
Compiler Construction

Lecture 14: Semantic Analysis III (Attribute Evaluation)

Summer Semester 2016

Thomas Noll

Software Modeling and Verification Group

RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-16/cc/

https://moves.rwth-aachen.de/teaching/ss-16/cc/


Recap: Circularity of Attribute Grammars

Outline of Lecture 14

Recap: Circularity of Attribute Grammars

The Circularity Check

Correctness and Complexity of the Circularity Check

Attribute Evaluation

Attribute Evaluation by Topological Sorting

L-Attributed Grammars

2 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Recap: Circularity of Attribute Grammars

Circularity of Attribute Grammars

Goal: unique solvability of equation system

=⇒ avoid cyclic dependencies

Definition (Circularity)

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is called circular if there exists a syntax

tree t such that the attribute equation system Et is recursive (i.e., some attribute

variable of t depends on itself). Otherwise it is called noncircular.

Remark: because of the division of Varπ into Inπ and Outπ, cyclic dependencies

cannot occur at production level.

3 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Recap: Circularity of Attribute Grammars

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax tree t is caused
by the occurrence of a “cover” production π = A0 → w0A1w1 . . .Arwr ∈ P in a node
k0 of t such that

• the dependencies in Ek0
yield the “upper end” of the cycle and

• for at least one i ∈ [r ], some attributes in syn(Ai) depend on attributes in inh(Ai).

Example

on the board

To identify such “critical” situations we need to determine for each i ∈ [r ] the possible

ways in which attributes in syn(Ai) can depend on attributes in inh(Ai).

4 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Recap: Circularity of Attribute Grammars

Attribute Dependency Graphs and Circularity II

Definition (Attribute dependence)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ,P,S〉.
• If t is a syntax tree with root label A ∈ N and root node k , α ∈ syn(A), and β ∈ inh(A) such

that β.k →+
t α.k , then α is dependent on β below A in t (notation: β

A
→֒ α).

• For every syntax tree t with root label A ∈ N,

is(A, t) := {(β, α) ∈ inh(A)× syn(A) | β
A
→֒ α in t}.

• For every A ∈ N, IS(A) := {is(A, t) | t syntax tree with root label A}
⊆ 2Inh×Syn.

Remark: it is important that IS(A) is a system of attribute dependence sets, not a

union (otherwise: strong noncircularity – see exercises).

Example

on the board

5 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



The Circularity Check

Outline of Lecture 14

Recap: Circularity of Attribute Grammars

The Circularity Check

Correctness and Complexity of the Circularity Check

Attribute Evaluation

Attribute Evaluation by Topological Sorting

L-Attributed Grammars

6 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



The Circularity Check

The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively computed. The

following notation is employed:

Definition 14.1

Given π = A → w0A1w1 . . .Arwr ∈ P and isi ⊆ inh(Ai)× syn(Ai) for each i ∈ [r ],

is[π; is1, . . . , isr ] ⊆ inh(A)× syn(A)

is defined by
is[π; is1, . . . , isr ] :=

{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi, α

′.pi) | (β
′, α′) ∈ isi})

+
}

where pi :=
∑i

j=1 |wj−1| + i .

7 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



The Circularity Check

The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively computed. The

following notation is employed:

Definition 14.1

Given π = A → w0A1w1 . . .Arwr ∈ P and isi ⊆ inh(Ai)× syn(Ai) for each i ∈ [r ],

is[π; is1, . . . , isr ] ⊆ inh(A)× syn(A)

is defined by
is[π; is1, . . . , isr ] :=

{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi, α

′.pi) | (β
′, α′) ∈ isi})

+
}

where pi :=
∑i

j=1 |wj−1| + i .

