Exercise 1 (GNBA):

- **a)** Provide NBA A_1 and A_2 for the languages given by the expressions $(AC + B)^* B^{\omega}$ and $(B^*AC)^{\omega}$.
- **b)** Apply the product construction to obtain an GNBA \mathcal{G} and an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$. *Hint: Do not apply simplifications in these steps*
- **c)** Justify, why $\mathcal{L}_{\omega}(\mathcal{G}) = \emptyset$ where \mathcal{G} denotes the GNBA accepting the intersection.

Exercise 2 (LTL and Fairness):

$$fair = (\Box \Diamond (a \land b) \to \Box \Diamond \neg c) \land (\Diamond \Box (a \land b) \to \Box \Diamond \neg b).$$

- a) Determine the fair paths in TS, i.e., the initial, infinite paths satisfying fair
- b) For each of the following LTL formulae:

$$\begin{array}{rcl} \varphi_1 &=& b \mathsf{U} \Box \neg b \\ \varphi_2 &=& b \mathsf{W} \Box \neg b \\ \varphi_3 &=& (\bigcirc b) \mathsf{U} (\Box \neg b) \end{array}$$

determine whether TS $\models_{fair} \varphi_i$. In case TS $\not\models_{fair} \varphi_i$, indicate a path $\pi \in Paths(TS)$ for which $\pi \not\models \varphi_i$.

c) Redo the previous task but ignore the fairness assumption.

Exercise 3 (Model Checking):

TS:

(3 points)

Introduction to Model Checking SS16

Exercise Sheet 7 (due 22.06.2016)

Christian Dehnert, Sebastian Junges

(3 points)

a) To check $TS \models \varphi$, convert $\neg \varphi$ into an equivalent LTL-formula ψ which is constructed according to the following grammar:

 $\varphi ::= true \mid false \mid a \mid b \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \mathsf{U}\varphi.$

Then construct $closure(\psi)$.

- **b)** Give the elementary sets wrt. $closure(\psi)!$
- c) Construct the GNBA \mathcal{G}_{ψ} by providing its initial states, its acceptance set and its transition relation. Use the algorithm given in the lecture. Hint: It suffices to provide the transition relation as a table.
- **d)** Now, construct an NBA $\mathcal{A}_{\neg\varphi}$ **directly** from $\neg\varphi$, i.e. without relying on \mathcal{G}_{ψ} . *Hint: Four states suffice!*
- **e)** Construct $TS \otimes A_{\neg \varphi}$.
- **f)** Use the Nested DFS algorithm from the lecture to check $TS \models \varphi$. Therefore sketch the algorithm's main steps and interpret its outcome!