_i$

- $\bullet \quad \langle s_n, B_{n+1} \rangle = \langle s_{n+m}, B_{n+m+1} \rangle$
- $B_0 \dots B_n \dots B_{n+m+1}$ is an initial run for $trace(s_0 \dots s_n \dots s_{n+m+1})$ in GNBA \mathcal{G}
- $\{\psi_2 : \psi_1 \cup \psi_2 \in \bigcup_{n < i \le n+m} B_i\} \subseteq \bigcup_{n < i \le n+m} B_i$

If so then return "yes". Otherwise return "no".

We saw that:

```
The existential LTL model checking problem
```

```
given: finite TS T, LTL formula \varphi
```

question: is there a path π in T with $\pi \models \varphi$?

belongs to NPSPACE

We saw that:

```
The existential LTL model checking problem
```

```
given: finite TS T, LTL formula \varphi question: is there a path \pi in T with \pi \models \varphi?
```

belongs to NPSPACE = PSPACE

We saw that:

```
The existential LTL model checking problem
```

```
given: finite TS T, LTL formula \varphi question: is there a path \pi in T with \pi \models \varphi?
```

belongs to NPSPACE = PSPACE

It remains to prove the *PSPACE*-hardness

$$K \leq_{poly} \exists LTL-MC$$

$$K \leq_{poly} \exists LTL-MC$$

Let.

- M be a deterministic Turing machine (DTM) that decides K,
- P a polynomial

such that \mathcal{M} started with an input word \mathbf{w} visits at most $P(|\mathbf{w}|)$ tape cells

$$K \leq_{poly} \exists LTL-MC$$

Given DTM \mathcal{M} that decides K with polynomial space bound P(n), provide a polynomial reduction:

input word w for M

poly time

TS TLTL-formula φ

$$K \leq_{poly} \exists LTL-MC$$

Given DTM \mathcal{M} that decides \mathcal{K} with polynomial space bound P(n), provide a polynomial reduction:

input word w for M

poly time

TS TLTL-formula φ

 \mathcal{M} accepts \mathbf{w} , i.e., $\mathbf{w} \in \mathbf{K}$

iff

there is path π of T with $\pi \models \varphi$

Polynomial reduction $w \mapsto (\mathcal{T}, \varphi)$

DTM \mathcal{M} visits at the most the tape cells 1, 2, ..., P(n) for inputs of length n (where P is a polynomial)

- $\sqcup \stackrel{\frown}{=}$ blank symbol of \mathcal{M}
- \$ $\widehat{=}$ symbol for the left border of the tape

- $\sqcup \widehat{}$ blank symbol of \mathcal{M}
- \$ $\widehat{=}$ symbol for the left border of the tape

w.l.o.g.
$$P(n) > n$$

- $\sqcup \widehat{}$ blank symbol of \mathcal{M}
- \$ $\widehat{=}$ symbol for the left border of the tape

w.l.o.g.
$$P(n) > n$$

states of $T: 0, 1, \ldots, P(n)$,

states of $T: 0, 1, \ldots, P(n), \langle q, A, i \rangle, \langle *, A, i \rangle$

states of $T: 0, 1, ..., P(n), \langle q, A, i \rangle, \langle *, A, i \rangle$ where q is a state of \mathcal{M} , A a tape symbol, $1 \leq i \leq P(n)$

idea: TS T encodes each configuration of M by a path fragment from state 0 to state P(n)

Polynomial reduction $w \mapsto (\mathcal{T}, \varphi)$

LTLMC3.2-79

Polynomial reduction $w \mapsto (\mathcal{T}, \varphi)$

LTLMC3.2-79

suppose
$$\delta(q, D) = (p, B, +1)$$

0

Polynomial reduction $w \mapsto (T, \varphi)$

LTLMC3.2-79

 $0 \langle *, A, 1 \rangle$

 $0 \langle *, A, 1 \rangle 1$

$$0 \langle *, A, 1 \rangle 1 \langle *, B, 2 \rangle$$

 $0 \langle *, A, 1 \rangle 1 \langle *, B, 2 \rangle 2$

$$0 \langle *, A, 1 \rangle 1 \langle *, B, 2 \rangle 2 \dots (i-1)$$

$$0 \langle *, A, 1 \rangle 1 \langle *, B, 2 \rangle 2 \dots (i-1) \langle q, D, i \rangle$$

