Exercise 1 (Muller automata):

A nondeterministic Muller automaton is a quintuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ where Q, Σ, δ and Q_0 are as for NBA and $\mathcal{F} \subseteq 2^Q$. For an infinite run ρ of \mathcal{A} , let

$$inf(\rho) := \{ q \in Q \mid \exists^{\infty} i \ge 0. \ \rho[i] = q \}.$$

Let $\alpha \in \Sigma^{\omega}$.

$$\mathcal{A}$$
 accepts $\alpha \iff$ ex. inf. run ρ of \mathcal{A} on α s.t. $inf(\rho) \in \mathcal{F}$

a) Consider the following Muller automaton \mathcal{A} with $\mathcal{F} = \{\{q_2, q_3\}, \{q_1, q_3\}, \{q_0, q_2\}\}$:

b) Show that every GNBA \mathcal{G} can be transformed into a nondeterministic Muller automaton \mathcal{A} such that $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{G})$ by defining the corresponding transformation.

Exercise 2 (A-recognizable):

A language $\mathcal{L} \subseteq \Sigma^{\omega}$ is said to be A-recognized by a (nondeterministic) Büchi automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ if

 $\alpha \in \mathcal{L} \iff$ ex. a run ρ of \mathcal{A} on α s.t. $\forall i. \ \rho[i] \in F$.

 ${\mathcal L}$ is called A-recognizable if there exists an automaton ${\mathcal A}$ that A-recognizes ${\mathcal L}.$

Prove or disprove that an LT property E is a safety property if and only if E is A-recognizable.

Exercise 3 (DBA):

Formally prove that there is no DBA A over the alphabet $\Sigma = \{a, b\}$ that accepts the language

$$\mathcal{L} := \mathcal{L}_{\omega}((a+b)^*.a^{\omega}).$$

Exercise 4 (Model Checking ω -regular Properties):

Let the ω -regular LT properties P_1 and P_2 over the set of atomic propositions AP = {a, b} be given by

 $P_1 :=$ "if *a* holds infinitely often, then *b* holds finitely often" $P_2 :=$ "*a* holds infinitely often and *b* holds infinitely often"

The model is given by the transition system TS as follows:

Christian Dehnert, Sebastian Junges

(2 points)

(2 points)

(4 points)

(2 points)

Algorithmically check whether $TS \models P_1$ and $TS \models P_2$. For this, proceed as follows.

- a) Derive suitable NBA A_{P1}, A_{P2}, where suitable means "appropriate for part b)-d)".
 Hint: For P₁ you can find an automaton with 3 states and for P₂ 4 states suffice. Derive the automata directly.
- **b)** Outline the reachable fragments of the product transition systems $TS \otimes A_{P_1}$ and $TS \otimes A_{P_2}$.
- c) Decide whether $TS \models P_1$ by checking an appropriate persistence property via nested depth-first search on $TS \otimes A_{P_1}$. Document *all* changes to the contents of U, V, π and ξ (the state sets and stacks of the nested depth-first search, see lecture). If the property is violated, provide a counterexample *based on the execution of the algorithm*.
- **d)** Decide whether $TS \models P_2$ by checking an appropriate persistence property via SCC analysis on $TS \otimes A_{P_2}$. If the property is violated, provide a counterexample *based on your analysis*.