Compiler Construction

Lecture 12: Semantic Analysis | (Attribute Grammars)

Summer Semester 2016

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ss-16/cc/

https://moves.rwth-aachen.de/teaching/ss-16/cc/

Overview

Outline of Lecture 12

Overview

20f 25 Compiler Construction o Rm
Summer Semester 2016 Soft Modeli
Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ m a:d \",'::i?ica?i;,'gﬁair

Overview

Conceptual Structure of a Compiler
Source code

l

Lexical analysis (Scanner)| Asg

/\
vy Var Exp
'Syntax analysis (Parser)| o
| WA
[Semantic analysis] aron Asq ok attribute grammars
SN
: v : int Var Expint
'Generation of intermediate code] ,
Sumint
\4 . .
'Code optimisation| int Var Conint

(Generation of target code|

i

Target code

RWTH

30of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Semantic Analysis

Outline of Lecture 12

Semantic Analysis

4 0of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

n

4

Software Modeling
Il and Verification Chair

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?

RWTH

5 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e |s x a scalar, an array, or a procedure? Of which type?

RWTH

5 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e |s x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?

RWTH

5 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e |s x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e |s x defined before it is used?

RWTH

5 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e |s x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e |s x defined before it is used?
e Is the expression 3 * x + y type consistent?

RWTH

5 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e |s x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e |s x defined before it is used?
e Is the expression 3 * x + y type consistent?
e Where should the value of x be stored (register/stack/heap)?

RWTH

5 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e |s x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e |s x defined before it is used?
e Is the expression 3 * x + y type consistent?
e Where should the value of x be stored (register/stack/heap)?
e Do p and q refer to the same memory location (aliasing)?

RWTH

5 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e |s x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e |s x defined before it is used?
e Is the expression 3 * x + y type consistent?
e Where should the value of x be stored (register/stack/heap)?
e Do p and q refer to the same memory location (aliasing)?

These cannot be expressed using context-free grammars!

RWTH

5 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Semantic Analysis

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:
e Are there identifiers that are not declared? Declared but not used?
e |s x a scalar, an array, or a procedure? Of which type?
e Which declaration of x is used by each reference?
e |s x defined before it is used?
e Is the expression 3 * x + y type consistent?
e Where should the value of x be stored (register/stack/heap)?
e Do p and q refer to the same memory location (aliasing)?

These cannot be expressed using context-free grammars!
(For example, {ww | w € X"} ¢ CFLy)

RWTH

5 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Semantic Analysis

Static Semantics

Static semantics

Static semantics refers to properties of program constructs
e which are true for every occurrence of this construct in every program execution (static) and
e can be decided at compile time
e but are context-sensitive and thus not expressible using context-free grammars (semantics).

RWTH

6 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Semantic Analysis

Static Semantics

Static semantics

Static semantics refers to properties of program constructs
e which are true for every occurrence of this construct in every program execution (static) and
e can be decided at compile time
e but are context-sensitive and thus not expressible using context-free grammars (semantics).

Example properties

Static: type or declaredness of an identifier, number of registers required to evaluate
an expression, ...

Dynamic: value of an expression, size of runtime stack, ...

RWTH

6 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Attribute Grammars

Outline of Lecture 12

Attribute Grammars

7 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

n

4

Software Modeling
Il and Verification Chair

Attribute Grammars

Attribute Grammars |

Goal: compute context-dependent but runtime-independent properties of a given
program

|dea: enrich context-free grammar by semantic rules which annotate syntax tree
with attribute values

—> Semantic analysis = attribute evaluation
Result: attributed syntax tree

RWTH

8 of 25 Compiler Construction
Summer Semester 2016 "
Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Attribute Grammars

Attribute Grammars |

Goal: compute context-dependent but runtime-independent properties of a given
program
|dea: enrich context-free grammar by semantic rules which annotate syntax tree
with attribute values
—> Semantic analysis = attribute evaluation
Result: attributed syntax tree

In greater detail:
e With every nonterminal a set of attributes is associated.
e Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

e With every production a set of semantic rules is associated.

