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Specification to implementation

Consider an MSGs as complete system specifications

they describe a full set of possible system scenarios

Can we obtain “realisations“ that exhibit precisely these scenarios?

Map MSGs, i.e., scenarios onto an executable model

model each process by a finite-state automaton
that communicate via unbounded directed FIFO channels

⇒ This yields Communicating Finite-state Machines
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P be a finite set of at least two (sequential) processes

C be a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of send actions by process p

Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
the set of receive actions by process p

Actp := Act !p ∪ Act?p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p 6= q} “channels“
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over P = {1, 2}

and C = {req, ack}

D = { , , }

S1 = {s0, s1, s2}

S2 = {t0, t1, t2}

∆1: s0
!(1,2, req )
−−−−−−→1 s0 ...

∆2: t0
?(2,1, req )
−−−−−−→2 t1 ...

sinit = (s0, t0)

F = {(s2, t2)}
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(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]

s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if

(s[p], ?(p, q, a),m, s′[p]) ∈ ∆p

η((q, p)) = w · (a,m) 6= ǫ and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}
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Linearizations of a CFM

Let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.

Definition (accepting runs)

A run ρ of CFM A on word w = σ1 . . . σn ∈ Act∗ is an alternating
sequence ρ = γ0 m1 γ1 . . . γn−1mn γn such that

1 γ0 = (sinit , ηε) with ηε mapping any channel to ε

2 γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}
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sequence ρ = γ0 m1 γ1 . . . γn−1mn γn such that

1 γ0 = (sinit , ηε) with ηε mapping any channel to ε

2 γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}

The run ρ is accepting if γn ∈ F × {ηε}.

Definition (linearization of a CFM)

The (word) language of CFM A is defined by:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}
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Linearizations of an example CFM

Example

s0
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s2

t0
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t2

!(1, 2, req )

?(2, 1, req )
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?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}
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Example
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t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

Lin(A) =
{

w ∈ Act∗ | there is n > 1 such that:

w ↾1 = !(1, 2, req))n (?(1, 2, ack) !(1, 2, req))n

w ↾2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))n

for any u ∈ Pref (w) and (p, q) ∈ Ch:
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) > 0
}
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Linearizations of an example CFM

Example
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s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

!(1, 2, req) and !(2, 1, ack) are always independent.

!(1, 2, req) and ?(1, 2, ack) are always dependent.

!(1, 2, req) and ?(2, 1, req) are sometimes independent.

 non-regular (word) languages
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Linearizations and MSCs of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

L(A) =
{

M ∈M | there is n ≥ 1 such that:

M ↾1 = (!(1, 2, req))k (?(1, 2, ack) !(1, 2, req))n

M ↾2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))k
}

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21



Overview

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs
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Elementary questions are undecidable for CFMs

Emptiness of CFMs is undecidable [Brand & Zafiropulo 1983]

The following problem is undecidable (even if C is a singleton):

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?
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Elementary questions are undecidable for CFMs

Emptiness of CFMs is undecidable [Brand & Zafiropulo 1983]

The following problem is undecidable (even if C is a singleton):

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

Proof (sketch)

Reduction from the halting problem for Turing machine
TM = (Q,Σ,∆,�, q0, qf ) to emptiness for a CFM with two processes.
Build CFM A = ((A1,A2),D, sinit , F ) over {1, 2} and some singleton
set C such that L(A) 6= ∅ iff TM can reach qf , i.e., TM accepts.

Process 1 sends current configurations to process 2

Process 2 chooses successor configurations and sends them to 1

D =
(

(Σ ∪ {�}) × (Q ∪ {_})
)

∪ {#}
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A CFM simulating a Turing machine

Proof (contd.)

�

q0

a �

q1

a

q2

b

�

q3

a′ b

.

.

.

⊢TM

⊢TM

⊢TM

γ0

{

γ1



















γ2



















γ3











































.

.

.



















γ1



















γ2











































γ3

�← q0

#

�← q1

a

#

b

a← q2

#

b

a′

�← q3

#

�← q1

a

#

b

a← q2

#

b

a′

�← q3

#
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A CFM simulating a Turing machine

Proof (contd.)

Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (q2, a, a

′, L, q3) is applied so
that process 2

sends b unchanged back to process 1
detects (receives) a← q2
sends a′ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with q3
receives # so that the symbol �← q3 has to be inserted before
returning #
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A CFM simulating a Turing machine

Proof (contd.)

Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (q2, a, a

′, L, q3) is applied so
that process 2

sends b unchanged back to process 1
detects (receives) a← q2
sends a′ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with q3
receives # so that the symbol �← q3 has to be inserted before
returning #

Right transition: Process 2 has to guess what the position right
before the head is. For example, provided process 2 decided in favor
of (q2, a, a

′, R, q3) while reading b, it would have to

send b← q3 instead of just b, entering some state t(a← q2)
receive a← q2 (no other symbol can be received in state t(a← q2))
send a′ back to process 1
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A CFM simulating a Turing machine

Proof (contd.)

Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf )} and A is locally
accepting).
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A CFM simulating a Turing machine

Proof (contd.)

Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf )} and A is locally
accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).
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A CFM simulating a Turing machine

Proof (contd.)

Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf )} and A is locally
accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel
(1, 2) as soon as it receives a letter c← qf for some c.
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A CFM simulating a Turing machine

Proof (contd.)

Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf )} and A is locally
accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel
(1, 2) as soon as it receives a letter c← qf for some c.

As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. �
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