
Compiler Construction
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Summer Semester 2016

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-16/cc/

https://moves.rwth-aachen.de/teaching/ss-16/cc/

Recap: Static Data Structures

Outline of Lecture 18

Recap: Static Data Structures

Pseudo-Dynamic Data Structures

Heap Management

Memory Deallocation

Garbage Collection

Reference-Counting Garbage Collection

Mark-and-Sweep Garbage Collection

2 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Recap: Static Data Structures

Modified Syntax of EPL

Definition (Modified syntax of EPL)

The modified syntax of EPL is defined as follows (where n ≥ 1):

Z : z (* z is an integer *)
B : b ::= true | false (* b is a Boolean *)
R : r (* r is a real number *)
Con : c ::= z | b | r (* c is a constant *)
Ide : I, J (* I, J are identifiers *)
Type : T ::= bool | int | real | I | array[z1..z2] of T |

record I1:T1; . . . ;In:Tn end
Var : V ::= I | V[E] | V.I
Exp : E ::= c | V | E1 + E2 | E1 < E2 | E1 and E2 | . . .
Cmd : C ::= V:=E | C1;C2 | if E then C1 else C2 | while E do C
Dcl : D ::= DC DT DV

DC ::= ε | const I1 := c1; . . . ;In := cn;
DT ::= ε | type I1 := T1; . . . ;In := Tn;
DV ::= ε | var I1 : T1; . . . ;In : Tn;

Pgm : P ::= D C

3 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Pseudo-Dynamic Data Structures

Outline of Lecture 18

Recap: Static Data Structures

Pseudo-Dynamic Data Structures

Heap Management

Memory Deallocation

Garbage Collection

Reference-Counting Garbage Collection

Mark-and-Sweep Garbage Collection

4 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Pseudo-Dynamic Data Structures

Variant Records

Example 18.1 (Variant records in Pascal)

TYPE Coordinate = RECORD
nr: INTEGER;
CASE type: (cartesian, polar) OF

cartesian: (x, y: REAL);
polar: (r : REAL; phi: INTEGER)

END
END;

VAR pt: Coordinate;
pt.type := cartesian; pt.x := 0.5; pt.y := 1.2;

Implementation:
• Allocate memory for “biggest” variant
• Share memory between variant fields

5 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Pseudo-Dynamic Data Structures

Variant Records

Example 18.1 (Variant records in Pascal)

TYPE Coordinate = RECORD
nr: INTEGER;
CASE type: (cartesian, polar) OF

cartesian: (x, y: REAL);
polar: (r : REAL; phi: INTEGER)

END
END;

VAR pt: Coordinate;
pt.type := cartesian; pt.x := 0.5; pt.y := 1.2;

Implementation:
• Allocate memory for “biggest” variant
• Share memory between variant fields

5 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Pseudo-Dynamic Data Structures

Dynamic Arrays

Example 18.2 (Dynamic arrays in Pascal)

FUNCTION Sum(VAR a: ARRAY OF REAL): REAL;

VAR

i: INTEGER; s: REAL;

BEGIN

s := 0.0; FOR i := 0 to HIGH(a) do s := s + a[i] END; Sum := s

END

Implementation:
• Memory requirements unknown at compile time but determined by actual

function/procedure parameters =⇒ no heap required
• Use array descriptor with following fields as parameter value:

– starting memory address of array
– size of array
– lower index of array (possibly fixed by 0)
– upper index of array (actually redundant)

• Use data stack or index register to access array elements

6 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Pseudo-Dynamic Data Structures

Dynamic Arrays

Example 18.2 (Dynamic arrays in Pascal)

FUNCTION Sum(VAR a: ARRAY OF REAL): REAL;

VAR

i: INTEGER; s: REAL;

BEGIN

s := 0.0; FOR i := 0 to HIGH(a) do s := s + a[i] END; Sum := s

END

Implementation:
• Memory requirements unknown at compile time but determined by actual

function/procedure parameters =⇒ no heap required
• Use array descriptor with following fields as parameter value:

– starting memory address of array
– size of array
– lower index of array (possibly fixed by 0)
– upper index of array (actually redundant)