Example 14.2

on the board

7 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



The Circularity Check

The Circularity Check II

Algorithm 14.3 (Circularity check for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ,P,S〉

8 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



The Circularity Check

The Circularity Check II

Algorithm 14.3 (Circularity check for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ,P,S〉
Procedure: 1. for every A ∈ N, iteratively construct IS(A) as follows:

i. if π = A → w ∈ P, then is[π] ∈ IS(A)
ii. if π = A → w0A1w1 . . . Arwr ∈ P and isi ∈ IS(Ai) for every i ∈ [r ], then

is[π; is1, . . . , isr ] ∈ IS(A)

8 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



The Circularity Check

The Circularity Check II

Algorithm 14.3 (Circularity check for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ,P,S〉
Procedure: 1. for every A ∈ N, iteratively construct IS(A) as follows:

i. if π = A → w ∈ P, then is[π] ∈ IS(A)
ii. if π = A → w0A1w1 . . . Arwr ∈ P and isi ∈ IS(Ai) for every i ∈ [r ], then

is[π; is1, . . . , isr ] ∈ IS(A)

2. test whether A is circular by checking if there exist π = A → w0A1w1 . . .Arwr ∈ P

and isi ∈ IS(Ai) for every i ∈ [r ] such that the following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi , α.pi) | (β, α) ∈ isi}

(where pi :=
∑i

j=1 |wj−1| + i )

8 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



The Circularity Check

The Circularity Check II

Algorithm 14.3 (Circularity check for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ,P,S〉
Procedure: 1. for every A ∈ N, iteratively construct IS(A) as follows:

i. if π = A → w ∈ P, then is[π] ∈ IS(A)
ii. if π = A → w0A1w1 . . . Arwr ∈ P and isi ∈ IS(Ai) for every i ∈ [r ], then

is[π; is1, . . . , isr ] ∈ IS(A)

2. test whether A is circular by checking if there exist π = A → w0A1w1 . . .Arwr ∈ P

and isi ∈ IS(Ai) for every i ∈ [r ] such that the following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi , α.pi) | (β, α) ∈ isi}

(where pi :=
∑i

j=1 |wj−1| + i )

Output: “yes” or “no”

8 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



The Circularity Check

The Circularity Check III

Example 14.4

DS→AB:
S

A B

α

α1 α2β α1 α2β

DB→AB:
B

A B

α1 α2β

α1 α2β α1 α2β

DA→B:
A

B

α1 α2β

α1 α2β

DA→a:
A

a

α1 α2β

DA→c:
A

c

α1 α2β

DB→b:
B

b

α1 α2β

Application of Algorithm 14.3: on the board

9 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Correctness and Complexity of the Circularity Check

Outline of Lecture 14

Recap: Circularity of Attribute Grammars

The Circularity Check

Correctness and Complexity of the Circularity Check

Attribute Evaluation

Attribute Evaluation by Topological Sorting

L-Attributed Grammars

10 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Correctness and Complexity of the Circularity Check

Correctness and Complexity of Circularity Check

Theorem 14.5 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 14.3 yields the answer “yes”

11 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Correctness and Complexity of the Circularity Check

Correctness and Complexity of Circularity Check

Theorem 14.5 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 14.3 yields the answer “yes”

Proof.

by induction on the syntax tree t with cyclic Dt

11 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Correctness and Complexity of the Circularity Check

Correctness and Complexity of Circularity Check

Theorem 14.5 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 14.3 yields the answer “yes”

Proof.

by induction on the syntax tree t with cyclic Dt

Lemma 14.6

The time complexity of the circularity check is exponential in the size of the attribute

grammar (= maximal length of right-hand sides of productions).

11 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Correctness and Complexity of the Circularity Check

Correctness and Complexity of Circularity Check

Theorem 14.5 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 14.3 yields the answer “yes”

Proof.

by induction on the syntax tree t with cyclic Dt

Lemma 14.6

The time complexity of the circularity check is exponential in the size of the attribute

grammar (= maximal length of right-hand sides of productions).

