'1':"-*_

i e
- ", "

Compiler Construction
Lecture 3: Lexical Analysis Il (Extended Matching Problem)

Summer Semester 2016

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-16/cc/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ss-16/cc/

Recap: Lexical Analysis

Lexical Analysis

Definition
The goal of lexical analysis is the decomposition a source program into a sequence
of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):

(token [, attribute])

Source code Scanner |_ Parsert--—-—-—----------- >
get next token

{Symbol table}

Example: ce uX1|_| . =y2+|_|1|_|;u ce

g
.(id, py)(gets,)(id, p2)(plus,)(int, 1)(sem,) . .

RWTH

30f 19 Compiler Construction o
Summer Semester 2016 Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) - and Verification Chair

Recap: Lexical Analysis

The DFA Method |
Known from Formal Systems, Automata and Processes:
Algorithm (DFA method)

Input: regular expression o« € REq, input string w € €)*

Procedure: 1. using Kleene’s Theorem, construct 21, € NFAq such that L(2l,) = [o]
2. apply powerset construction (cf. Definition 2.11) to obtain
A =(Q,Q,0,q), F') € DFAq with L(L) = L(2,) = [o]
3. solve the matching problem by deciding whether " (q;, w) € F’

Output: “yes” or “no”

4 0f 19 Compiler Construction o
Summer Semester 2016 Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) ‘ Bl and Verification Chair

‘RW“-I

Recap: Lexical Analysis

The DFA Method Il

The powerset construction involves the following concept:

Definition (e-closure)

Let A = (Q,Q, 4, qo, F) € NFAq. The e-closure (T) C Qof asubset T C Qis the
least set with (1) T C &(T) and (2) if g € £(T), then 6(q,) C (T)

Definition (Powerset construction)

Let A = (Q,Q, 4, qo, F) € NFAq. The powerset automaton

A = (Q,Q,§, qy, F') € DFAq is defined by

o Q=29 e VT C QacQ:0(T,a) ::s(quT5(q,a))
e q = <({%}) e F:={TCQ|TNF+0}

RWTH

50f 19 Compiler Construction o
Summer Semester 2016 Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) Bl and Verification Chair

The Extended Matching Problem

The Extended Matching Problem |

Definition 3.1

Letn > 1and a,...,q, € REq with e & [«;] # () for every i € [n] (where

n] :={1,...,n}). LetX :={T;,..., T,} be an alphabet of corresponding tokens
and w € Q7. Ifwy, ..., w, € Q" such that

oW =w...wWand

o for every j € [k] there exists j; € [n] such that w; € [«;],

then
e (wy,...,w) is called a decomposition and
o (T,,..., T,)is called an analysis

of ww.rt. oy, ..., Q.

Problem 3.2 (Extended matching problem)

Given oy, ..., o, € REq and w € Q" decide whether there exists a decomposition
of ww.rt. o, ..., «, and determine a corresponding analysis.

RWTH

7 0of 19 Compiler Construction o
Summer Semester 2016 Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) Bl and Verification Chair

The Extended Matching Problem

The Extended Matching Problem i

Observation: neither the decomposition nor the analysis are uniquely determined

Example 3.3

l.a=a",w=aa
—> two decompositions (aa) and (a, a)
with respective (unique) analyses (77) and (75, T1)
2.ay=a|b,ag=alc,w=a
—> unique decomposition (a) but two analyses (1) and (T2)

Goal: make both unique = deterministic scanning

RWTH

8 of 19 Compiler Construction
Summer Semester 2016 .
Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) ‘ Bl and Verification Chair

First-Longest-Match Analysis

Ensuring Uniqueness
Two principles

1. Principle of the longest match (“maximal munch tokenisation”)
— for uniqueness of decomposition
— make lexemes as long as possible

— motivated by practical considerations: e.g., every proper prefix of an identifier is also an identifier
2. Principle of the first match

— for uniqueness of analysis
— choose first matching regular expression (in the given order)
— therefore: arrange keywords before identifiers (if keywords protected)

Remark: uniqueness of analysis could also be achieved by requiring disjointness of
symbol classes (i.e., [a;] N [oy] = 0 for i # j)

e forexample, Id :==(a|...)(a|... | 0] ...)"\ {if,while, begin,...}
e but: expensive implementation due to product construction (A\ B = AN B)

10 of 19 Compiler Construction

Summer Semester 2016 ’

Lecture 3: Lexical Analysis Il (Extended Matching Problem) ‘

RWTH

Software Modeling
Il and Verification Chair

First-Longest-Match Analysis

Principle of the Longest Match

Definition 3.4 (Longest-match decomposition)

A decomposition (wy, ..., wx) of w € Q" wrt. oy, ..., a, € REq is called a
longest-match (LM) decomposition if, for every i € [k], x € Q",and y € Q,

w=w ... wixy = thereisnoj € [n]such that wix € [a;]

Corollary 3.5

Given w and oy, . . ., Qup,

e at most one LM decomposition of w exists (clear by definition) and
e it is possible that w has a decomposition but no LM decomposition (see following example).

Example 3.6

w = aab,a;y = a', a» = ab
—> (a, ab) is a decomposition but no LM decomposition exists

RWTH

11 of 19 Compiler Construction o
Summer Semester 2016 Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) ‘ Bl and Verification Chair

First-Longest-Match Analysis

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated analyses (since
[M [ey] # 0 with i # jis possible; cf. keyword/identifier problem)

Definition 3.7 (First-longest-match analysis)

Let (wy, ..., wx) be the LM decomposition of w € Q" w.r.t. oy, ..., a, € REq. Its
first-longest-match analysis (FLM analysis) (T, . .., T;) is determined by

jj:=min{l € [n] | w; € [au] }
for every j € [k].

