
Theoretical Foundations of the UML
Lecture 9: Bounded MSC and CFMs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

29. Mai 2016

Joost-Pieter Katoen Theoretical Foundations of the UML 1/29

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

Outline

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs

Bounded words
Bounded MSCs
Bounded CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 2/29

Overview

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs

Bounded words
Bounded MSCs
Bounded CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 3/29

Communicating finite-state machines

A communicating finite-state machine (CFM) is a collection of
finite-state machines, one for each process

Communication between these machines takes place via (a priori)
unbounded reliable FIFO channels

The underlying system architecture is parametrised by the set P of
processes and the set C of messages

Action !(p, q,m) puts message m at the end of the channel (p, q)

Action ?(q, p,m) is enabled only if m is at head of buffer, and its
execution by process q removes m from the channel (p, q)

Synchronisation messages are used to avoid deadlocks

Joost-Pieter Katoen Theoretical Foundations of the UML 4/29

Example communicating finite-state machine

This CFM accepts if Ap and Aq are in some local state, and (as usual) all channels

are empty

Joost-Pieter Katoen Theoretical Foundations of the UML 5/29

Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F)

where

for each p ∈ P:

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F)

where

for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F)

where

for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

D is a nonempty finite set of synchronization messages (or data)

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F)

where

for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

D is a nonempty finite set of synchronization messages (or data)

sinit ∈ SA is the global initial state

where SA :=
∏

p∈P
Sp is the set of global states of A

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F)

where

for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

D is a nonempty finite set of synchronization messages (or data)

sinit ∈ SA is the global initial state

where SA :=
∏

p∈P
Sp is the set of global states of A

F ⊆ SA is the set of global final states

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

Formal semantics of CFMs

Definition (Configuration)

Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Joost-Pieter Katoen Theoretical Foundations of the UML 7/29

Formal semantics of CFMs

Definition (Configuration)

Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Definition (Transitions between configurations)

=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if

(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]

s[r] = s′[r] for all r ∈ P \ {p}

Joost-Pieter Katoen Theoretical Foundations of the UML 7/29

Formal semantics of CFMs

Definition (Configuration)

Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Definition (Transitions between configurations)

=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if

(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]

s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if

(s[p], ?(p, q, a),m, s′[p]) ∈ ∆p

η((q, p)) = w · (a,m) 6= ǫ and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}

Joost-Pieter Katoen Theoretical Foundations of the UML 7/29

Linearizations of a CFM

Definition ((Accepting) Runs)

A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Linearizations of a CFM

Definition ((Accepting) Runs)

A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Linearizations of a CFM

Definition ((Accepting) Runs)

A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition (Linearizations)

The set of linearizations of CFM A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Overview

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs

Bounded words
Bounded MSCs
Bounded CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 9/29

Well-formedness (reminder)

Let Ch := {(p, q) | p 6= q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if

1 every receive in w is preceded by a corresponding send, i.e.:
∀(p, q) ∈ Ch and prefix u of w, we have:

∑

m∈C

|u|!(p,q,m)

︸ ︷︷ ︸

sends from p to q

>
∑

m∈C

|u|?(q,p,m)

︸ ︷︷ ︸

receipts by q from p

Joost-Pieter Katoen Theoretical Foundations of the UML 10/29

Well-formedness (reminder)

Let Ch := {(p, q) | p 6= q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if

1 every receive in w is preceded by a corresponding send, i.e.:
∀(p, q) ∈ Ch and prefix u of w, we have:

∑

m∈C

|u|!(p,q,m)

︸ ︷︷ ︸

sends from p to q

>
∑

m∈C

|u|?(q,p,m)

︸ ︷︷ ︸

receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 6 i < j 6 n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):

∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m) implies m1 = m2

Joost-Pieter Katoen Theoretical Foundations of the UML 10/29

Well-formedness (reminder)

Let Ch := {(p, q) | p 6= q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if

1 every receive in w is preceded by a corresponding send, i.e.:
∀(p, q) ∈ Ch and prefix u of w, we have:

∑

m∈C

|u|!(p,q,m)

︸ ︷︷ ︸

sends from p to q

>
∑

m∈C

|u|?(q,p,m)

︸ ︷︷ ︸

receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 6 i < j 6 n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):

∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
∑

m∈C
|w|!(p,q,m) =

∑

m∈C
|w|?(q,p,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/29

Well-formedness and CFMs

Lemma

For any CFM A and w ∈ Lin(A), w is well-formed.

