

Compiler Construction

- Lecture 3: Lexical Analysis II (Extended Matching Problem)
- Summer Semester 2016
- Thomas Noll Software Modeling and Verification Group RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-16/cc/

Lexical Analysis

Definition

The goal of lexical analysis is the decomposition a source program into a sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):

19 Compiler Construction Summer Semester 2016 Lecture 3: Lexical Analysis II (Extended Matching Problem)

The DFA Method I

Known from Formal Systems, Automata and Processes:

Algorithm (DFA method)

Input: regular expression $\alpha \in RE_{\Omega}$, input string $w \in \Omega^*$ Procedure: 1. using Kleene's Theorem, construct $\mathfrak{A}_{\alpha} \in NFA_{\Omega}$ such that $L(\mathfrak{A}_{\alpha}) = \llbracket \alpha \rrbracket$ 2. apply powerset construction (cf. Definition 2.11) to obtain $\mathfrak{A}'_{\alpha} = \langle Q', \Omega, \delta', q'_{0}, F' \rangle \in DFA_{\Omega}$ with $L(\mathfrak{A}'_{\alpha}) = L(\mathfrak{A}_{\alpha}) = \llbracket \alpha \rrbracket$ 3. solve the matching problem by deciding whether $\delta'^*(q'_{0}, w) \in F'$

Output: "yes" or "no"

The DFA Method II

The powerset construction involves the following concept:

Definition (ε -closure)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$. The ε -closure $\varepsilon(T) \subseteq Q$ of a subset $T \subseteq Q$ is the least set with (1) $T \subseteq \varepsilon(T)$ and (2) if $q \in \varepsilon(T)$, then $\delta(q, \varepsilon) \subseteq \varepsilon(T)$

Definition (Powerset construction)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$. The powerset automaton $\mathfrak{A}' = \langle Q', \Omega, \delta', q'_0, F' \rangle \in DFA_{\Omega}$ is defined by

• $Q' := 2^Q$ • $\forall T \subseteq Q, a \in \Omega : \delta'(T, a) := \varepsilon \left(\bigcup_{q \in T} \delta(q, a) \right)$ • $q'_0 := \varepsilon(\{q_0\})$ • $F' := \{T \subseteq Q \mid T \cap F \neq \emptyset\}$

The Extended Matching Problem

The Extended Matching Problem I

Definition 3.1

Let $n \ge 1$ and $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ with $\varepsilon \notin [\![\alpha_i]\!] \neq \emptyset$ for every $i \in [n]$ (where $[n] := \{1, \ldots, n\}$). Let $\Sigma := \{T_1, \ldots, T_n\}$ be an alphabet of corresponding tokens and $w \in \Omega^+$. If $w_1, \ldots, w_k \in \Omega^+$ such that

```
• w = w_1 \dots w_k and
```

• for every
$$j \in [k]$$
 there exists $i_j \in [n]$ such that $w_j \in [\alpha_{i_j}]$,

then

- (w_1, \ldots, w_k) is called a decomposition and
- $(T_{i_1}, \ldots, T_{i_k})$ is called an analysis

of w w.r.t. $\alpha_1, \ldots, \alpha_n$.

Problem 3.2 (Extended matching problem)

Given $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ and $w \in \Omega^+$, decide whether there exists a decomposition of w w.r.t. $\alpha_1, \ldots, \alpha_n$ and determine a corresponding analysis.

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely determined

Goal: make both unique \implies deterministic scanning

Ensuring Uniqueness

Two principles

- 1. Principle of the longest match ("maximal munch tokenisation")
 - for uniqueness of decomposition
 - make lexemes as long as possible
 - motivated by practical considerations: e.g., every proper prefix of an identifier is also an identifier
- 2. Principle of the first match
 - for uniqueness of analysis
 - choose first matching regular expression (in the given order)
 - therefore: arrange keywords before identifiers (if keywords protected)

Remark: uniqueness of analysis could also be achieved by requiring disjointness of symbol classes (i.e., $[\alpha_i] \cap [\alpha_j] = \emptyset$ for $i \neq j$)

- for example, $Id := (a \mid \ldots)(a \mid \ldots \mid 0 \mid \ldots)^* \setminus \{if, while, begin, \ldots\}$
- **but:** expensive implementation due to product construction $(A \setminus B = A \cap \overline{B})$