RWTH

8 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Attribute Grammars

Attribute Grammars Il

Advantage: attribute grammars provide a very flexible and broadly applicable
mechanism for transporting information throught the syntax tree (“syntax-directed
translation”)
e Attribute values: symbol tables, data types, code, error flags, ...
e Application in Compiler Construction:
— static semantics
— program analysis for optimization
— code generation
— error handling
e Automatic attribute evaluation by compiler generators
(cf. yacc’s synthesized attributes)

e Originally designed by D. Knuth for defining the semantics of context-free languages
(Math. Syst. Theory 2 (1968), pp. 127—145)

RWTH

9 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Attribute Grammars

Example: Knuth’s Binary Numbers |

Example 12.1 (only synthesized attributes)
Binary numbers (with fraction):

Gg : Numbers S — L
S—L.L
Lists L — B

L— LB
Bits B—0
Bits B—1
10 of 25 Compiler Construction
Summer Semester 2016 ’ Soft Modeli Rm
Lecture 12: Semantic Analysis | (Attribute Grammars) m a:d '\",'::i?ica?i;,'gﬁair

Attribute Grammars

Example: Knuth’s Binary Numbers |

Example 12.1 (only synthesized attributes)

Binary numbers (with fraction):

Gg : Numbers S— L d.0
S—L.L d.0
Lists L— B
/.0
L— LB d.0
/.0
Bits B— 0
Bits B—1 d.0O

d.0 =

d.0 =

d.1
d.1+d.3/2"
d.1

1
2+xd1+d.2
A+ 1

0

1

Synthesized attributes of S, L, B: d (decimal value; domain: V9 := Q)

of L:

| (length; domain: V' := N)

Semantic rules: equations with attribute variables (index = position; 0 = LHS)

10 of 25 Compiler Construction
Summer Semester 2016

Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

Attribute Grammars

Example: Knuth’s Binary Numbers li

Example 12.1 (continued)

Syntax tree for 1101.01:

L
B
1

11 of 25 Compiler Construction
Summer Semester 2016

Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

‘ Il and Verification Chair

|RW11'I

Attribute Grammars

Example: Knuth’s Binary Numbers Il

Example 12.1 (continued)

Attributed syntax tree for 1101.01.:

11 0of 25

Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

n

4

Software Modeling
Il and Verification Chair

RWTH

Attribute Grammars

Example: Knuth’s Binary Numbers li

Example 12.1 (continued)

Attributed syntax tree for 1101.01.:

11 of 25 Compiler Construction 0 Rm
Summer Semester 201 6 . . ‘ Software Modeling
Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Attribute Grammars

Example: Knuth’s Binary Numbers li

Example 12.1 (continued)

Attributed syntax tree for 1101.01.:

11 of 25 Compiler Construction 0 Rm
Summer Semester 201 6 . . ‘ Software Modeling
Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Attribute Grammars

Example: Knuth’s Binary Numbers li

Example 12.1 (continued)

Attributed syntax tree for 1101.01.:

11 of 25 Compiler Construction 0 Rm
Summer Semester 201 6 . . ‘ Software Modeling
Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Attribute Grammars

Example: Knuth’s Binary Numbers li

Example 12.1 (continued)

Attributed syntax tree for 1101.01.:

11 of 25 Compiler Construction 0 Rm
Summer Semester 201 6 . . ‘ Software Modeling
Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Attribute Grammars

Example: Knuth’s Binary Numbers li

Example 12.1 (continued)

Attributed syntax tree for 1101.01.:

11 of 25 Compiler Construction 0 Rm
Summer Semester 201 6 . . ‘ Software Modeling
Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Attribute Grammars

Example: Knuth’s Binary Numbers li

Example 12.1 (continued)

Attributed syntax tree for 1101.01.:

11 of 25 Compiler Construction 0 Rm
Summer Semester 201 6 . . ‘ Software Modeling
Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Attribute Grammars

Example: Knuth’s Binary Numbers li

Example 12.1 (continued)

Attributed syntax tree for 1101.01.:

L—LB:d0=2x*d.1+4+d.2

1

11 of 25 Compiler Construction 0 Rm
Summer Semester 201 6 . . ‘ Software Modeling
Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Attribute Grammars

Example: Knuth’s Binary Numbers li

Example 12.1 (continued)

Attributed syntax tree for 1101.01.:

11 of 25 Compiler Construction 0 Rm
Summer Semester 201 6 . . ‘ Software Modeling
Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Attribute Grammars

Example: Knuth’s Binary Numbers li

Example 12.1 (continued)

Attributed syntax tree for 1101.01.:

S—L.L:d.0=d1+d.3/2"3

1

11 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

|RW11'I

Adding Inherited Attributes

Outline of Lecture 12

Adding Inherited Attributes

12 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

n

4

Software Modeling
Il and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes |

Example 12.2 (synthesized + inherited attributes)

Binary numbers (with fraction):

Gg : Numbers S — L
S—L.L

Lists L — B

L— LB
Bits B— 0
Bits B—1

13 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes |

Example 12.2 (synthesized + inherited attributes)

Binary numbers (with fraction):

Gg: Numbers S— L d.0 = d.1 p.1 =0
S—L.LdO0O = d1+d.3
p.1 =0 p.3 = — 13
Lists L—+B dO0 = d.1 [0 = 1
p.1 = p.0
L—LB d0 =d1+d2 /10 =1/1+1
p.1 = p0+1 p2 = p0
Bits B—0 d0 =20
Bits B—1 d.0 = 2°P°
Synthesized attributes of S, L, B: d (decimal value; domain: V¢ := Q)
of L: | (length; domain: V' := N)
Inherited attribute of L, B: p (position; domain: VP := 7)
s e ot . RWTH

)) . Software Modeling
Lecture 12: Semantic Analysis | (Attribute Grammars) - and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Syntax tree for 10. 1:

\
/

L
|
|
|
B
i
|
|

1

RWTH

14 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

e
e
e

L@ X
[:

Y

1

o 1@ 05 BB
i
|
0

14 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

e

L@ X
[:1

\

//// \\\\ \ |
0:) Ld: D p:)B@:) CE \>de:)
: :
bl : :
: IB d : 0) 1
|
| L— B:10=1
1

Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

O ¥

\

/// \\\ Y |

P SLESET BDRED @
| |

b | |
le 0 1
I
| L—LB:10=11+1
1

Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

e
e
e

0 L@ V.2
[:1

Y

1

0:) L{d: D p: B
|
[
0)

S—LL:p1=0

\

14 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

e
e
e

0. L@: V.2
[:1

Y

1

0:) L{d: D p: B
|
[
0)

S—L.L:p3=—13

\

14 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

@ ¥

/ N
/ N

@D (:)BE@:D
|
|
0

D : 1

L
|
i
B(d
I
I
I

L—LB:p1=p0+1
1

\

14 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

-
-
-
—
- |
—
—
= I
//
= I
—
- |
—
— 1
D Ld: X/:2 -
PN - :
7 N
7
Ve N
7 N
Ve N
7 N
N

Y

d:

HDNACED 5 RN CHON-ICED
: :
I I
I I
0
:
I
I

L —LB:p2=p.0
1

14 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

e
e
e

0. L@: V.2
[:1

HDIACED (BN CHON-ICED
|
|
0

1

I
I
I
I
Y |
I
I
I
I

L—B:pi=p0

\

14 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

RWTH

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

e
e
e

0. L@: V.2
[:1

Y

- 1 d :

B—0:d.0=0

0. D 1Ld, D P:9BU:0
: :
I I
I I
0
:
I
I

1

\

14 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

RWTH

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

e
e
e

0. L@: V.2
[:1

Y

1 d:2

B—1:d.0=2°r0

0. D 1Ld, D P:9BU:0
: :
I I
I I
0
:
I
I

1

\

14 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

—
—
—
—
- |
—
—
= I
—
-~ |
—
- |
—
_ </ 1
0 L{d: I:2 -
N - :
e N
7
7 N
7 N
Ve N
e N
e N
C
A

Y

1 d:2

p: 1) L’
|
|
|
|
| L — B:d0=d.1

1

14 of 25 Compiler Construction
Summer Semester 2016
Lecture 12: Semantic Analysis | (Attribute Grammars)

: Software Modeling

Il and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1: :CED,

. —
| A
s ~ |
// N |
s ~
- \\ [
// N A |
~ \N .
0 1) L (@20 1 p:0'Bd:0 - —1Bd; 05
| X |
| |
| |
| | |
] [I [
:1)Bd:2 o) 1
|
|
| L—LB:d0=d1+d2
1
14 of 25 Compiler Construction
Summer Semester 2016 ’ Software Modeling m
Lecture 12: Semantic Analysis | (Attribute Grammars) - and Verification Chair

Adding Inherited Attributes

Adding Inherited Attributes I

Example 12.2 (continued)

Attributed syntax tree for 10. 1:

- | ~
/// | \\
//// l \\
—— |
Pp:0) L{d:2(:2 : 0: — D : 0571
// - : A
e S [
// \\ [
- N Y |
~ \N .
0 1) L (@20 1 p:0'Bd:0 - —1Bd; 05
| X |
| |
| |
| | |
] [I [
1) B :2 o) 1
|
|
| S—L.L:d0=d.1+d.3
1
14 of 25 Compiler Construction
Summer Semester 2016 ’ Software Modelin m
Lecture 12: Semantic Analysis | (Attribute Grammars) - and Verification cga

Formal Definition of Attribute Grammars

Outline of Lecture 12

Formal Definition of Attribute Grammars

15 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars |
Definition 12.3 (Attribute grammar)

Let G = (N,X,P,S) € CFGs with X :== NW X.

RWTH

16 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars |
Definition 12.3 (Attribute grammar)
Let G = <N, >, P, S> € CFGsy with X .= NW X.

o Let Att = Synw Inh be a set of (synthesized or inherited) attributes, and let V = (J,_,, V°
be a union of value sets.

RWTH

16 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars |
Definition 12.3 (Attribute grammar)

Let G= (N,X,P,S) € CFGs with X := NW ¥.
o Let Att = Synw Inh be a set of (synthesized or inherited) attributes, and let V = (J,_,, V°
be a union of value sets.

o Let att : X — 2% be an attribute assignment, and let syn(Y) := att(Y) N Syn and
inh(Y) := att(Y) N Inh for every Y € X.

RWTH

16 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars |
Definition 12.3 (Attribute grammar)

Let G= (N,X,P,S) € CFGy with X .= N4 ¥.
o Let Att = Synw Inh be a set of (synthesized or inherited) attributes, and let V = (J,_,, V°
be a union of value sets.
o Let att : X — 2% be an attribute assignment, and let syn(Y) := att(Y) N Syn and
inh(Y) := att(Y) N Inh for every Y € X.
e Every production m = Yy — Y7 ... Y, € P determines the set
Var, := {a.i | a € att(Y)),i € {0,...,r}}
of attribute variables of 7 with the subsets of inner and outer variables:
In; :={a.i| (i=0,a €syn(Y;))or (i € [r],a € inh(Y}))}, Out, := Var, \ In,

RWTH

16 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars |
Definition 12.3 (Attribute grammar)

Let G = <N, >, P, S> € CFGy with X .= NW L.
o Let Att = Synw Inh be a set of (synthesized or inherited) attributes, and let V = (J,_,, V°
be a union of value sets.
o Let att : X — 2% be an attribute assignment, and let syn(Y) := att(Y) N Syn and
inh(Y) := att(Y) N Inh for every Y € X.
e Every production m = Yy — Y7 ... Y, € P determines the set
Var, := {a.i | a € att(Y)),i € {0,...,r}}
of attribute variables of = with the subsets of inner and outer variables:
In; :={a.i| (i=0,a €syn(Y;))or (i € [r],a € inh(Y}))}, Out, := Var, \ In,
e A semantic rule of 7 is an equation of the form
a.i = flaq.i, ..., ap.ip)
where n € N, a.i € Ing, aj.jj € Outr,and f: VO x ..o x VO — Ve,

RWTH

16 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars |
Definition 12.3 (Attribute grammar)

Let G = <N, >, P, S> € CFGy with X := NW X.
o Let Att = Synw Inh be a set of (synthesized or inherited) attributes, and let V = (J,_,, V°
be a union of value sets.
o Let att : X — 2% be an attribute assignment, and let syn(Y) := att(Y) N Syn and
inh(Y) := att(Y) N Inh for every Y € X.
e Every production m = Yy — Y7 ... Y, € P determines the set
Var, := {a.i | a € att(Y)),i € {0,...,r}}
of attribute variables of = with the subsets of inner and outer variables:
In; :={a.i| (i=0,a €syn(Y;))or (i € [r],a € inh(Y}))}, Out, := Var, \ In,
e A semantic rule of 7 is an equation of the form
a.i = flaq.i, ..., ap.ip)
where n € N, a.i € Ing, aj.jj € Outr,and f: VO x ..o x VO — Ve,
e For each m € P, let E; be a set with exactly one semantic rule for every inner variable of m,
andlet £ := (E, | 7 € P).