Proof.

by reduction of the word problem of alternating Turing machines (see M. Jazayeri: A

Simpler Construction for Showing the Intrinsically Exponential Complexity of the

Circularity Problem for Attribute Grammars, Comm. ACM 28(4), 1981, pp. 715–720)

11 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation

Outline of Lecture 14

Recap: Circularity of Attribute Grammars

The Circularity Check

Correctness and Complexity of the Circularity Check

Attribute Evaluation

Attribute Evaluation by Topological Sorting

L-Attributed Grammars

12 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation

Attribute Evaluation Methods

Given: • noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG

• syntax tree t of G

• valuation v : SynΣ → V for SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

13 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation

Attribute Evaluation Methods

Given: • noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG

• syntax tree t of G

• valuation v : SynΣ → V for SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

13 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation

Attribute Evaluation Methods

Given: • noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG

• syntax tree t of G

• valuation v : SynΣ → V for SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1. Topological sorting of Dt (later):

i. start with variables which depend at most on SynΣ

ii. proceed by successive substitution

13 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation

Attribute Evaluation Methods

Given: • noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG

• syntax tree t of G

• valuation v : SynΣ → V for SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1. Topological sorting of Dt (later):

i. start with variables which depend at most on SynΣ

ii. proceed by successive substitution

2. Strongly noncircular AGs: recursive functions (details omitted)

i. for every A ∈ N and α ∈ syn(A), define evaluation function gA,α with the following

parameters:

� the node of t where α has to be evaluated and

� all inherited attributes of A on which α (potentially) depends

ii. for every α ∈ syn(S), evaluate gS,α(k0) where k0 denotes the root of t

13 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation

Attribute Evaluation Methods

Given: • noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG

• syntax tree t of G

• valuation v : SynΣ → V for SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1. Topological sorting of Dt (later):

i. start with variables which depend at most on SynΣ

ii. proceed by successive substitution

2. Strongly noncircular AGs: recursive functions (details omitted)

i. for every A ∈ N and α ∈ syn(A), define evaluation function gA,α with the following

parameters:

� the node of t where α has to be evaluated and

� all inherited attributes of A on which α (potentially) depends

ii. for every α ∈ syn(S), evaluate gS,α(k0) where k0 denotes the root of t

3. L-attributed grammars: integration with top-down parsing (later)

13 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation

Attribute Evaluation Methods

Given: • noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG

• syntax tree t of G

• valuation v : SynΣ → V for SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1. Topological sorting of Dt (later):

i. start with variables which depend at most on SynΣ

ii. proceed by successive substitution

2. Strongly noncircular AGs: recursive functions (details omitted)

i. for every A ∈ N and α ∈ syn(A), define evaluation function gA,α with the following

parameters:

� the node of t where α has to be evaluated and

� all inherited attributes of A on which α (potentially) depends

ii. for every α ∈ syn(S), evaluate gS,α(k0) where k0 denotes the root of t

3. L-attributed grammars: integration with top-down parsing (later)

4. S-attributed grammars (i.e., Inh = ∅): yacc

13 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation by Topological Sorting

Outline of Lecture 14

Recap: Circularity of Attribute Grammars

The Circularity Check

Correctness and Complexity of the Circularity Check

Attribute Evaluation

Attribute Evaluation by Topological Sorting

L-Attributed Grammars

14 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation by Topological Sorting

Attribute Evaluation by Topological Sorting

Algorithm 14.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G, v : SynΣ → V

15 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation by Topological Sorting

Attribute Evaluation by Topological Sorting

Algorithm 14.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G, v : SynΣ → V

Procedure: 1. let Var := Var t \ SynΣ (* attributes to be evaluated *)
2. while Var 6= ∅ do

i. let x ∈ Var such that {y ∈ Var | y →t x} = ∅
ii. let x = f (x1, . . . , xn) ∈ Et

iii. let v(x) := f (v(x1), . . . , v(xn))
iv. let Var := Var \ {x}

15 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation by Topological Sorting

Attribute Evaluation by Topological Sorting

Algorithm 14.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G, v : SynΣ → V