LTLMC3.2-79

$$0 \langle *, A, 1 \rangle 1 \langle *, B, 2 \rangle 2 \dots (i-1) \langle q, D, i \rangle i \dots P(n)$$

$$0 \langle *, A, 1 \rangle 1 \langle *, B, 2 \rangle 2 \dots (i-1)\langle q, D, i \rangle i \dots P(n)$$
suppose $\delta(q, D) = (p, B, +1)$

Polynomial reduction $w \mapsto (\mathcal{T}, \varphi)$

LTLMC3.2-79

$$0 \langle *, A, 1 \rangle 1 \langle *, B, 2 \rangle 2 \dots \langle q, D, i \rangle i \langle *, E, i+1 \rangle \dots P(n)$$

suppose
$$\delta(q, D) = (p, B, +1)$$

0
$$\langle *, A, 1 \rangle$$
 1 $\langle *, B, 2 \rangle$ 2 ... $\langle q, D, i \rangle$ $i \langle *, E, i+1 \rangle$... $P(n)$ 0 $\langle *, A, 1 \rangle$

0
$$\langle *, A, 1 \rangle$$
 1 $\langle *, B, 2 \rangle$ 2 ... $\langle q, D, i \rangle$ $i \langle *, E, i+1 \rangle$... $P(n)$ 0 $\langle *, A, 1 \rangle$ 1

0
$$\langle *, A, 1 \rangle$$
 1 $\langle *, B, 2 \rangle$ 2 ... $\langle q, D, i \rangle$ $i \langle *, E, i+1 \rangle$... $P(n)$ 0 $\langle *, A, 1 \rangle$ 1 $\langle *, B, 2 \rangle$

0
$$\langle *, A, 1 \rangle$$
 1 $\langle *, B, 2 \rangle$ 2 ... $\langle q, D, i \rangle$ $i \langle *, E, i+1 \rangle$... $P(n)$ 0 $\langle *, A, 1 \rangle$ 1 $\langle *, B, 2 \rangle$ 2

0
$$\langle *, A, 1 \rangle$$
 1 $\langle *, B, 2 \rangle$ 2 ... $\langle q, D, i \rangle$ $i \langle *, E, i+1 \rangle$... $P(n)$ 0 $\langle *, A, 1 \rangle$ 1 $\langle *, B, 2 \rangle$ 2 ... $\langle *, B, i \rangle$ i

0
$$\langle *, A, 1 \rangle$$
 1 $\langle *, B, 2 \rangle$ 2 ... $\langle q, D, i \rangle$ $i \langle *, E, i+1 \rangle$... $P(n)$ 0 $\langle *, A, 1 \rangle$ 1 $\langle *, B, 2 \rangle$ 2 ... $\langle *, B, i \rangle$ $i \langle p, E, i+1 \rangle$

0
$$\langle *, A, 1 \rangle$$
 1 $\langle *, B, 2 \rangle$ 2 ... $\langle q, D, i \rangle$ $i \langle *, E, i+1 \rangle$... $P(n)$ 0 $\langle *, A, 1 \rangle$ 1 $\langle *, B, 2 \rangle$ 2 ... $\langle *, B, i \rangle$ $i \langle p, E, i+1 \rangle$...

$$0 \langle *, A, 1 \rangle 1 \langle *, B, 2 \rangle 2 \dots \langle q, D, i \rangle i \langle *, E, i+1 \rangle \dots P(n)$$
$$0 \langle *, A, 1 \rangle 1 \langle *, B, 2 \rangle 2 \dots \langle *, B, i \rangle i \langle p, E, i+1 \rangle \dots P(n)$$