RWTH

16 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars |
Definition 12.3 (Attribute grammar)

Let G = <N, >, P, S> € CFGy with X := NW X.
o Let Att = Synw Inh be a set of (synthesized or inherited) attributes, and let V = (J,_,, V°
be a union of value sets.
o Let att : X — 2% be an attribute assignment, and let syn(Y) := att(Y) N Syn and
inh(Y) := att(Y) N Inh for every Y € X.
e Every production m = Yy — Y7 ... Y, € P determines the set
Var, := {a.i | a € att(Y)),i € {0,...,r}}
of attribute variables of = with the subsets of inner and outer variables:
In; :={a.i| (i=0,a €syn(Y;))or (i € [r],a € inh(Y}))}, Out, := Var, \ In,
e A semantic rule of 7 is an equation of the form
a.i = flaq.i, ..., ap.ip)
where n € N, a.i € Ing, aj.jj € Outr,and f: VO x ..o x VO — Ve,
e For each m € P, let E; be a set with exactly one semantic rule for every inner variable of m,
andlet £ := (E, | 7 € P).
Then 2 := (G, E, V) is called an attribute grammar: 2l € AG.

RWTH

16 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars Il
Example 12.4 (cf. Example 12.2)

g € AG for binary numbers:
e Attributes: Att = Synw Inh with Syn = {d, I} and Inh = {p}

RWTH

17 of 25 Compiler Construction
Summer Semester 2016

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘

Software Modeling
Il and Verification Chair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars Il
Example 12.4 (cf. Example 12.2)

g € AG for binary numbers:
e Attributes: Att = Syn Inh with Syn = {d, I} and Inh = {p}
e Valuesets: V9=Q, V=N, V=7

RWTH

17 of 25 Compiler Construction
Summer Semester 2016

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘

Software Modeling
Il and Verification Chair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars Il
Example 12.4 (cf. Example 12.2)

2g € AG for binary numbers:
e Attributes: Att = Syn Inh with Syn = {d, I} and Inh = {p}
e Valuesets: V9=Q, V=N, V=7

e Attribute assignment: YexX| S [B 0 1 .
syn(Y) | {d} {d,1} {d} 0 0 0
inh(Y)| 0 {p} {p} 0 0 0
R e n..... |RWNH
Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ - ::Ltv::i(faimiﬂlggair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars Il
Example 12.4 (cf. Example 12.2)

2g € AG for binary numbers:
e Attributes: Att = SynWw Inh with Syn = {d, I} and Inh = {p}

e Valuesets: V9=Q, V =N, W=7
e Attribute assignment: [y cX| S [B
d

syn(Y) | {d} {d,/} {
inh(Y)| 0 {p} {p

01 .
} 000
} 000

e Attribute variables: [c P] S [L | 5B
In. {d.0,p.1} {d.0,p.1,p.3} {d.0,1.0,p.1}
Out, {d.1,11} {d1,11,d.3,1.3} {d.1,p.0}
me P L— LB B—0 B—1
In. |{d.0,/1.0,p.1,p.2} {d.0} {d.0}
Out, |{d.1,d.2,/.1,p.0} {p.0} {p.0}

17 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Formal Definition of Attribute Grammars

Formal Definition of Attribute Grammars Il
Example 12.4 (cf. Example 12.2)

2g € AG for binary numbers:
e Attributes: Att = Synw Inh with Syn = {d, I} and Inh = {p}
e Valuesets: V9=Q, V=N, V=7

e Attribute assignment: [y cX| S [B 0 1 .
syn(Y)|{d} {d./} {a} @ 0 0
inh(Y)| 0 {p} {p} 000
e Attribute variables: [~ p] S [L | 5B
In, {d.0,p.1} {d.0,p.1,p.3} {d.0,1.0,p.1}
Out;, {d.1,11} {d1,11,d.3,1.3} {d.1,p.0}
me P L— LB B—0 B—1
In. |{d.0,/.0,p.1,p.2} {d.0} {d.0}
Out, |{d.1,d.2,/.1,p.0} {p.0} {p.0}

e Semantic rules: see Example 12.2 (e.g., Es ., = {d.0 =d.1,p.1 = 0})

17 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

The Attribute Equation System

Outline of Lecture 12

The Attribute Equation System

18 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

The Attribute Equation System

Attribution of Syntax Trees |

Definition 12.5 (Attribution of syntax trees)

Let 2l = (G, E, V) € AG, and let t be a syntax tree of G with the set of nodes K.
e K determines the set of attribute variables of t:

Var, := {a.k | k € K labelled with Y € X, o € att(Y)}.