Recall that there is a strong correspondence between well-formed
linearizations and MSCs.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/29

From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,�, ℓ)

such that:

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,�, ℓ)

such that:

E = {1, . . . , n} are the positions in w labelled with ℓ(i) = ai

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,�, ℓ)

such that:

E = {1, . . . , n} are the positions in w labelled with ℓ(i) = ai

�=
(

≺msg ∪
⋃

p∈P ≺p

)∗

where

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,�, ℓ)

such that:

E = {1, . . . , n} are the positions in w labelled with ℓ(i) = ai

�=
(

≺msg ∪
⋃

p∈P ≺p

)∗

where

i ≺p j if and only if i < j for any i, j ∈ Ep

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,�, ℓ)

such that:

E = {1, . . . , n} are the positions in w labelled with ℓ(i) = ai

�=
(

≺msg ∪
⋃

p∈P ≺p

)∗

where

i ≺p j if and only if i < j for any i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

ℓ(i) = !(p, q,m) and ℓ(j) = ?(q, p,m) and
∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

CFMs and well-formed words

Relating well-formed words to MSCs

For any well-formed word w ∈ Act∗, M(w) is an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 13/29

CFMs and well-formed words

Relating well-formed words to MSCs

For any well-formed word w ∈ Act∗, M(w) is an MSC.

Definition (MSC language of a CFM)

For CFM A, let L(A) = {M(w) | w ∈ Lin(A) }.

Joost-Pieter Katoen Theoretical Foundations of the UML 13/29

CFMs and well-formed words

Relating well-formed words to MSCs

For any well-formed word w ∈ Act∗, M(w) is an MSC.

Definition (MSC language of a CFM)

For CFM A, let L(A) = {M(w) | w ∈ Lin(A) }.

Relating well-formed words to CFMs

For any well-formed words u and v with M(u) is isomorphic to M(v):

for any CFM A : u ∈ L(A) iff v ∈ L(A).

Joost-Pieter Katoen Theoretical Foundations of the UML 13/29

Overview

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs

Bounded words
Bounded MSCs
Bounded CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29

Emptiness problem is undecidable for CFMs

Theorem: [Brand & Zafiropulo 1983]

The following (emptiness) problem:

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

is undecidable.

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29

Emptiness problem is undecidable for CFMs

Theorem: [Brand & Zafiropulo 1983]

The following (emptiness) problem:

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

is undecidable. (Even if C is a singleton set).

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29

Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.

This is (very) unsatisfactory.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.

This is (very) unsatisfactory.

Main cause: presence of channels with unbounded capacity

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.

This is (very) unsatisfactory.

Main cause: presence of channels with unbounded capacity

Consider restricted versions of CFMs by bounding the channel
capacities.

Thus: we fix the channel capacities a priori.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.

This is (very) unsatisfactory.

Main cause: presence of channels with unbounded capacity

Consider restricted versions of CFMs by bounding the channel
capacities.

Thus: we fix the channel capacities a priori.

This yields:

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.

This is (very) unsatisfactory.

Main cause: presence of channels with unbounded capacity

Consider restricted versions of CFMs by bounding the channel
capacities.

Thus: we fix the channel capacities a priori.

This yields:

universally bounded CFMs: all runs need a finite buffer capacity
existentially bounded CFMs: some runs need a finite buffer capacity

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.

This is (very) unsatisfactory.

Main cause: presence of channels with unbounded capacity

Consider restricted versions of CFMs by bounding the channel
capacities.

Thus: we fix the channel capacities a priori.

This yields:

universally bounded CFMs: all runs need a finite buffer capacity
existentially bounded CFMs: some runs need a finite buffer capacity
possibly, some runs still need unbounded buffers.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

Restrictions on CFMs

So: most elementary problems for CFMs are undecidable.

This is (very) unsatisfactory.

Main cause: presence of channels with unbounded capacity

Consider restricted versions of CFMs by bounding the channel
capacities.

Thus: we fix the channel capacities a priori.

This yields:

universally bounded CFMs: all runs need a finite buffer capacity
existentially bounded CFMs: some runs need a finite buffer capacity
possibly, some runs still need unbounded buffers.

We define bounded CFMs, by first considering bounded words and
bounded MSCs. Bounded CFMs will then generate bounded MSCs.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

Bounded words

Definition (B-bounded words)

Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 6
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) 6 B

Joost-Pieter Katoen Theoretical Foundations of the UML 17/29

Bounded words

Definition (B-bounded words)

Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 6
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) 6 B

Intuition

Word w is B-bounded if for any pair of processes (p, q), the number of sends

from p to q cannot be more than B ahead of the number of receipts by q from

p (for every message a).