• Use data stack or index register to access array elements

6 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Heap Management

Outline of Lecture 18

Recap: Static Data Structures

Pseudo-Dynamic Data Structures

Heap Management

Memory Deallocation

Garbage Collection

Reference-Counting Garbage Collection

Mark-and-Sweep Garbage Collection

7 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Heap Management

Dynamic Memory Allocation I

• Dynamically manipulated data structures (lists, trees, graphs, ...)
• So far: creation of (static) objects by declaration
• Now: creation of (dynamic) objects by explicit memory allocation
• Access by (implicit or explicit) pointers
• Deletion by explicit deallocation or garbage collection

(= automatic deallocation of unreachable objects)

• Implementation: runtime stack not sufficient
(lifetime of objects generally exceeds lifetime of procedure calls)

⇒ new data structure: heap
• Simplest form of organisation:

Runtime stack→ ← Heap

0
↑
SP

↑
HP max

(stack pointer) (heap pointer)

8 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Heap Management

Dynamic Memory Allocation I

• Dynamically manipulated data structures (lists, trees, graphs, ...)
• So far: creation of (static) objects by declaration
• Now: creation of (dynamic) objects by explicit memory allocation
• Access by (implicit or explicit) pointers
• Deletion by explicit deallocation or garbage collection

(= automatic deallocation of unreachable objects)
• Implementation: runtime stack not sufficient

(lifetime of objects generally exceeds lifetime of procedure calls)
⇒ new data structure: heap
• Simplest form of organisation:

Runtime stack→ ← Heap

0
↑
SP

↑
HP max

(stack pointer) (heap pointer)

8 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Heap Management

Dynamic Memory Allocation II
Runtime stack→ ← Heap

0
↑
SP

↑
HP max

(stack pointer) (heap pointer)

• New instruction: NEW (“malloc”, ...)
– allocates n memory cells

(where n = topmost value of runtime stack)
– returns address of first cell
– formal semantics (SP = stack pointer, HP = heap pointer, <.> = dereferencing):

if HP - <SP> > SP
then HP := HP - <SP>; <SP> := HP
else error("memory overflow")

• But: collision check required for every operation which increases SP

(e.g., expression evaluations)
• Efficient solution: add extreme stack pointer EP

– points to topmost SP which will be used in the computation of current procedure
– statically computable at compile time
– set by procedure entry code
– modified semantics of NEW: if HP - <SP> > EP

then HP := HP - <SP>; <SP> := HP
else error("memory overflow")

9 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Heap Management

Dynamic Memory Allocation II
Runtime stack→ ← Heap

0
↑
SP

↑
HP max

(stack pointer) (heap pointer)

• New instruction: NEW (“malloc”, ...)
– allocates n memory cells

(where n = topmost value of runtime stack)
– returns address of first cell
– formal semantics (SP = stack pointer, HP = heap pointer, <.> = dereferencing):

if HP - <SP> > SP
then HP := HP - <SP>; <SP> := HP
else error("memory overflow")

• But: collision check required for every operation which increases SP

(e.g., expression evaluations)
• Efficient solution: add extreme stack pointer EP

– points to topmost SP which will be used in the computation of current procedure
– statically computable at compile time
– set by procedure entry code
– modified semantics of NEW: if HP - <SP> > EP

then HP := HP - <SP>; <SP> := HP
else error("memory overflow")

9 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Memory Deallocation

Outline of Lecture 18

Recap: Static Data Structures

Pseudo-Dynamic Data Structures

Heap Management

Memory Deallocation

Garbage Collection

Reference-Counting Garbage Collection

Mark-and-Sweep Garbage Collection

10 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Memory Deallocation

Memory Deallocation

Releasing memory areas that have become unused
• explicitly by programmer
• automatically by runtime system (garbage collection)

Management of deallocated memory areas by free list
(usually doubly-linked list)
• goal: reduction of fragmentation

(= heap memory split in large number of non-contiguous free areas)
• coalescing of contiguous areas
• allocation strategies: first-fit vs. best-fit

11 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Memory Deallocation

Memory Deallocation

Releasing memory areas that have become unused
• explicitly by programmer
• automatically by runtime system (garbage collection)

Management of deallocated memory areas by free list
(usually doubly-linked list)
• goal: reduction of fragmentation

(= heap memory split in large number of non-contiguous free areas)
• coalescing of contiguous areas
• allocation strategies: first-fit vs. best-fit

11 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Memory Deallocation

Explicit Deallocation

• Manually releasing memory areas that have become unused
– Pascal: dispose
– C: free