RWTH

19 of 25 Compiler Construction
Summer Semester 2016

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘

Software Modeling
Il and Verification Chair

The Attribute Equation System

Attribution of Syntax Trees |

Definition 12.5 (Attribution of syntax trees)

Let 2l = (G, E, V) € AG, and let t be a syntax tree of G with the set of nodes K.
e K determines the set of attribute variables of t:

Var, := {a.k | k € K labelled with Y € X, o € att(Y)}.

e Let kg € K be an (inner) node where production 7 = Yy — Y7 ... Y, € Pis applied, and let
ki,..., Kk € K be the corresponding successor nodes. The attribute equation system E, of
ko is obtained from E, by substituting every attribute index i € {0, ..., r} by k;.

RWTH

19 of 25 Compiler Construction
Summer Semester 2016

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘

Software Modeling
El and Verification Chair

The Attribute Equation System

Attribution of Syntax Trees |

Definition 12.5 (Attribution of syntax trees)

Let 2l = (G, E, V) € AG, and let t be a syntax tree of G with the set of nodes K.
e K determines the set of attribute variables of t:

Var, := {a.k | k € K labelled with Y € X, o € att(Y)}.

e Let kg € K be an (inner) node where production 7 = Yy — Y7 ... Y, € Pis applied, and let
ki,..., Kk € K be the corresponding successor nodes. The attribute equation system E, of
ko is obtained from E, by substituting every attribute index i € {0, ..., r} by k;.

e The attribute equation system of t is given by

E: = U{Ek | k inner node of t}.

RWTH

19 of 25 Compiler Construction
Summer Semester 2016

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘

Software Modeling
Il and Verification Chair

The Attribute Equation System

Attribution of Syntax Trees Il
Example 12.6 (cf. Example 12.2)

Attributed syntax tree for 10. 1: ko : 8@
== I \\
- : \\\
Ok : L@ ki: . Oks: LQD

N
N
N

P)ko : L/ @;(5 . Bd) Pko : BQ)

> . .
@kS- ks : O Ko : 1

|

|

|

|

k4 1
20 of 25 Compiler Construction Rm
Summer Semester 2016 ’ Soft Modeli
. . . ortwar iIn

Lecture 12: Semantic Analysis | (Attribute Grammars) M and Veri(faica?io(:l cgair

The Attribute Equation System

Attribution of Syntax Trees Il
Example 12.6 (cf. Example 12.2)
Attributed syntax tree for 10. 1: ko : S

©ki : LED ko . @ks: L@

|
< |
- ~
|
|

Ok : L@ Pks : BQ (Pks : BQ)
| | |
| | |
@k3 |: :‘@ k6 : 0 k10 1
: ES—)L.L . d.0=d.1+d.3 E . d. ko d. k1 dkg
! subst
ke 1 p1=0 = p.ki =0
p.3=—1.3 p.kg = —I.kg
e, RWTH
Lecture 12: Semantic Analysis | (Attribute Grammars) o- :ofih\nll: ?gﬂel cﬁa

The Attribute Equation System

Attribution of Syntax Trees Il
Example 12.6 (cf. Example 12.2)

Attributed syntax tree for 10. 1: ko : S
/// ! \\\
@fﬁ . L\ k7 - @kg . L
- ~ |
@k2 : L @k5 : :‘@ @kg : :‘@
| | |
| | |
@k3 |: :‘@ k6 : 0 k10 1
i EL%LB: d.0=d.1+d.2 Ek1 . dk1 :dk2+dk5
k1 LO=11+1 sug lky = Lk + 1
p.1=p.0+ 1 p.ko = p.ky + 1
p.2 =p.0 p.Ks = p.kq
B 0. RWTH
Lecture 12: Semantic Analysis | (Attribute Grammars) - a:{:‘\l‘ll:rri?imiﬂiggair

The Attribute Equation System

Attribution of Syntax Trees lli
Corollary 12.7

For each ..k € Var; except the inherited attribute variables at the root and the

synthesized attribute variables at the leaves of t, E; contains exactly one equation
with left-hand side o .k.