Joost-Pieter Katoen Theoretical Foundations of the UML 17/29

Bounded words

Definition (B-bounded words)

Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 6
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) 6 B

Intuition

Word w is B-bounded if for any pair of processes (p, q), the number of sends

from p to q cannot be more than B ahead of the number of receipts by q from

p (for every message a).

Example

!(1, 2, a) !(1, 2, b) ?(2, 1, a) ?(2, 1, b) is 2-bounded but not 1-bounded.

Joost-Pieter Katoen Theoretical Foundations of the UML 17/29

Bounded MSCs

Definition (Universally bounded MSCs)

Let B ∈ N and B > 0.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Bounded MSCs

Definition (Universally bounded MSCs)

Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Bounded MSCs

Definition (Universally bounded MSCs)

Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Bounded MSCs

Definition (Universally bounded MSCs)

Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Intuition

MSC M is ∀B-bounded if all its linearizations are B-bounded.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Bounded MSCs

Definition (Universally bounded MSCs)

Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Intuition

MSC M is ∀B-bounded if all its linearizations are B-bounded.

So: if M is B-bounded, then a buffer capacity B is sufficient for all
possible runs of MSC M .

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Bounded MSCs

Definition (Existentially bounded MSCs)

Let B ∈ N and B > 0. An MSC M ∈ M is called existentially
B-bounded (∃B-bounded, for short) if Lin(M) ∩ LinB(M) 6= ∅.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/29

Bounded MSCs

Definition (Existentially bounded MSCs)

Let B ∈ N and B > 0. An MSC M ∈ M is called existentially
B-bounded (∃B-bounded, for short) if Lin(M) ∩ LinB(M) 6= ∅.

Intuition

MSC M is ∃B-bounded if at least one linearization of M is B-bounded.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/29

Bounded MSCs

Definition (Existentially bounded MSCs)

Let B ∈ N and B > 0. An MSC M ∈ M is called existentially
B-bounded (∃B-bounded, for short) if Lin(M) ∩ LinB(M) 6= ∅.

Intuition

MSC M is ∃B-bounded if at least one linearization of M is B-bounded.

Consequence

The MSC M can be “scheduled” in such a way that no channel ever
contains more than B messages.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/29

Bounded MSCs

An ∃2-bounded MSC with a corresponding justification

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29

Bounded MSCs

Example

1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

1 2

req

req

req

ack

ack

1 2
req

req

req

req

req

Joost-Pieter Katoen Theoretical Foundations of the UML 21/29

Bounded MSCs

Example

1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

1 2
req

req

req

req

req

Joost-Pieter Katoen Theoretical Foundations of the UML 21/29

Bounded MSCs

Example

1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

∀3-bounded
∃1-bounded

1 2
req

req

req

req

req

Joost-Pieter Katoen Theoretical Foundations of the UML 21/29

Bounded MSCs

Example

1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

∀3-bounded
∃1-bounded

1 2
req

req

req

req

req

∀5-bounded
∃1-bounded

Joost-Pieter Katoen Theoretical Foundations of the UML 21/29

Bounded CFMs

Definition (Universally bounded CFM)

1 Let B ∈ N and B > 0. CFM A is universally B-bounded if each
MSC in L(A) is ∀B-bounded.

2 CFM A is universally bounded if it is ∀B-bounded for some B ∈ N

and B > 0.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Bounded CFMs

Definition (Universally bounded CFM)

1 Let B ∈ N and B > 0. CFM A is universally B-bounded if each
MSC in L(A) is ∀B-bounded.

2 CFM A is universally bounded if it is ∀B-bounded for some B ∈ N

and B > 0.

Definition (Existentially bounded CFM)

1 Let B ∈ N and B > 0. CFM A is existentially B-bounded if each
MSC in L(A) is ∃B-bounded.

2 CFM A is existentially bounded if it is ∃B-bounded for some B ∈ N

and B > 0.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Example (1)

!(p, q, req) ?(q, p, req)

process p: process q:

p q

req

req

req

req

req

∃1-bounded, but not ∀B-bounded for any B

so, not ∀-bounded.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/29

Example (2)

!(p, q, req)

?(p, q, req)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

process p: process q:

p q

req

req

req

ack

ack

∃1-bounded, and ∀3-bounded

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

Example (3)

!(p, q, req)

?(q, p, req)

?(p, q, ack)

!(q, p, ack)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

∃⌈n2 ⌉-bounded, but not ∀B-bounded for any B

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

Justification

Phase 1: process p sends n messages to q

messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

Justification

Phase 1: process p sends n messages to q

messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Phase 2: each ack is directly answered by p by another message
messages of phase 2 are tagged with data req

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

Justification

Phase 1: process p sends n messages to q

messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Phase 2: each ack is directly answered by p by another message
messages of phase 2 are tagged with data req

So, p sends 2n reqs to q and q sends n acks
existentially ⌈n

2 ⌉-bounded
q starts to send acks after ⌈n

2 ⌉ requests have been sent by p

after n sends, process p receives the first ack; then phase 2 starts
in phase 2, process p and q keep sending and receiving messages “in
sync”

Note: the CFM is also non-deterministic, and may deadlock.