• Problems with manual deallocation:
– memory leaks:

� failing to eventually delete data that cannot be referenced anymore
� critical for long-running/reactive programs

(operating systems, server code, ...)
– dangling pointer dereference (“use after free”):

� referencing of deleted data
� may lead to runtime error (if deallocated pointer reset to nil) or produce side effects (if deallocated

pointer keeps value and storage reallocated)

⇒ Adopt programming conventions (object ownership) or use automatic deallocation

12 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Memory Deallocation

Explicit Deallocation

• Manually releasing memory areas that have become unused
– Pascal: dispose
– C: free

• Problems with manual deallocation:
– memory leaks:

� failing to eventually delete data that cannot be referenced anymore
� critical for long-running/reactive programs

(operating systems, server code, ...)
– dangling pointer dereference (“use after free”):

� referencing of deleted data
� may lead to runtime error (if deallocated pointer reset to nil) or produce side effects (if deallocated

pointer keeps value and storage reallocated)

⇒ Adopt programming conventions (object ownership) or use automatic deallocation

12 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Memory Deallocation

Explicit Deallocation

• Manually releasing memory areas that have become unused
– Pascal: dispose
– C: free

• Problems with manual deallocation:
– memory leaks:

� failing to eventually delete data that cannot be referenced anymore
� critical for long-running/reactive programs

(operating systems, server code, ...)
– dangling pointer dereference (“use after free”):

� referencing of deleted data
� may lead to runtime error (if deallocated pointer reset to nil) or produce side effects (if deallocated

pointer keeps value and storage reallocated)

⇒ Adopt programming conventions (object ownership) or use automatic deallocation

12 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Garbage Collection

Outline of Lecture 18

Recap: Static Data Structures

Pseudo-Dynamic Data Structures

Heap Management

Memory Deallocation

Garbage Collection

Reference-Counting Garbage Collection

Mark-and-Sweep Garbage Collection

13 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Garbage Collection

Garbage Collection

• Garbage = data that cannot be referenced (anymore)
• Garbage collection = automatic deallocation of unreachable data

• Supported by many programming languages:
– object-oriented: Java, Smalltalk
– functional: Lisp (first GC), ML, Haskell
– logic: Prolog
– scripting: Perl

• Design goals for garbage collectors:
– execution time: no significant increase of application runtime
– space usage: avoid memory fragmentation
– pause time: minimise maximal pause time of application program caused by garbage collection

(especially in real-time applications)

14 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Garbage Collection

Garbage Collection

• Garbage = data that cannot be referenced (anymore)
• Garbage collection = automatic deallocation of unreachable data
• Supported by many programming languages:

– object-oriented: Java, Smalltalk
– functional: Lisp (first GC), ML, Haskell
– logic: Prolog
– scripting: Perl

• Design goals for garbage collectors:
– execution time: no significant increase of application runtime
– space usage: avoid memory fragmentation
– pause time: minimise maximal pause time of application program caused by garbage collection

(especially in real-time applications)

14 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Garbage Collection

Garbage Collection

• Garbage = data that cannot be referenced (anymore)
• Garbage collection = automatic deallocation of unreachable data
• Supported by many programming languages:

– object-oriented: Java, Smalltalk
– functional: Lisp (first GC), ML, Haskell
– logic: Prolog
– scripting: Perl

• Design goals for garbage collectors:
– execution time: no significant increase of application runtime
– space usage: avoid memory fragmentation
– pause time: minimise maximal pause time of application program caused by garbage collection

(especially in real-time applications)

14 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Garbage Collection

Preliminaries

• Object = allocated entity
• Object has type known at runtime, defining

– size of object
– references to other objects

=⇒ excludes type-unsafe languages that allow manipulation of pointers (C, C++)

• Reference always to address at beginning of object
(=⇒ all references to an object have same value)
• Mutator = application program modifying objects in heap

– creation of objects by acquiring storage
– introduce/drop references to existing objects

• Objects become garbage when not (indirectly) reachable by mutator

15 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Garbage Collection

Preliminaries

• Object = allocated entity
• Object has type known at runtime, defining

– size of object
– references to other objects

=⇒ excludes type-unsafe languages that allow manipulation of pointers (C, C++)
• Reference always to address at beginning of object

(=⇒ all references to an object have same value)

• Mutator = application program modifying objects in heap
– creation of objects by acquiring storage
– introduce/drop references to existing objects