Principle of the Longest Match

Definition 3.4 (Longest-match decomposition)

A decomposition (w_1, \ldots, w_k) of $w \in \Omega^+$ w.r.t. $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ is called a longest-match (LM) decomposition if, for every $i \in [k]$, $x \in \Omega^+$, and $y \in \Omega^*$,

 $w = w_1 \dots w_i xy \implies$ there is no $j \in [n]$ such that $w_i x \in [\alpha_j]$

Corollary 3.5

Given w and $\alpha_1, \ldots, \alpha_n$,

- at most one LM decomposition of w exists (clear by definition) and
- it is possible that w has a decomposition but no LM decomposition (see following example).

Example 3.6

$w = aab, \alpha_1 = a^+, \alpha_2 = ab$ $\implies (a, ab)$ is a decomposition but no LM decomposition exists

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated analyses (since $[\alpha_i] \cap [\alpha_j] \neq \emptyset$ with $i \neq j$ is possible; cf. keyword/identifier problem)

Definition 3.7 (First-longest-match analysis)

Let (w_1, \ldots, w_k) be the LM decomposition of $w \in \Omega^+$ w.r.t. $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$. Its first-longest-match analysis (FLM analysis) $(T_{i_1}, \ldots, T_{i_k})$ is determined by $i_j := \min\{I \in [n] \mid w_j \in [\alpha_I]\}$ for every $j \in [k]$.

Corollary 3.8

Given w and $\alpha_1, \ldots, \alpha_n$, there is at most one FLM analysis of w. It exists iff the LM decomposition of w exists.

Implementation of FLM Analysis

Algorithm 3.9 (FLM analysis - overview)

Input: expressions $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$, tokens $\{T_1, \ldots, T_n\}$, input word $w \in \Omega^+$

Procedure: 1. for every $i \in [n]$, construct $\mathfrak{A}_i \in DFA_\Omega$ such that $L(\mathfrak{A}_i) = [\alpha_i]$

(see DFA method; Algorithm 2.9)

- 2. construct the product automaton $\mathfrak{A} \in DFA_{\Omega}$ such that $L(\mathfrak{A}) = \bigcup_{i=1}^{n} \llbracket \alpha_{i} \rrbracket$
- 3. partition the set of final states of \mathfrak{A} to follow the first-match principle
- 4. extend the resulting DFA to a backtracking DFA which implements the longest-match principle
- 5. let the backtracking DFA run on w

Output: FLM analysis of w (if existing)

(2) The Product Automaton

Definition 3.10 (Product automaton)

Let $\mathfrak{A}_i = \langle Q_i, \Omega, \delta_i, q_0^{(i)}, F_i \rangle \in DFA_\Omega$ for every $i \in [n]$. The product automaton $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in DFA_\Omega$ is defined by

• $Q := Q_1 \times \ldots \times Q_n$

•
$$q_0 := (q_0^{(1)}, \dots, q_0^{(n)})$$

•
$$\delta((q^{(1)}, \ldots, q^{(n)}), a) := (\delta_1(q^{(1)}, a), \ldots, \delta_n(q^{(n)}, a))$$

• $(q^{(1)}, \ldots, q^{(n)}) \in F$ iff there ex. $i \in [n]$ such that $q^{(i)} \in F_i$

Lemma 3.11

The above construction yields $L(\mathfrak{A}) = \bigcup_{i=1}^{n} L(\mathfrak{A}_i) (= \bigcup_{i=1}^{n} \llbracket \alpha_i \rrbracket).$

Remark: similar construction for intersection ($F := F_1 \times \ldots \times F_n$)

(3) Partitioning the Final States

Definition 3.12 (Partitioning of final states)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in DFA_{\Omega}$ be the product automaton as constructed before. Its set of final states is partitioned into $F = \biguplus_{i=1}^{n} F^{(i)}$ by the requirement $(q^{(1)}, \ldots, q^{(n)}) \in F^{(i)} \iff q^{(i)} \in F_i \text{ and } \forall j \in [i-1] : q^{(j)} \notin F_j$ (equivalently: $F^{(i)} := (Q_1 \setminus F_1) \times \ldots \times (Q_{i-1} \setminus F_{i-1}) \times F_i \times Q_{i+1} \times \ldots \times Q_n)$

Corollary 3.13

The above construction yields ($w \in \Omega^+$, $i \in [n]$): $\delta^*(q_0, w) \in F^{(i)}$ iff $w \in [\alpha_i]$ and $w \notin \bigcup_{i=1}^{i-1} [\alpha_i]$.