Procedure: 1. let Var := Var t \ SynΣ (* attributes to be evaluated *)
2. while Var 6= ∅ do

i. let x ∈ Var such that {y ∈ Var | y →t x} = ∅
ii. let x = f (x1, . . . , xn) ∈ Et

iii. let v(x) := f (v(x1), . . . , v(xn))
iv. let Var := Var \ {x}

Output: solution v : Var t → V

15 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation by Topological Sorting

Attribute Evaluation by Topological Sorting

Algorithm 14.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G, v : SynΣ → V

Procedure: 1. let Var := Var t \ SynΣ (* attributes to be evaluated *)
2. while Var 6= ∅ do

i. let x ∈ Var such that {y ∈ Var | y →t x} = ∅
ii. let x = f (x1, . . . , xn) ∈ Et

iii. let v(x) := f (v(x1), . . . , v(xn))
iv. let Var := Var \ {x}

Output: solution v : Var t → V

Remark: noncircularity guarantees that in step 2.i at least one such x is available

15 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



Attribute Evaluation by Topological Sorting

Attribute Evaluation by Topological Sorting

Algorithm 14.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G, v : SynΣ → V

Procedure: 1. let Var := Var t \ SynΣ (* attributes to be evaluated *)
2. while Var 6= ∅ do

i. let x ∈ Var such that {y ∈ Var | y →t x} = ∅
ii. let x = f (x1, . . . , xn) ∈ Et

iii. let v(x) := f (v(x1), . . . , v(xn))
iv. let Var := Var \ {x}

Output: solution v : Var t → V

Remark: noncircularity guarantees that in step 2.i at least one such x is available

Example 14.8

see Examples 12.1 and 12.2 (Knuth’s binary numbers)

15 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

Outline of Lecture 14

Recap: Circularity of Attribute Grammars

The Circularity Check

Correctness and Complexity of the Circularity Check

Attribute Evaluation

Attribute Evaluation by Topological Sorting

L-Attributed Grammars

16 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand sides of

productions are only allowed to run from left to right.

17 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand sides of

productions are only allowed to run from left to right.

Definition 14.1 (L-attributed grammar)

Let A = 〈G,E ,V 〉 ∈ AG such that, for every π ∈ P and β.i = f (. . . , α.j, . . .) ∈ Eπ

with β ∈ Inh and α ∈ Syn, j < i . Then A is called an L-attributed grammar (notation:

A ∈ LAG).

Remark: note that no restrictions are imposed for β ∈ Syn (for i = 0) or α ∈ Inh (for
j = 0). Thus, in an L-attributed grammar,

• synthesized attributes of the left-hand side can depend on any outer variable and

• every inner variable can depend on any inherited attribute of the left-hand side.

17 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand sides of

productions are only allowed to run from left to right.

Definition 14.1 (L-attributed grammar)

Let A = 〈G,E ,V 〉 ∈ AG such that, for every π ∈ P and β.i = f (. . . , α.j, . . .) ∈ Eπ

with β ∈ Inh and α ∈ Syn, j < i . Then A is called an L-attributed grammar (notation:

A ∈ LAG).

Remark: note that no restrictions are imposed for β ∈ Syn (for i = 0) or α ∈ Inh (for
j = 0). Thus, in an L-attributed grammar,

• synthesized attributes of the left-hand side can depend on any outer variable and

• every inner variable can depend on any inherited attribute of the left-hand side.

Corollary 14.2

Every A ∈ LAG is noncircular.

17 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

L-Attributed Grammars II

Example 14.3

L-attributed grammar:

S → AB i.1 = 0

i.2 = s.1 + 1

s.0 = s.2 + 1

A → aA i.2 = i.0 + 1

s.0 = s.2 + 1

A → c s.0 = i.0 + 1

B → b s.0 = i.0 + 1

18 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

L-Attributed Grammars II

Example 14.3

L-attributed grammar:

S → AB i.1 = 0

i.2 = s.1 + 1

s.0 = s.2 + 1

A → aA i.2 = i.0 + 1

s.0 = s.2 + 1

A → c s.0 = i.0 + 1

B → b s.0 = i.0 + 1

S

A B

a A

c

b

0

1 2

3 4 5

6

18 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be attributed by a
depth-first, left-to-right tree traversal with two visits to each node

1. top-down: evaluation of inherited attributes

2. bottom-up: evaluation of synthesized attributes

19 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be attributed by a
depth-first, left-to-right tree traversal with two visits to each node

1. top-down: evaluation of inherited attributes

2. bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

1. top-down: expansion steps

2. bottom-up: reduction steps

19 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be attributed by a
depth-first, left-to-right tree traversal with two visits to each node

1. top-down: evaluation of inherited attributes

2. bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

1. top-down: expansion steps

2. bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate attribute evaluation
=⇒
• use recursive-descent parser and

• add variables and operations for attribute evaluation

19 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

Recursive-Descent Parsing I

Ingredients: • variable token for current token

• function next() for invoking the scanner

• procedure print(i) for displaying the leftmost analysis (or errors)

20 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

Recursive-Descent Parsing I

Ingredients: • variable token for current token

• function next() for invoking the scanner

• procedure print(i) for displaying the leftmost analysis (or errors)

Method: to every A ∈ N we assign a procedure

A()

which

• tests token with regard to the lookahead sets of the A-productions,

• prints the corresponding rule number and
• evaluates the corresponding right-hand side as follows:

– for a ∈ Σ: check token; call next()
– for A ∈ N: call A

20 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

Recursive-Descent Parsing and Attribute Evaluation I

Ingredients: • variable token for current token

• function next() for invoking the scanner

• procedure print(i) for displaying the leftmost analysis (or errors)

Method: to every A ∈ N we assign a procedure

A(in: inh(A), out: syn(A))

which

• declares local variables for synthesized attributes on right-hand sides,

• tests token with regard to the lookahead sets of the A-productions,

• prints the corresponding rule number and
• evaluates the corresponding right-hand side as follows:

– for a ∈ Σ: check token; call next()
– for A ∈ N: call A with appropriate parameters

20 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

Recursive-Descent Parsing II

Example 14.4 (cf. Example 14.3)

proc main();
token := next(); S()

proc S();
if token in {’a’,’c’} then (* S → AB *)
print(1); A(); B()

else print(error); stop fi
proc A();

if token = ’a’ then (* A → aA *)
print(2); token := next(); A()

elsif token = ’c’ then (* A → c *)
print(3); token := next()

else print(error); stop fi
proc B();

if token = ’b’ then (* B → b *)
print(4); token := next()

else print(error); stop fi

21 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)



L-Attributed Grammars

Recursive-Descent Parsing and Attribute Evaluation II

Example 14.5 (cf. Example 14.3)

proc main(); var s;
token := next(); S(s); print(s)

proc S(out s0); var s1,s2;
if token in {’a’,’c’} then (* S → AB : i.1 = 0, i.2 = s.1 + 1, s.0 = s.2 + 1 *)
print(1); A(0,s1); B(s1+1,s2); s0 := s2+1

else print(error); stop fi
proc A(in i0,out s0); var s2;

if token = ’a’ then (* A → aA : i.2 = i.0 + 1, s.0 = s.2 + 1 *)
print(2); token := next(); A(i0+1,s2); s0 := s2+1

elsif token = ’c’ then (* A → c : s.0 = i.0 + 1 *)
print(3); token := next(); s0 := i0+1

else print(error); stop fi
proc B(in i0,out s0);

if token = ’b’ then (* B → b : s.0 = i.0 + 1 *)
print(4); token := next(); s0 := i0+1

else print(error); stop fi

22 of 22 Compiler Construction

Summer Semester 2016

Lecture 14: Semantic Analysis III (Attribute Evaluation)


	Recap: Circularity of Attribute Grammars
	The Circularity Check
	Correctness and Complexity of the Circularity Check
	Attribute Evaluation
	Attribute Evaluation by Topological Sorting
	L-Attributed Grammars