• Objects become garbage when not (indirectly) reachable by mutator

15 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Garbage Collection

Preliminaries

• Object = allocated entity
• Object has type known at runtime, defining

– size of object
– references to other objects

=⇒ excludes type-unsafe languages that allow manipulation of pointers (C, C++)
• Reference always to address at beginning of object

(=⇒ all references to an object have same value)
• Mutator = application program modifying objects in heap

– creation of objects by acquiring storage
– introduce/drop references to existing objects

• Objects become garbage when not (indirectly) reachable by mutator

15 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Garbage Collection

Reachability of Objects

• Root set = heap data that is directly accessible by mutator
– for Java: static field members and variables on stack
– yields directly reachable objects

• Every object with a reference that is stored
in a reachable object is indirectly reachable

• Mutator operations that affect reachability:
– object allocation: memory manager returns reference to new object

� creates new reachable object
– parameter passing and return values: passing of object references from calling site to called

procedure or vice versa
� propagates reachability of objects

– reference assignment: assignments p := q with references p and q
� creates second reference to object referred to by q, propagating reachability
� destroys orginal reference in p, potentially causing unreachability

– procedure return: removes local variables
� potentially causes unreachability of objects

• Objects becoming unreachable can cause more objects to become unreachable

16 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Garbage Collection

Reachability of Objects

• Root set = heap data that is directly accessible by mutator
– for Java: static field members and variables on stack
– yields directly reachable objects

• Every object with a reference that is stored
in a reachable object is indirectly reachable
• Mutator operations that affect reachability:

– object allocation: memory manager returns reference to new object
� creates new reachable object

– parameter passing and return values: passing of object references from calling site to called
procedure or vice versa
� propagates reachability of objects

– reference assignment: assignments p := q with references p and q
� creates second reference to object referred to by q, propagating reachability
� destroys orginal reference in p, potentially causing unreachability

– procedure return: removes local variables
� potentially causes unreachability of objects

• Objects becoming unreachable can cause more objects to become unreachable

16 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Garbage Collection

Reachability of Objects

• Root set = heap data that is directly accessible by mutator
– for Java: static field members and variables on stack
– yields directly reachable objects

• Every object with a reference that is stored
in a reachable object is indirectly reachable
• Mutator operations that affect reachability:

– object allocation: memory manager returns reference to new object
� creates new reachable object

– parameter passing and return values: passing of object references from calling site to called
procedure or vice versa
� propagates reachability of objects

– reference assignment: assignments p := q with references p and q
� creates second reference to object referred to by q, propagating reachability
� destroys orginal reference in p, potentially causing unreachability

– procedure return: removes local variables
� potentially causes unreachability of objects

• Objects becoming unreachable can cause more objects to become unreachable

16 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Garbage Collection

Identifying Unreachable Objects

Principal approaches:
• Catch program steps that turn reachable into unreachable objects

=⇒ reference counting
• Periodically locate all reachable objects; others then unreachable

=⇒ mark-and-sweep

17 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Reference-Counting Garbage Collection

Outline of Lecture 18

Recap: Static Data Structures

Pseudo-Dynamic Data Structures

Heap Management

Memory Deallocation

Garbage Collection

Reference-Counting Garbage Collection

Mark-and-Sweep Garbage Collection

18 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Reference-Counting Garbage Collection

Reference-Counting Garbage Collectors I

Working principle

• Add reference count field to each heap object (= number of references to that object)

• Mutator operations maintain reference count:
– object allocation: set reference count of new object to 1
– parameter passing: increment reference count of each object passed to procedure
– reference assignment p := q: decrement/increment reference count of object referred to by p/q
– procedure return: decrement reference count of each object that a local variable refers to (multiple

decrement if sharing)
• Moreover: transitive loss of reachability

– when reference count of object becomes zero
=⇒ decrement reference count of each object pointed to (and add object storage to free list)

Example 18.3

(on the board)

19 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Reference-Counting Garbage Collection

Reference-Counting Garbage Collectors I

Working principle

• Add reference count field to each heap object (= number of references to that object)
• Mutator operations maintain reference count:

– object allocation: set reference count of new object to 1
– parameter passing: increment reference count of each object passed to procedure
– reference assignment p := q: decrement/increment reference count of object referred to by p/q
– procedure return: decrement reference count of each object that a local variable refers to (multiple

decrement if sharing)