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

Justification

Phase 1: process p sends n messages to q

messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Phase 2: each ack is directly answered by p by another message
messages of phase 2 are tagged with data req

So, p sends 2n reqs to q and q sends n acks
existentially ⌈n

2 ⌉-bounded
q starts to send acks after ⌈n

2 ⌉ requests have been sent by p

after n sends, process p receives the first ack; then phase 2 starts
in phase 2, process p and q keep sending and receiving messages “in
sync”

Note: the CFM is also non-deterministic, and may deadlock. Why?

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

Emptiness is decidable for ∃-bounded CFMs

Theorem: [Genest et. al, 2006]

For any ∃-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete).

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Emptiness is decidable for ∃-bounded CFMs

Theorem: [Genest et. al, 2006]

For any ∃-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete).

Note:
This decision problem is undecidable for arbitrary CFM, and is obviously

decidable for ∀-bounded CFMs, as ∀-bounded CFMs have finitely many

configurations, and thus one can check whether a configuration (s, ηε) with

s ∈ F is reachable by a simple graph analysis.

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Some (un)decidability results

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Some (un)decidability results

Undecidable

The following problems on CFM A are all undecidable:

1 Is CFM A universally bounded?

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Some (un)decidability results

Undecidable

The following problems on CFM A are all undecidable:

1 Is CFM A universally bounded?

2 For B ∈ N and B > 0, is CFM A ∀B-bounded?

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Some (un)decidability results

Undecidable

The following problems on CFM A are all undecidable:

1 Is CFM A universally bounded?

2 For B ∈ N and B > 0, is CFM A ∀B-bounded?

3 Is CFM A existentially bounded?

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Some (un)decidability results

Undecidable

The following problems on CFM A are all undecidable:

1 Is CFM A universally bounded?

2 For B ∈ N and B > 0, is CFM A ∀B-bounded?

3 Is CFM A existentially bounded?

4 For B ∈ N and B > 0, is CFM A ∃B-bounded?

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Some (un)decidability results

Undecidable

The following problems on CFM A are all undecidable:

1 Is CFM A universally bounded?

2 For B ∈ N and B > 0, is CFM A ∀B-bounded?

3 Is CFM A existentially bounded?

4 For B ∈ N and B > 0, is CFM A ∃B-bounded?

the proofs of all these facts are left as an exercise

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Deadlocks

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Deadlocks

Deadlock-free CFMs

(s, η) ∈ ConfA is a deadlock configuration of CFM A if there is no
‘accepting” configuration (s′, η′) ∈ F × {ηε} with (s, η) ⇒ ∗

A
(s′, η′).

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Deadlocks

Deadlock-free CFMs

(s, η) ∈ ConfA is a deadlock configuration of CFM A if there is no
‘accepting” configuration (s′, η′) ∈ F × {ηε} with (s, η) ⇒ ∗

A
(s′, η′).

CFM A is deadlock-free whenever it has no reachable deadlock
configuration.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Deadlocks

Deadlock-free CFMs

(s, η) ∈ ConfA is a deadlock configuration of CFM A if there is no
‘accepting” configuration (s′, η′) ∈ F × {ηε} with (s, η) ⇒ ∗

A
(s′, η′).

CFM A is deadlock-free whenever it has no reachable deadlock
configuration.

Checking deadlock-freeness is undecidable

The decision problem: Is CFM A deadlock free? is undecidable.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Deadlocks

Deadlock-free CFMs

(s, η) ∈ ConfA is a deadlock configuration of CFM A if there is no
‘accepting” configuration (s′, η′) ∈ F × {ηε} with (s, η) ⇒ ∗

A
(s′, η′).

CFM A is deadlock-free whenever it has no reachable deadlock
configuration.

Checking deadlock-freeness is undecidable

The decision problem: Is CFM A deadlock free? is undecidable.

Checking B-boundedness for deadlock-free CFMs is decidable

The decision problem: for deadlock-free CFM A and B ∈ N with B > 0,
is A ∀B-bounded? is decidable.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

	Communicating finite-state machines: a refresher
	Well-formedness of CFMs
	Bounded CFMs
	Bounded words
	Bounded MSCs
	Bounded CFMs