Let \mathcal{M} be a DTM with polynomial space bound P(n)

- state space Q
- initial state **q**₀
- set of accept states F
 blank symbol □
- tape alphabet
- input alphabet $\Sigma \subset \Gamma$

transition function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{-1, 0, +1\}$

Let \mathcal{M} be a DTM with polynomial space bound P(n)

- state space Q
- initial state q₀
- set of accept states F
 blank symbol □
- tape alphabet
- input alphabet $\Sigma \subset \Gamma$

transition function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{-1, 0, +1\}$

input word w for M

poly time

TS **T** LTL-formula φ

 \mathcal{M} accepts \mathbf{w} , i.e., $w \in K$

iff

there is path π of Twith $\pi \models \varphi$

Polynomial reduction $w \mapsto (\mathcal{T}, \varphi)$

Let $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, \sqcup, F)$ be a DTM with polynomial space bound P(n), and $w \in \Sigma^*$, |w| = n.

Transition system $T \stackrel{\text{def}}{=} (S, Act, \rightarrow, S_0, AP, L)$ where

Transition system $T \stackrel{\text{def}}{=} (S, Act, \rightarrow, S_0, AP, L)$ where $S = \{0, 1, \dots, P(n)\} \cup \{\langle q, A, i \rangle, \langle *, A, i \rangle : q \in Q, A \in \Gamma, 1 \le i \le P(n)\}$

Transition system $T \stackrel{\text{def}}{=} (S, Act, \rightarrow, S_0, AP, L)$ where

$$S = \{0, 1, \dots, P(n)\} \cup \{\langle q, A, i \rangle, \langle *, A, i \rangle : q \in Q, \\ S_0 = \{0\}$$

$$A \in \Gamma, 1 \le i \le P(n)\}$$

Transition system $T \stackrel{\text{def}}{=} (S, Act, \rightarrow, S_0, AP, L)$ where

$$S = \{0, 1, \dots, P(n)\} \cup \{\langle q, A, i \rangle, \langle *, A, i \rangle : q \in Q, \\ S_0 = \{0\}$$

$$A \in \Gamma, 1 \le i \le P(n)\}$$

AP = 5 with obvious labeling function

Transition system $T \stackrel{\text{def}}{=} (S, Act, \rightarrow, S_0, AP, L)$ where

$$S = \{0, 1, \dots, P(n)\} \cup \{\langle q, A, i \rangle, \langle *, A, i \rangle : q \in Q, \\ S_0 = \{0\}$$

$$A \in \Gamma, 1 \le i \le P(n)\}$$

AP = 5 with obvious labeling function

transitions:
$$i-1 \longrightarrow \langle q, A, i \rangle$$
 for $1 \le i \le P(n)$ $\langle q, A, i \rangle \longrightarrow i$ and $q \in Q \cup \{*\}$

Transition system $T \stackrel{\text{def}}{=} (S, Act, \rightarrow, S_0, AP, L)$ where

$$S = \{0, 1, \dots, P(n)\} \cup \{\langle q, A, i \rangle, \langle *, A, i \rangle : q \in Q, \\ S_0 = \{0\}$$

$$A \in \Gamma, 1 \le i \le P(n)\}$$

AP = 5 with obvious labeling function

transitions:
$$i-1 \longrightarrow \langle q, A, i \rangle$$
 $P(n) \longrightarrow 0$ $\langle q, A, i \rangle \longrightarrow i$

Transition system $T \stackrel{\text{def}}{=} (S, Act, \rightarrow, S_0, AP, L)$ where

$$S = \{0, 1, \dots, P(n)\} \cup \{\langle q, A, i \rangle, \langle *, A, i \rangle : q \in Q, \\ S_0 = \{0\}$$

$$A \in \Gamma, 1 \le i \le P(n)\}$$

AP = 5 with obvious labeling function

transitions:
$$i-1 \longrightarrow \langle q, A, i \rangle$$
 $P(n) \longrightarrow 0$ $\langle q, A, i \rangle \longrightarrow i$