RWTH

21 0of 25 Compiler Construction
Summer Semester 2016

Lecture 12: Semantic Analysis | (Attribute Grammars)

Software Modeling
El and Verification Chair

The Attribute Equation System

Attribution of Syntax Trees lli
Corollary 12.7

For each ..k € Var; except the inherited attribute variables at the root and the

synthesized attribute variables at the leaves of t, E; contains exactly one equation
with left-hand side o .k.

Assumptions:

e The start symbol does not have inherited attributes: inh(S) = 0.
e Synthesized attributes of terminal symbols are provided by the scanner.

21 0of 25 Compiler Construction

Summer Semester 2016 ’

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘

RWTH

Software Modeling
El and Verification Chair

Circularity of Attribute Grammars

Outline of Lecture 12

Circularity of Attribute Grammars

22 of 25 Compiler Construction
Summer Semester 2016 "
Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Circularity of Attribute Grammars

Solvability of Attribute Equation System |

Definition 12.8 (Solution of attribute equation system)

Let 2l = (G, E, V) € AG, and let t be a syntax tree of G. A solution of E; is a

mapping
v:Var; =V

such that, for every a.k € Var;and a.k = f(akq, . .., a.k,) € E,
v(a.k) = f(v(a.ki), ..., v(a.ky)).

RWTH

23 of 25 Compiler Construction
Summer Semester 2016 "
Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Circularity of Attribute Grammars

Solvability of Attribute Equation System |

Definition 12.8 (Solution of attribute equation system)

Let 2l = (G, E, V) € AG, and let t be a syntax tree of G. A solution of E; is a
mapping
v:Var; =V

such that, for every a.k € Var;and a.k = f(akq, . .., a.k,) € E,
v(a.k) = f(v(a.ki), ..., v(a.ky)).

In general, the attribute equation system E; of a given syntax tree t can have
e NO solution,
e exactly one solution, or
e several solutions.

RWTH

23 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Circularity of Attribute Grammars

Solvability of Attribute Equation System i

Example 12.9

e A—aB,B—-beP

e a € syn(B), § € inh(B)
o 3.2 = f(.2) € Easap
e 0.0=03.0€ Egp

RWTH

24 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Circularity of Attribute Grammars

Solvability of Attribute Equation System i

Example 12.9

—> cyclic dependency:
e A—aB,B—-beP
e a € syn(B), § € inh(B)
e $.2=1f(a.2) € Ea,zp
e 0.0 =03.0¢€ Egp

RWTH

24 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Circularity of Attribute Grammars

Solvability of Attribute Equation System i

Example 12.9

—> cyclic dependency:
e A—aB,B—-beP

e a € syn(B), § € inh(B)
° 52 — f(oz2) € Ea_.aB
e 0.0=03.0€ Egp

— for V* := VY := Nand
e f(x) := x + 1: no solution

e f(x) := 2x: exactly one solution _ _
(v(a.k) = v(B.k) = 0) E:: B.k=f(a.k)

SV _ a.k = [.k
e f(x) := x: infinitely many solutions
(v(a.k) = v(5.k) = y forany y € N)
24 of 25 Compiler Construction
Summer Semester 2016 0 Software Modelin Rm
Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ Bl and Verification cgair

Circularity of Attribute Grammars

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

RWTH

25 of 25 Compiler Construction
Summer Semester 2016 "
Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) ‘ B and Verification Chair

Circularity of Attribute Grammars

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition 12.10 (Circularity)

An attribute grammar 2l = (G, E, V) € AG is called circular if there exists a syntax
tree t such that the attribute equation system E; is recursive (i.e., some attribute
variable of t depends on itself). Otherwise it is called noncircular.

RWTH

25 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

Circularity of Attribute Grammars

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition 12.10 (Circularity)

An attribute grammar 2l = (G, E, V) € AG is called circular if there exists a syntax
tree t such that the attribute equation system E; is recursive (i.e., some attribute
variable of t depends on itself). Otherwise it is called noncircular.

Remark: because of the division of Var, into /n, and Out,, cyclic dependencies
cannot occur at production level.

RWTH

25 of 25 Compiler Construction 0
Summer Semester 2016 Software Modeling

Lecture 12: Semantic Analysis | (Attribute Grammars) B and Verification Chair

	Overview
	Semantic Analysis
	Attribute Grammars
	Adding Inherited Attributes
	Formal Definition of Attribute Grammars
	The Attribute Equation System
	Circularity of Attribute Grammars