Corollary 3.8

Given w and o4, . . ., «up, there is at most one FLM analysis of w.
It exists iff the LM decomposition of w exists.

RWTH

12 of 19 Compiler Construction o
Summer Semester 2016 Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) Bl and Verification Chair

Implementation of FLM Analysis

Implementation of FLM Analysis
Algorithm 3.9 (FLM analysis — overview)

Input: expressions o, ..., a, € REq, tokens {Ty, ..., T,}, input word w € Q"

Procedure: 1. forevery i € [n] construct2l; € DFAq such that L(i) = [ai]
(see DFA method; Algorithm 2.9)
2. construct the product automaton 2| € DFAq such that L(2) = |J_, [«i]
3. partition the set of final states of 2l to follow the first-match principle
4. extend the resulting DFA to a backtracking DFA which implements the
longest-match principle
5. let the backtracking DFA run on w

Output: FLM analysis of w (if existing)

RWTH

14 of 19 Compiler Construction o
Summer Semester 2016 Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) ‘ Bl and Verification Chair

Implementation of FLM Analysis

(2) The Product Automaton

Definition 3.10 (Product automaton)

Let A, = (Q;, 2, 6;, q(()i), F;) € DFAq for every i € [n]. The product automaton

A =(Q,,6,q),F) € DFAq is defined by
e Q=0 x...xQ,
e g :=(q8",....q"
0((a™,...,q\M), a) == (6:1(g™", a),. .., 5,(q", a))
(M, ..., q\") € Fiff there ex. i € [n] such that g) € F;

Lemma 3.11
The above construction yields L(21) = |)7, L(2) (= U, [au]).

Remark: similar construction for intersection (F := F X ... X F,)

15 0f 19 Compiler Construction
Summer Semester 2016

Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) Bl and Verification Chair

RWTH

Implementation of FLM Analysis

(3) Partitioning the Final States

Definition 3.12 (Partitioning of final states)

Let 24 = (Q, 2,0, qo, F) € DFAq be the product automaton as constructed before.
Its set of final states is partitioned into F = |47 FU) by the requirement

(qM,....dM e FY «— g e FandVjec[i—1]:q" ¢ F
(equivalently: FU) := (Q; \ F;) X ... X (Qi—1 \ Fi—1) X Fi X Qip1 X ... X Q)

Corollary 3.13

The above construction yields (w € Q*, i € [n]): -

0*(qo, w) € FW iffw € [a;] and w ¢ U[[aj]].
j=1
Definition 3.14 (Productive states)

Given 2[as above, g € Q is called productive if there exists w € (2* such that
0%(g, w) € F. Notation: productive states P C Q (and thus F C P).

RWTH

16 of 19 Compiler Construction o
Summer Semester 2016 Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) ‘ Bl and Verification Chair

Implementation of FLM Analysis

(4) The Backtracking DFA |

Goal: extend %l to the backtracking DFA ‘5 with output by equipping the input tape
with two pointers: a backtracking head for marking the last encountered match, and a

lookahead for determining the longest match.

A configuration of 5 has three components
(remember: > := {Ty, ..., T,} denotes the set of tokens):
1.amode me {N} ¥ ¥:

— m = N (*normal”): look for initial match (no final state reached yet)

— m= T € 2:token T has been recognised, looking for possible longer match
2. an input tape vgw € Q* - Q - Q*:

— v: lookahead part of input (v # & = m € X)

— g: current state of 2/

— w: remaining input
3. an output tape W € L* - {¢, lexerr}:

— 2_*: sequence of tokens recognised so far
— lexerr: a lexical error has occurred (i.e., a non-productive state was entered or the suffix of the input

is not a valid lexeme)

17 of 19 Compiler Construction o
Summer Semester 2016 Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) ‘ Bl and Verification Chair

RWTH

Implementation of FLM Analysis

(4) The Backtracking DFA Il
Definition 3.15 (Backtracking DFA)

e The set of configurations of ‘% is given by
({N}JWE) x Q- Q- Q" x ¥ {¢,lexerr}
e The initial configuration for an input word w € Q7 is (N, gow, ¢).
e The transitions of ‘B are defined as follows (where g’ := 4(q, a)):
— normal mode: look for initial match

(Ti, g'w, W) g e FY (1)
(N, gaw, W) F < (N, g'w, W) ifg € P\F (2
output: W - lexerr if g & P (3)

— backtrack mode: look for longest match
(T, dw, W) ifqg e FO) (
(T,vgaw, W) = ¢ (T,vag'w, W) ifqd € P\ F (
(N, govaw, WT) ifq ¢ P (

5
6
— end of input (T, q, W) I output: WT fgeF (7)
)
)

)
)

(N,q, W) I output: W - lexerr ifg€ P\ F (8
(T, vaq, W) - (N, gova, WT) ifge P\ F (9

18 of 19 Compiler Construction o
Summer Semester 2016 Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) ‘ Bl and Verification Chair

RWTH

Implementation of FLM Analysis

(4) The Backtracking DFA Il

Lemma 3.16
Given the backtracking DFA B as before and w € €™,
(N, gow, £) W e 2* iff Wisthe FLM analysis of w
» oW, & W - lexerr iff no FLM analysis of w exists

Proof.
(omitted)

Example 3.17

e Q) ={a b}, w= baa
° n:3, Y = {T1, Tg, T3}
e oy = a (“keyword”), o = a' b (“identifier”), az = b (“operator”)

(on the board)

RWTH

19 of 19 Compiler Construction o
Summer Semester 2016 Software Modeling

Lecture 3: Lexical Analysis Il (Extended Matching Problem) Bl and Verification Chair

	Recap: Lexical Analysis
	The Extended Matching Problem
	First-Longest-Match Analysis
	Implementation of FLM Analysis