LTL formula $\varphi \stackrel{\text{def}}{=} \varphi_{\text{start}}^{\text{w}} \wedge \varphi_{\delta} \wedge \varphi_{\text{conf}} \wedge \varphi_{\text{accept}}$

Complexity of LTL model checking problem

LTLMC3.2-770

Complexity of LTL model checking problem

We saw that:

```
The existential LTL model checking problem given: finite TS \mathcal{T}, LTL formula \varphi question: is there a path \pi in \mathcal{T} with \pi \models \varphi? is PSPACE-complete.
```

Complexity of LTL model checking problem LTLMC3.2-77c

We saw that:

```
The existential LTL model checking problem
given: finite TS T, LTL formula \varphi
 question: is there a path \pi in T with \pi \models \varphi?
is PSPACE-complete.
```

As PSPACE = coPSPACE we get:

```
The LTL model checking problem
            finite TS T, LTL formula \varphi
 question: does \pi \models \varphi hold for all paths \pi in T?
is PSPACE-complete.
```

Summary: LTL model checking problem

The LTL model checking problem is

- solvable by an automata-based approach complexity: O(size(T) · exp(|φ|))
- *PSPACE*-complete

Summary: LTL model checking problem

The LTL model checking problem is

- solvable by an automata-based approach complexity: O(size(T) · exp(|φ|))
- *PSPACE*-complete

```
proof of the lower bound:
generic reduction from poly-space bounded DTM
proof of the upper bound:
uses the LTL-2-GNBA algorithm
```

Summary: LTL model checking problem

The LTL model checking problem is

- solvable by an automata-based approach complexity: $\mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \exp(|\varphi|))$
- **PSPACE**-complete

```
proof of the lower bound:
  generic reduction from poly-space bounded DTM
proof of the upper bound:
  uses the LTL-2-GNBA algorithm
```

additionally we proved coNP-hardness using an LTL-encoding of the Hamilton-path problem

NBA are more powerful than LTL

LTLMC3.2-66

There is **no** LTL formula φ over $AP = \{a\}$ s.t.

$$Words(\varphi) = \text{set of words } A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \text{ s.t.}$$

 $a \in A_{2i} \text{ for all } i \in \mathbb{N}$

(without proof)

There is **no** LTL formula φ over $AP = \{a\}$ s.t.

$$Words(\varphi) = \text{set of words } A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \text{ s.t.}$$
 $a \in A_{2i} \text{ for all } i \in \mathbb{N}$

NBA A:

(without proof)

(without proof)

There is **no** LTL formula φ over $AP = \{a\}$ s.t.

$$Words(\varphi) = \text{set of words } A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \text{ s.t.}$$

 $a \in A_{2i} \text{ for all } i \in \mathbb{N}$

NBA A:

LTL formula $\varphi = a \wedge \Box(a \rightarrow \bigcirc \bigcirc a)$?

There is **no** LTL formula φ over $AP = \{a\}$ s.t.

$$Words(\varphi) = \text{set of words } A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \text{ s.t.}$$

 $a \in A_{2i} \text{ for all } i \in \mathbb{N}$

NBA A:

(without proof)

LTL formula
$$\varphi = a \land \Box(a \to \bigcirc a)$$
?

$$\sigma = \{a\} \{a\} \{a\} \varnothing \{a\}^{\omega} \not\models \varphi, \text{ but } \sigma \in \mathcal{L}_{\omega}(\mathcal{A})$$

LTL satisfiability problem

given: LTL formula φ over AP

question: is φ satisfiable ?

