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Overview

@ Communicating finite-state machines: a refresher
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Communicating finite-state machines

@ A communicating finite-state machine (CFM) is a collection of
finite-state machines, one for each process

o Communication between these machines takes place via (a priori)
unbounded reliable FIFO channels

@ The underlying system architecture is parametrised by the set P of
processes and the set C of messages

@ Action !(p,q,m) puts message m at the end of the channel (p, q)

@ Action ?(q,p,m) is enabled only if m is at head of buffer, and its
execution by process ¢ removes m from the channel (p, q)

@ Synchronisation messages are used to avoid deadlocks
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Example communicating finite-state machine

'(p.q.(req.L))

!(p,q. (req,L))

This CFM accepts if A, and A, are in some local state, and (as usual) all channels

are empty
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Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CFM) over P and C is a tuple

A= (((Sp, Ap))per, D, Singt, F)

where
@ for each p € P:

o S, is a non-empty finite set of local states (the S, are disjoint)
o A, C S, x Act, x D x S) is a set of local transitions

o D is a nonempty finite set of synchronization messages (or data)
@ Sinit € S4 is the global initial state

o where Su =[] p Sp is the set of global states of A
o F C Sy is the set of global final states

In sequel, let A = (((Sp, Ap))per; D, Sinit, F') be a CFM over P and C.
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Formal semantics of CFMs

Definition (Configuration)
Configurations of A: Conf 4 := Sa x {n|n: Ch— (C x D)*}

Definition (Transitions between configurations)
=4 C Conf 4 x Act x D x Conf 4 is defined as follows:
@ sending a message: ((3,7),!(p,q,a),m, (5',7)) € =>4 if
o (3, (p, ¢, 0), m,5'[p]) € A,
o 7' =nl(p,q) := (a;m) - n((p,9))]
o S[r] =9r] for allr € P\ {p}
@ receipt of a message: ((3,7),?(p,q,a),m, (3,n)) € =4 if
o (3[p], 7(p, ¢, a),m,F[p]) € Ay

o 1((¢,p)) = w- (a,m) # e and ' = n[(q, p) := W]
o S[r] =9r] for allr € P\ {p}
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Linearizations of a CFM

Definition ((Accepting) Runs)
A run of Aon oy...0, € Act* is a sequence p = Y M1Y1 - - - Yn—1 Mn Vn
such that

@ Y0 = (S4nit, me) with n. mapping any channel to
04,1y

@ yi_1=——= 47 forany i € {1,...,n}

Run p is accepting if v, € F x {n:}.

Definition (Linearizations)
The set of linearizations of CFM A:

Lin(A) := {w € Act™ | there is an accepting run of A on w}
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Overview

© Well-formedness of CFMs

Joost-Pieter Katoen Theoretical Foundations of the



Well-formedness (reminder)

Let Ch:={(p,q) | p # q, p,q € P} be a set of channels over P.

We call w =ay ...a, € Act™ proper if
© every receive in w is preceded by a corresponding send, i.e.:
V(p, q) € Ch and prefix u of w, we have:

Z ulpgm) = Z |ul2(q.p,m)
meC meC
N — N —

# sends from p to ¢ # receipts by ¢ from p

where |u|, denotes the number of occurrences of action a in u

@ the FIFO policy is respected, i.e.:
v1 < 1< .] < n, (p7 q) € Ch7 and a; = !(p7q7m1)7 a; = 7(q7p7 m2):

E lay ... ai—1lip,gm) = E lai...aj_1]2qpm) implies mg =my
meC meC

A proper word w is well-formed if Zmec |w|!(p7q7m) = Zmec \wh(q’p’m)
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Well-formedness and CFMs

For any CFM A and w € Lin(A), w is well-formed.

Recall that there is a strong correspondence between well-formed
linearizations and MSCs.
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From linearizations to partial orders (reminder)

Associate to w = aq ...a, € Act® an Act-labelled poset
M(w) = (E, %,4)
such that:
o E={1,...,n} are the positions in w labelled with £(i) = a;

*
9 i <, jif and only if ¢ < j for any 4,5 € E),
o i <msg Jj if for some (p,q) € Ch and m € C we have:

L(i) =!(p,q,m) and £(j) =?(q,p, m) and

Z lay...ai—1lyp,gm) = Z lax - aj1l2(gpm)

meC meC
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CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w € Act™, M(w) is an MSC.

Definition (MSC language of a CFM)

For CFM A, let L(A) = { M (w) | w € Lin(A) }.

Relating well-formed words to CFMs

For any well-formed words v and v with M (u) is isomorphic to M (v):

for any CFM A: uwe L(A) iff ve L(A).
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© Bounded CFMs
@ Bounded words
@ Bounded MSCs
@ Bounded CFMs
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Emptiness problem is undecidable for CFMs

The following (emptiness) problem:

INPUT: CFM A over processes P and message contents C
QUESTION:  Is £(A) empty?

is undecidable. (Even if C is a singleton set).
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Restrictions on CFMs

So: most elementary problems for CEFMs are undecidable.

°
o This is (very) unsatisfactory.
@ Main cause: presence of channels with unbounded capacity
°

Consider restricted versions of CEFMs by bounding the channel
capacities.

©

Thus: we fix the channel capacities a priori.
This yields:
o universally bounded CFMs: all runs need a finite buffer capacity

¢ existentially bounded CFMs: some runs need a finite buffer capacity
possibly, some runs still need unbounded buffers.

