
Compiler Construction
Lecture 3: Lexical Analysis II (Extended Matching Problem)

Summer Semester 2016

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-16/cc/

https://moves.rwth-aachen.de/teaching/ss-16/cc/

Recap: Lexical Analysis

Lexical Analysis

Definition

The goal of lexical analysis is the decomposition a source program into a sequence
of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):

Source code Scanner Parser

Symbol table

(token [, attribute])

get next token

Example: . . . x1 :=y2+ 1 ; . . .
⇓

. . . (id, p1)(gets,)(id, p2)(plus,)(int, 1)(sem,) . . .

3 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

Recap: Lexical Analysis

The DFA Method I

Known from Formal Systems, Automata and Processes:

Algorithm (DFA method)

Input: regular expression α ∈ REΩ, input string w ∈ Ω∗

Procedure: 1. using Kleene’s Theorem, construct Aα ∈ NFAΩ such that L(Aα) = JαK
2. apply powerset construction (cf. Definition 2.11) to obtain

A′α = 〈Q′,Ω, δ′, q′0,F
′〉 ∈ DFAΩ with L(A′α) = L(Aα) = JαK

3. solve the matching problem by deciding whether δ′∗(q′0,w) ∈ F ′

Output: “yes” or “no”

4 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

Recap: Lexical Analysis

The DFA Method II

The powerset construction involves the following concept:

Definition (ε-closure)

Let A = 〈Q,Ω, δ, q0, F〉 ∈ NFAΩ. The ε-closure ε(T) ⊆ Q of a subset T ⊆ Q is the
least set with (1) T ⊆ ε(T) and (2) if q ∈ ε(T), then δ(q, ε) ⊆ ε(T)

Definition (Powerset construction)

Let A = 〈Q,Ω, δ, q0, F〉 ∈ NFAΩ. The powerset automaton
A′ = 〈Q′,Ω, δ′, q′0, F

′〉 ∈ DFAΩ is defined by

• Q′ := 2Q

• q′0 := ε({q0})
• ∀T ⊆ Q, a ∈ Ω : δ′(T , a) := ε

(⋃
q∈T δ(q, a)

)
• F ′ := {T ⊆ Q | T ∩ F 6= ∅}

5 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

The Extended Matching Problem

The Extended Matching Problem I

Definition 3.1

Let n ≥ 1 and α1, . . . , αn ∈ REΩ with ε /∈ JαiK 6= ∅ for every i ∈ [n] (where
[n] := {1, . . . , n}). Let Σ := {T1, . . . , Tn} be an alphabet of corresponding tokens
and w ∈ Ω+. If w1, . . . ,wk ∈ Ω+ such that
• w = w1 . . .wk and
• for every j ∈ [k] there exists ij ∈ [n] such that wj ∈ JαijK,

then
• (w1, . . . ,wk) is called a decomposition and
• (Ti1, . . . ,Tik) is called an analysis

of w w.r.t. α1, . . . , αn.

Problem 3.2 (Extended matching problem)

Given α1, . . . , αn ∈ REΩ and w ∈ Ω+, decide whether there exists a decomposition
of w w.r.t. α1, . . . , αn and determine a corresponding analysis.

7 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

The Extended Matching Problem

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely determined

Example 3.3

1. α = a+, w = aa
=⇒ two decompositions (aa) and (a, a)

with respective (unique) analyses (T1) and (T1,T1)

2. α1 = a | b, α2 = a | c, w = a
=⇒ unique decomposition (a) but two analyses (T1) and (T2)

Goal: make both unique =⇒ deterministic scanning

8 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

First-Longest-Match Analysis

Ensuring Uniqueness

Two principles

1. Principle of the longest match (“maximal munch tokenisation”)
– for uniqueness of decomposition
– make lexemes as long as possible
– motivated by practical considerations: e.g., every proper prefix of an identifier is also an identifier

2. Principle of the first match
– for uniqueness of analysis
– choose first matching regular expression (in the given order)
– therefore: arrange keywords before identifiers (if keywords protected)

Remark: uniqueness of analysis could also be achieved by requiring disjointness of
symbol classes (i.e., JαiK ∩ JαjK = ∅ for i 6= j)
• for example, Id := (a | . . .)(a | . . . | 0 | . . .)∗ \ {if, while, begin, . . .}
• but: expensive implementation due to product construction (A \ B = A ∩ B)

10 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

First-Longest-Match Analysis

Principle of the Longest Match

Definition 3.4 (Longest-match decomposition)

A decomposition (w1, . . . ,wk) of w ∈ Ω+ w.r.t. α1, . . . , αn ∈ REΩ is called a
longest-match (LM) decomposition if, for every i ∈ [k], x ∈ Ω+, and y ∈ Ω∗,

w = w1 . . .wixy =⇒ there is no j ∈ [n] such that wix ∈ JαjK

Corollary 3.5

Given w and α1, . . . , αn,
• at most one LM decomposition of w exists (clear by definition) and
• it is possible that w has a decomposition but no LM decomposition (see following example).

Example 3.6

w = aab, α1 = a+, α2 = ab
=⇒ (a, ab) is a decomposition but no LM decomposition exists

11 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

First-Longest-Match Analysis

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated analyses (since
JαiK ∩ JαjK 6= ∅ with i 6= j is possible; cf. keyword/identifier problem)

Definition 3.7 (First-longest-match analysis)

Let (w1, . . . ,wk) be the LM decomposition of w ∈ Ω+ w.r.t. α1, . . . , αn ∈ REΩ. Its
first-longest-match analysis (FLM analysis) (Ti1, . . . , Tik) is determined by

ij := min{l ∈ [n] | wj ∈ JαlK}
for every j ∈ [k].