Definition 3.14 (Productive states)

Given \mathfrak{A} as above, $q \in Q$ is called productive if there exists $w \in \Omega^*$ such that $\delta^*(q, w) \in F$. Notation: productive states $P \subseteq Q$ (and thus $F \subseteq P$).

(4) The Backtracking DFA I

Goal: extend \mathfrak{A} to the backtracking DFA \mathfrak{B} with output by equipping the input tape with two pointers: a backtracking head for marking the last encountered match, and a lookahead for determining the longest match.

A configuration of \mathfrak{B} has three components

(remember: $\Sigma := \{T_1, \ldots, T_n\}$ denotes the set of tokens):

- 1. a mode $m \in \{N\} \uplus \Sigma$:
 - -m = N ("normal"): look for initial match (no final state reached yet)
 - $-m = T \in \Sigma$: token T has been recognised, looking for possible longer match
- 2. an input tape $vqw \in \Omega^* \cdot Q \cdot \Omega^*$:
 - *v*: lookahead part of input ($v \neq \varepsilon \implies m \in \Sigma$)
 - -q: current state of \mathfrak{A}
 - w: remaining input
- 3. an output tape $W \in \Sigma^* \cdot \{\varepsilon, \text{lexerr}\}$:
 - $-\Sigma^*$: sequence of tokens recognised so far
 - lexerr: a lexical error has occurred (i.e., a non-productive state was entered or the suffix of the input is not a valid lexeme)

(4) The Backtracking DFA II

Definition 3.15 (Backtracking DFA)

• The set of configurations of ${\mathfrak B}$ is given by

 $(\{N\} \uplus \Sigma) \times \Omega^* \cdot Q \cdot \Omega^* \times \Sigma^* \cdot \{\varepsilon, \mathsf{lexerr}\}$

- The initial configuration for an input word $w \in \Omega^+$ is $(N, q_0 w, \varepsilon)$.
- The transitions of \mathfrak{B} are defined as follows (where $q' := \delta(q, a)$):
 - normal mode: look for initial match

$$(N, qaw, W) \vdash \begin{cases} (T_i, q'w, W) & \text{if } q' \in F^{(i)} \\ (N, q'w, W) & \text{if } q' \in P \setminus F \\ \text{output: } W \cdot \text{lexerr } \text{if } q' \notin P \end{cases} (2)$$

- backtrack mode: look for longest match

$$(T, vqaw, W) \vdash \begin{cases} (T_i, q'w, W) & \text{if } q' \in F^{(i)} \\ (T, vaq'w, W) & \text{if } q' \in P \setminus F \\ (N, q_0 vaw, WT) & \text{if } q' \notin P \end{cases} \begin{pmatrix} 4 \\ (5) \\ (6) \end{pmatrix}$$

end of input

 $(T, q, W) \vdash$ output: WT if $q \in F$ (7) $(N, q, W) \vdash$ output: $W \cdot$ lexerr if $q \in P \setminus F$ (8) $(T, vaq, W) \vdash (N, q_0 va, WT)$ if $q \in P \setminus F$ (9)

(4) The Backtracking DFA III

Lemma 3.16

Given the backtracking DFA \mathfrak{B} as before and $w \in \Omega^+$,

 $(N, q_0 w, \varepsilon) \vdash^* \begin{cases} W \in \Sigma^* & \text{iff } W \text{ is the FLM analysis of } w \\ W \cdot \text{lexerr } \text{iff no FLM analysis of } w \text{ exists} \end{cases}$

Proof.

(omitted)

Example 3.17

- $\Omega = \{a, b\}, w = baa$
- $n = 3, \Sigma = \{T_1, T_2, T_3\}$
- $\alpha_1 = a$ ("keyword"), $\alpha_2 = a^+ b$ ("identifier"), $\alpha_3 = b$ ("operator")

(on the board)