• Moreover: transitive loss of reachability
– when reference count of object becomes zero

=⇒ decrement reference count of each object pointed to (and add object storage to free list)

Example 18.3

(on the board)

19 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Reference-Counting Garbage Collection

Reference-Counting Garbage Collectors I

Working principle

• Add reference count field to each heap object (= number of references to that object)
• Mutator operations maintain reference count:

– object allocation: set reference count of new object to 1
– parameter passing: increment reference count of each object passed to procedure
– reference assignment p := q: decrement/increment reference count of object referred to by p/q
– procedure return: decrement reference count of each object that a local variable refers to (multiple

decrement if sharing)
• Moreover: transitive loss of reachability

– when reference count of object becomes zero
=⇒ decrement reference count of each object pointed to (and add object storage to free list)

Example 18.3

(on the board)

19 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Reference-Counting Garbage Collection

Reference-Counting Garbage Collectors I

Working principle

• Add reference count field to each heap object (= number of references to that object)
• Mutator operations maintain reference count:

– object allocation: set reference count of new object to 1
– parameter passing: increment reference count of each object passed to procedure
– reference assignment p := q: decrement/increment reference count of object referred to by p/q
– procedure return: decrement reference count of each object that a local variable refers to (multiple

decrement if sharing)
• Moreover: transitive loss of reachability

– when reference count of object becomes zero
=⇒ decrement reference count of each object pointed to (and add object storage to free list)

Example 18.3

(on the board)

19 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Reference-Counting Garbage Collection

Reference-Counting Garbage Collectors II

Advantage: Incrementality

• collector operations spread over mutator’s computation
– short pause times (good for real-time/interactive applications)
– immediate collection of garbage (low space usage)

• exception: transitive loss of reachability (reference removal may produce further garbage)
• but: recursive modification can be deferred

Disadvantages

• Incompleteness: cannot collect unreachable cyclic data structures (cf. Example 18.3)
• High overhead:

– additional operations for assignments and procedure calls/exits
– proportional to number of mutator steps (and not to number of heap objects)

Conclusion

Use for real-time/interactive applications

20 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Reference-Counting Garbage Collection

Reference-Counting Garbage Collectors II

Advantage: Incrementality

• collector operations spread over mutator’s computation
– short pause times (good for real-time/interactive applications)
– immediate collection of garbage (low space usage)

• exception: transitive loss of reachability (reference removal may produce further garbage)
• but: recursive modification can be deferred

Disadvantages

• Incompleteness: cannot collect unreachable cyclic data structures (cf. Example 18.3)
• High overhead:

– additional operations for assignments and procedure calls/exits
– proportional to number of mutator steps (and not to number of heap objects)

Conclusion

Use for real-time/interactive applications

20 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Reference-Counting Garbage Collection

Reference-Counting Garbage Collectors II

Advantage: Incrementality

• collector operations spread over mutator’s computation
– short pause times (good for real-time/interactive applications)
– immediate collection of garbage (low space usage)

• exception: transitive loss of reachability (reference removal may produce further garbage)
• but: recursive modification can be deferred

Disadvantages

• Incompleteness: cannot collect unreachable cyclic data structures (cf. Example 18.3)
• High overhead:

– additional operations for assignments and procedure calls/exits
– proportional to number of mutator steps (and not to number of heap objects)

Conclusion

Use for real-time/interactive applications

20 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Mark-and-Sweep Garbage Collection

Outline of Lecture 18

Recap: Static Data Structures

Pseudo-Dynamic Data Structures

Heap Management

Memory Deallocation

Garbage Collection

Reference-Counting Garbage Collection

Mark-and-Sweep Garbage Collection

21 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Mark-and-Sweep Garbage Collection

Mark-and-Sweep Garbage Collectors I

Working principle

• Mutator runs and makes allocation requests
• Collector runs periodically (typically when space exhausted/below critical threshold)

– computes set of reachable objects
– reclaims storage for objects in complement set

22 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Mark-and-Sweep Garbage Collection

Mark-and-Sweep Garbage Collectors II

Algorithm 18.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free

Procedure: 1. (* Marking phase *)
for each o in Heap, let ro := true iff o referenced by Root (* initialise r flags *)

