
2 Compiler Construction SS 2016
Chair for Software Modeling and Verification
RWTH Aachen

apl. Prof. Dr. Thomas Noll
Christoph Matheja, Matthias Volk

Compiler Construction 2016
— Series 4 —

Hand in until May 31st before the exercise class.

General Remarks

• Follow the naming convention for the zip file: ex4_MATRNO1_MATRN02_MATRNO3 and include the
complete framework provided to you via our webpage.

• It is allowed to hand in your solutions for the theoretical part via email as a separately attached
PDF file.

• Please hand in your solutions in groups of 3 or 4.

Exercise 1 (3 Points)

Show that every regular language can be generated by a LL(1)-grammar.

Exercise 2 (4 Points)

Consider the grammar G = (N,Σ, P, start) covering some boolean expressions:

• N := {start, guard, rel}

• Σ := {AND,OR, ID,EQ,LEQ}

•
start → guard
guard → rel | guard AND guard | guard OR guard
rel → ID EQ ID | ID LEQ ID

(a) Construct NTA(G).
(Either give a transition table or depict the automaton and specify what the edge labelling means.
Do not forget to give a numbering to the grammar rules.)

(b) Provide a run of NTA(G) on the input ID EQ ID AND ID LEQ ID.

(c) Construct an equivalent grammar G′ with G′ ∈ LL(1).

(d) Specify the deterministic top-down parsing automaton DTA(G′).
(Again, either give a transition table as in the lecture or depict the automaton and specify what
the edge labelling means. As before, do not forget to give a numbering to the grammar rules of G′.)

(e) Provide a run of DTA(G′) on the input ID EQ ID AND ID LEQ ID.

2 Compiler Construction SS 2016
Chair for Software Modeling and Verification
RWTH Aachen

apl. Prof. Dr. Thomas Noll
Christoph Matheja, Matthias Volk

Exercise 3 (3 Points)

After finishing the lexer, the next step is to implement a parser. The goal of this exercise is to build
a recursive-descent parser which transforms the list of symbols (returned from the lexer) into a list of
grammar rules. The grammar is as follows and covers assignments:

1. start→ assignment SEMICOLON EOF

2. assignment→ INT ID ASSIGN expr

3. expr → ID subexpr

4. expr → NUMBER subexpr

5. expr → LPAR expr RPAR

6. expr → READ LPAR RPAR subexpr

7. subexpr → PLUS expr

8. subexpr → MINUS expr

9. subexpr → TIMES expr

10. subexpr → DIV expr

11. subexpr → MOD expr

12. subexpr → ε

Hint: as before we provide a framework which can be downloaded from the course webpage.

Implement the methods in parser.RecursiveDescentParserAssignment for the given grammar. The
superclass parser.RecursiveDescentParser offers useful methods for getting the next token (next()),
printing a grammar rule (print(id)) and throwing an error (printError(msg)).

Test your implementation! For example, given the following input

int b = read () % 2 ;

your implementation should generate a list of grammar rules like this:

1, 2, 6, 11, 4, 12