LTL satisfiability problem

given: LTL formula φ over AP

question: is φ satisfiable, i.e., is $Words(\varphi) \neq \emptyset$?

question: is φ satisfiable, i.e., is $Words(\varphi) \neq \emptyset$?

examples: $\Diamond \Box a \land \Box \Diamond \neg a$ unsatisfiable

a U b ∧ $\Box \neg b$ unsatisfiable

 $\Diamond \Box a \land a \cup (\Box b)$ satisfiable

question: is φ satisfiable, i.e., is $Words(\varphi) \neq \emptyset$?

automata-based satisfiability checking algorithm:

construct an NBA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ for φ

question: is φ satisfiable, i.e., is $Words(\varphi) \neq \emptyset$?

automata-based satisfiability checking algorithm:

construct an NBA $\mathcal{A}=(Q,2^{AP},\delta,Q_0,F)$ for φ check whether $\mathcal{L}_{\omega}(\mathcal{A})\neq\varnothing$

question: is φ satisfiable, i.e., is $Words(\varphi) \neq \emptyset$?

automata-based satisfiability checking algorithm:

construct an NBA $\mathcal{A}=(Q,2^{AP},\delta,Q_0,F)$ for φ check whether $\mathcal{L}_{\omega}(\mathcal{A})\neq\varnothing$

nested DFS: check whether $\mathcal{A} \not\models \Diamond \Box \neg F$

question: is φ satisfiable, i.e., is $Words(\varphi) \neq \emptyset$?

automata-based satisfiability checking algorithm:

construct an NBA
$$\mathcal{A}=(Q,2^{AP},\delta,Q_0,F)$$
 for φ check whether $\mathcal{L}_{\omega}(\mathcal{A})\neq\varnothing$

nested DFS: check whether $\mathcal{A} \not\models \Diamond \Box \neg F$

if yes, return "yes", otherwise "no"

question: is φ satisfiable, i.e., is $Words(\varphi) \neq \emptyset$?

automata-based satisfiability checking algorithm:

construct an NBA
$$\mathcal{A}=(Q,2^{AP},\delta,Q_0,F)$$
 for φ check whether $\mathcal{L}_{\omega}(\mathcal{A})\neq\varnothing$

nested DFS: check whether $A \not\models \Diamond \Box \neg F$

if yes, return "yes", otherwise "no"

complexity: $\mathcal{O}(\exp(|\varphi|))$

question: is φ satisfiable, i.e., is $Words(\varphi) \neq \emptyset$?

automata-based satisfiability checking algorithm:

construct an NBA
$$\mathcal{A}=(Q,2^{AP},\delta,Q_0,F)$$
 for φ check whether $\mathcal{L}_{\omega}(\mathcal{A})\neq\varnothing$

nested DFS: check whether $\mathcal{A} \not\models \Diamond \Box \neg F$

if yes, return "yes", otherwise "no"

complexity: $\mathcal{O}(\exp(|\varphi|))$... and **PSPACE**-complete

LTL validity problem

LTLMC3.2-80A

question: is φ valid, i.e. is $Words(\varphi) = (2^{AP})^{\omega}$?

question: is φ valid, i.e. is $Words(\varphi) = (2^{AP})^{\omega}$?

is solvable by a LTL satisfiability checker as φ is valid iff $\neg \varphi$ is not satisfiable

```
given: LTL formula \varphi over AP
```

question: is φ valid, i.e. is $Words(\varphi) = (2^{AP})^{\omega}$?

```
is solvable by a LTL satisfiability checker as \varphi is valid iff \neg \varphi is not satisfiable complexity: \mathcal{O}(\exp(|\varphi|))
```

```
given: LTL formula \varphi over AP
```

question: is φ valid, i.e. is $Words(\varphi) = (2^{AP})^{\omega}$?

```
is solvable by a LTL satisfiability checker as \varphi is valid iff \neg \varphi is not satisfiable
```

complexity: $\mathcal{O}(\exp(|\varphi|))$... and *PSPACE*-complete