2. let W := {o | ro = true} (* working set *)
3. while o ∈ W 6= ∅ do

i. let W := W \ {o}
ii. for each o′ referenced by o with ro′ = false, let ro′ = true;W := W ∪ {o′}

4. (* Sweeping phase *)
for each o in Heap with ro = false, add o to Free

Output: modified free list

Example 18.5

(on the board)

23 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Mark-and-Sweep Garbage Collection

Mark-and-Sweep Garbage Collectors II

Algorithm 18.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free
Procedure: 1. (* Marking phase *)

for each o in Heap, let ro := true iff o referenced by Root (* initialise r flags *)
2. let W := {o | ro = true} (* working set *)
3. while o ∈ W 6= ∅ do

i. let W := W \ {o}
ii. for each o′ referenced by o with ro′ = false, let ro′ = true;W := W ∪ {o′}

4. (* Sweeping phase *)
for each o in Heap with ro = false, add o to Free

Output: modified free list

Example 18.5

(on the board)

23 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Mark-and-Sweep Garbage Collection

Mark-and-Sweep Garbage Collectors II

Algorithm 18.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free
Procedure: 1. (* Marking phase *)

for each o in Heap, let ro := true iff o referenced by Root (* initialise r flags *)
2. let W := {o | ro = true} (* working set *)
3. while o ∈ W 6= ∅ do

i. let W := W \ {o}
ii. for each o′ referenced by o with ro′ = false, let ro′ = true;W := W ∪ {o′}

4. (* Sweeping phase *)
for each o in Heap with ro = false, add o to Free

Output: modified free list

Example 18.5

(on the board)

23 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Mark-and-Sweep Garbage Collection

Mark-and-Sweep Garbage Collectors II

Algorithm 18.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free
Procedure: 1. (* Marking phase *)

for each o in Heap, let ro := true iff o referenced by Root (* initialise r flags *)
2. let W := {o | ro = true} (* working set *)
3. while o ∈ W 6= ∅ do

i. let W := W \ {o}
ii. for each o′ referenced by o with ro′ = false, let ro′ = true;W := W ∪ {o′}

4. (* Sweeping phase *)
for each o in Heap with ro = false, add o to Free

Output: modified free list

Example 18.5

(on the board)

23 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Mark-and-Sweep Garbage Collection

Mark-and-Sweep Garbage Collectors III

Advantages

• Completeness: identifies all unreachable objects
• Time complexity proportional to number of objects in heap

Disadvantage: “stop-the-world” style

• May introduce long pauses into mutator execution (sweeping inspects complete heap)

Conclusion: refine to short-pause garbage collection

• Incremental collection: divide work in time by interleaving mutation and collection
• Partial collection: divide work in space by collecting subset of garbage at a time
• see Chapter 7 of A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles,

Techniques, and Tools; 2nd ed., Addison-Wesley, 2007

24 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Mark-and-Sweep Garbage Collection

Mark-and-Sweep Garbage Collectors III

Advantages

• Completeness: identifies all unreachable objects
• Time complexity proportional to number of objects in heap

Disadvantage: “stop-the-world” style

• May introduce long pauses into mutator execution (sweeping inspects complete heap)

Conclusion: refine to short-pause garbage collection

• Incremental collection: divide work in time by interleaving mutation and collection
• Partial collection: divide work in space by collecting subset of garbage at a time
• see Chapter 7 of A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles,

Techniques, and Tools; 2nd ed., Addison-Wesley, 2007

24 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

Mark-and-Sweep Garbage Collection

Mark-and-Sweep Garbage Collectors III

Advantages

• Completeness: identifies all unreachable objects
• Time complexity proportional to number of objects in heap

Disadvantage: “stop-the-world” style

• May introduce long pauses into mutator execution (sweeping inspects complete heap)

Conclusion: refine to short-pause garbage collection

• Incremental collection: divide work in time by interleaving mutation and collection
• Partial collection: divide work in space by collecting subset of garbage at a time
• see Chapter 7 of A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles,

Techniques, and Tools; 2nd ed., Addison-Wesley, 2007

24 of 24 Compiler Construction

Summer Semester 2016
Lecture 18: Code Generation IV (Implementation of Dynamic Data Structures)

	Recap: Static Data Structures
	Pseudo-Dynamic Data Structures
	Heap Management
	Memory Deallocation
	Garbage Collection
	Reference-Counting Garbage Collection
	Mark-and-Sweep Garbage Collection