Corollary 3.8

Given w and α1, . . . , αn, there is at most one FLM analysis of w.
It exists iff the LM decomposition of w exists.

12 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

Implementation of FLM Analysis

Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis – overview)

Input: expressions α1, . . . , αn ∈ REΩ, tokens {T1, . . . , Tn}, input word w ∈ Ω+

Procedure: 1. for every i ∈ [n], construct Ai ∈ DFAΩ such that L(Ai) = JαiK
(see DFA method; Algorithm 2.9)

2. construct the product automaton A ∈ DFAΩ such that L(A) =
⋃n

i=1JαiK
3. partition the set of final states of A to follow the first-match principle
4. extend the resulting DFA to a backtracking DFA which implements the

longest-match principle
5. let the backtracking DFA run on w

Output: FLM analysis of w (if existing)

14 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

Implementation of FLM Analysis

(2) The Product Automaton

Definition 3.10 (Product automaton)

Let Ai = 〈Qi,Ω, δi, q
(i)
0 , Fi〉 ∈ DFAΩ for every i ∈ [n]. The product automaton

A = 〈Q,Ω, δ, q0, F〉 ∈ DFAΩ is defined by
• Q := Q1 × . . .× Qn

• q0 := (q(1)
0 , . . . , q(n)

0)

• δ((q(1), . . . , q(n)), a) := (δ1(q(1), a), . . . , δn(q(n), a))

• (q(1), . . . , q(n)) ∈ F iff there ex. i ∈ [n] such that q(i) ∈ Fi

Lemma 3.11

The above construction yields L(A) =
⋃n

i=1 L(Ai) (=
⋃n

i=1JαiK).

Remark: similar construction for intersection (F := F1 × . . .× Fn)

15 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

Implementation of FLM Analysis

(3) Partitioning the Final States

Definition 3.12 (Partitioning of final states)

Let A = 〈Q,Ω, δ, q0, F〉 ∈ DFAΩ be the product automaton as constructed before.
Its set of final states is partitioned into F =

⊎n
i=1 F (i) by the requirement

(q(1), . . . , q(n)) ∈ F (i) ⇐⇒ q(i) ∈ Fi and ∀j ∈ [i − 1] : q(j) /∈ Fj

(equivalently: F (i) := (Q1 \ F1)× . . .× (Qi−1 \ Fi−1)× Fi × Qi+1 × . . .× Qn)

Corollary 3.13

The above construction yields (w ∈ Ω+, i ∈ [n]):

δ∗(q0,w) ∈ F (i) iff w ∈ JαiK and w /∈
i−1⋃
j=1

JαjK.

Definition 3.14 (Productive states)

Given A as above, q ∈ Q is called productive if there exists w ∈ Ω∗ such that
δ∗(q,w) ∈ F . Notation: productive states P ⊆ Q (and thus F ⊆ P).

16 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

Implementation of FLM Analysis

(4) The Backtracking DFA I

Goal: extend A to the backtracking DFA B with output by equipping the input tape
with two pointers: a backtracking head for marking the last encountered match, and a
lookahead for determining the longest match.

A configuration of B has three components
(remember: Σ := {T1, . . . , Tn} denotes the set of tokens):
1. a mode m ∈ {N}] Σ:

– m = N (“normal”): look for initial match (no final state reached yet)
– m = T ∈ Σ: token T has been recognised, looking for possible longer match

2. an input tape vqw ∈ Ω∗ · Q · Ω∗:
– v : lookahead part of input (v 6= ε =⇒ m ∈ Σ)
– q: current state of A
– w : remaining input

3. an output tape W ∈ Σ∗ · {ε, lexerr}:
– Σ∗: sequence of tokens recognised so far
– lexerr: a lexical error has occurred (i.e., a non-productive state was entered or the suffix of the input

is not a valid lexeme)

17 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

Implementation of FLM Analysis

(4) The Backtracking DFA II

Definition 3.15 (Backtracking DFA)

• The set of configurations of B is given by
({N}] Σ)× Ω∗ · Q · Ω∗ × Σ∗ · {ε, lexerr}

• The initial configuration for an input word w ∈ Ω+ is (N, q0w , ε).
• The transitions of B are defined as follows (where q′ := δ(q, a)):

– normal mode: look for initial match

(N, qaw ,W) `

(Ti, q′w ,W) if q′ ∈ F (i) (1)
(N, q′w ,W) if q′ ∈ P \ F (2)
output: W · lexerr if q′ /∈ P (3)

– backtrack mode: look for longest match

(T , vqaw ,W) `

(Ti, q′w ,W) if q′ ∈ F (i) (4)
(T , vaq′w ,W) if q′ ∈ P \ F (5)
(N, q0vaw ,WT) if q′ /∈ P (6)

– end of input (T , q,W) ` output: WT if q ∈ F (7)
(N, q,W) ` output: W · lexerr if q ∈ P \ F (8)

(T , vaq,W) ` (N, q0va,WT) if q ∈ P \ F (9)

18 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

Implementation of FLM Analysis

(4) The Backtracking DFA III

Lemma 3.16

Given the backtracking DFA B as before and w ∈ Ω+,

(N, q0w , ε) `∗
{

W ∈ Σ∗ iff W is the FLM analysis of w
W · lexerr iff no FLM analysis of w exists

Proof.

(omitted)

Example 3.17

• Ω = {a, b}, w = baa
• n = 3, Σ = {T1,T2,T3}
• α1 = a (“keyword”), α2 = a+b (“identifier”), α3 = b (“operator”)

(on the board)

19 of 19 Compiler Construction

Summer Semester 2016
Lecture 3: Lexical Analysis II (Extended Matching Problem)

	Recap: Lexical Analysis
	The Extended Matching Problem
	First-Longest-Match Analysis
	Implementation of FLM Analysis