©

We define bounded CFMs, by first considering bounded words and
bounded MSCs. Bounded CFMs will then generate bounded M%S%ﬁ
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Bounded words

Definition (B-bounded words)

Let BeNand B > 0. A word w € Act* is called B-bounded if for any
prefix u of w and any channel (p,q) € Ch:

0 < Z‘uh(p,q,a)_Z|U\?(q,p,a) < B

aeC aeC

Intuition

Word w is B-bounded if for any pair of processes (p, ¢), the number of sends
from p to g cannot be more than B ahead of the number of receipts by ¢ from

p (for every message a).

(1,2,a) 1(1,2,b) ?(2,1,a) ?(2,1,b) is 2-bounded but not 1-bounded.
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Bounded MSCs

Definition (Universally bounded MSCs)

Let B e Nand B > 0. An MSC M € M is called universally B-bounded
(VB-bounded, for short) if

Lin(M) = Lin®(M)

where Lin®(M) := {w € Lin(M) | w is B-bounded}.

MSC M is VB-bounded if all its linearizations are B-bounded. \

So: if M is B-bounded, then a buffer capacity B is sufficient for all
possible runs of MSC M. l
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Bounded MSCs

Definition (Existentially bounded MSCs)

Let BeNand B > 0. An MSC M € M is called existentially
B-bounded (3B-bounded, for short) if Lin(M) N Lin®(M) # @.

MSC M is 3B-bounded if at least one linearization of M is B-bounded. l

Consequence

The MSC M can be “scheduled” in such a way that no channel ever
contains more than B messages.
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Bounded MSCs

il 7 |
1:(1.0) reqt¢ -t 2:(0,0)
tack 4:(L1)
] 1,0) req¢ - (0, 1)
oack 8:102,2)
6:(1,1) req} - 10 (1,
‘ tack 13:(2,1)
7:102,1) req - 14:(1,1)
42l g tack 15 (1.2
11:(2.1) req} A 16 (0,2
12: (2.0 »
17:(1,2) req} - 1 : (1.0
:‘\“] | ’D
19:(2,1) req; - 22 . (0,0
0 (2.0 »
23:(1,0) req; - 24 : (0,0)
= [— =

An 32-bounded MSC with a corresponding justification  pwm
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Bounded MSCs

Example
1] [27]
req 1] [27]
ack 1] [27]
red ack req ack req
req
ack req
req ack req ack req
req
= req
red req
req
I'eq L —— —— — —
| |
V4-bounded V3-bounded V5-bounded
342-bounded d1-bounded d1-bounded
not J1-bounded RWIH
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Bounded CFMs

Definition (Universally bounded CFM)

O Let BeNand B > 0. CEM A is universally B-bounded if each
MSC in L(A) is VB-bounded.

Q@ CFM A is universally bounded if it is VB-bounded for some B € N
and B > 0.

Definition (Existentially bounded CFM)

© Let BeNand B > 0. CEM A is ezistentially B-bounded if each
MSC in L(A) is 3B-bounded.

© CFM A is ezistentially bounded if it is 3B-bounded for some B € N
and B > 0.
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Example (1)

2 [q]
req
process p:  process g: req
(p,q,req) ?(q, p,req) red
req
req

| [ |

J1-bounded, but not VB-bounded for any B

so, not V-bounded.
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 23/29



Example (2)

process p: process q:
p
. req ack
'(p, q, req) ?(g,p,req)| |!(g,p,ack) .
req ac
req
(p,g,req)| |?(p,q,ack) ?(p,q,req)
‘ | [ |
J1-bounded, and V3-bounded
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML



Example (3)

3% 1]-bounded, but not VB-bounded for any B
RWTH
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Justification

@ Phase 1: process p sends n messages to ¢
o messages of phase 1 are tagged with data req

o ... and waits for the first acknowledgement of ¢

@ Phase 2: each ack is directly answered by p by another message
o messages of phase 2 are tagged with data

@ So, p sends 2n reqs to g and ¢ sends n acks
o existentially [4]-bounded
o ¢ starts to send acks after [§ ] requests have been sent by p
o after n sends, process p receives the first ack; then phase 2 starts
@ in phase 2, process p and g keep sending and receiving messages “in

sync”

o Note: the CFM is also non-deterministic, and may deadlock. "Wy
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Emptiness is decidable for 3-bounded CFMs

[Genest et. al, 2006]

For any 3-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete).

This decision problem is undecidable for arbitrary CFM, and is obviously
decidable for V-bounded CFMs, as V-bounded CFMs have finitely many
configurations, and thus one can check whether a configuration (s, 7.) with

s € F is reachable by a simple graph analysis.
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Some (un)decidability results

Undecidable

The following problems on CFM A are all undecidable:
© Is CFM A universally bounded?
@ For Be N and B > 0, is CFM A VB-bounded?
© Is CFM A existentially bounded?
@ For BeNand B >0, is CFM A dB-bounded?

the proofs of all these facts are left as an exercise
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Deadlocks

Deadlock-free CFMs

(5,n) € Conf 4 is a deadlock configuration of CFM A if there is no
‘accepting” configuration (3',7') € F' x {n.} with (5,7)==7% (3,7).

CFM A is deadlock-free whenever it has no reachable deadlock
configuration.

Checking deadlock-freeness is undecidable
The decision problem: Is CFM A deadlock free? is undecidable.

Checking B-boundedness for deadlock-free CFMs is decidable

The decision problem: for deadlock-free CFM A and B € N with B > 0,
is A VB-bounded? is decidable.
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