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This MSC cannot be decomposed as

M1 •M2 • . . . •Mn for n > 1

This can be seen as follows:

e1 and e2 = m(e1) must both belong to M1

e3 � e2 and e1 � e4 thus
e3, e4 /∈ Mj , for j < 1 and j > 1
=⇒ e3, e4 must belong to M1

by similar reasoning: e5, e6 ∈ M1 etc.

Problem:

Compulsory matching between send and receive events in the same MSG
vertex (i.e., send e and receive m(e) must belong to the same MSC).
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Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)
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M = (P, E, C, l,m,�) is a compositional MSC (CMSC, for short) where
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Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P, E, C, l,m,�) is a compositional MSC (CMSC, for short) where
P, E, C and l are defined as before, and

m : E! → E? is a partial, injective function such that (as before):

m(e) = e′ ∧ l(e) = !(p, q, a) implies l(e′) = ?(q, p, a)

� =
(⋃

p∈P <p ∪ {(e,m(e)) | e ∈ dom(m)
︸ ︷︷ ︸

domain of m
︸ ︷︷ ︸

“m(e) is defined”

}
)∗

Note:

An MSC is a CMSC where m is total and bijective.
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CMSC example
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Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi,�i) ∈ CM i ∈ {1, 2}
be CMSCs with E1 ∩ E2 = ∅
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Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi,�i) ∈ CM i ∈ {1, 2}
be CMSCs with E1 ∩ E2 = ∅

The concatenation of CMSCs M1 and M2 is the CMSC
M1 •M2 = (P1 ∪ P2, E, C1 ∪ C2, l,m,�) with:

E = E1 ∪ E2

l(e) = l1(e) if e ∈ E1 , l2(e) otherwise

m(e) = E! → E? satisfies:
1 m extends m1 and m2, i.e., e ∈ dom(mi) implies m(e) = mi(e)
2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process
(matching from top to bottom)
the k-th unmatched send in M1 is matched with
the k-th unmatched receive in M2 (of the same “type”)

3 M1 •M2 is FIFO (when restricted to matched events)
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Concatenation of CMSCs (2)

Let Mi = (Pi, Ei, Ci, li,mi,�i) ∈ CM i ∈ {1, 2}
be CMSCs with E1 ∩ E2 = ∅

The concatenation of CMSCs M1 and M2 is the CMSC
M1 •M2 = (P1 ∪ P2, E1 ∪ E2, C1 ∪ C2, l,m,�) with:
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Concatenation of CMSCs (2)

Let Mi = (Pi, Ei, Ci, li,mi,�i) ∈ CM i ∈ {1, 2}
be CMSCs with E1 ∩ E2 = ∅

The concatenation of CMSCs M1 and M2 is the CMSC
M1 •M2 = (P1 ∪ P2, E1 ∪ E2, C1 ∪ C2, l,m,�) with:

l and m are defined as on the previous slide

� is the reflexive and transitive closure of:
(
⋃

p∈P <p,1 ∪ <p,2

)

∪ {(e, e′) | e ∈ E1 ∩ Ep , e
′ ∈ E2 ∩ Ep}

∪ {(e,m(e) | e ∈ dom(m)}
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Associativity
p1 p2
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p1 p2
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p1

M M ′

(M •M) •M ′: p1 p2

a

a

M • (M •M ′): p1 p2

a

a =⇒
this is non-FIFO

(and thus undefined)

Note:

Concatenation of CMSCs is not associative.
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Compositional MSG

Let CM be the set of all CMSCs.

Definition (Compositional MSG)

A compositional MSG (CMSG) G = (V,→, v0, F, λ) with λ : V → CM,
where V,→, v0, and F as for MSGs.

The difference with an MSG is that the vertices in a CMSG are labeled
with compositional MSCs (rather than “real” MSCs).
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Paths

Let G = (V,→, v0, F, λ) be a CMSG.
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Paths

Let G = (V,→, v0, F, λ) be a CMSG.

Definition (Path in a CMSG)

A path π of G is a finite sequence

π = u0 u1 . . . un with ui ∈ V (0 ≤ i ≤ n) and ui → ui+1 (0 ≤ i < n)

Definition (Accepting path of a CMSG)

Path π = u0 . . . un is accepting if: u0 = v0 and un ∈ F .

Definition (CMSC of a path)

The CMSC of a path π = u0 . . . un is:

M(π) = (. . . (λ(u0) • λ(u1)) • λ(u2) . . .) • λ(un)

where CMSC concatenation is left associative.
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The MSC language of a CMSG

Definition (Language of a CMSG)

The (MSC) language of CMSG G is defined by:

L(G) = { M(π) ∈ M
︸ ︷︷ ︸

only “real” MSCs

| π is an accepting path of G}.
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The MSC language of a CMSG

Definition (Language of a CMSG)

The (MSC) language of CMSG G is defined by:

L(G) = { M(π) ∈ M
︸ ︷︷ ︸

only “real” MSCs

| π is an accepting path of G}.

Note: Accepting paths that give rise to an CMSC (which is not an MSC) are

not part of L(G).
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Yannakakis’ example as compositional MSG
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Yannakakis’ example as compositional MSG
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e6
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M

This MSC cannot be modeled for n > 1 by:

M = M1 •M2 • . . . •Mn with Mi ∈ M

Thus it cannot be modeled by a MSG.
But it can be modeled as compositional MSG:
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a
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a
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Safe paths and CMSGs
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Safe paths and CMSGs

Definition (Safe path)
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Definition (Safe CMSG)

CMSG G is safe if for every accepting path π of G, M(π) is an MSC.
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Safe paths and CMSGs

Definition (Safe path)

Path π of CMSG G is safe whenever M(π) ∈ M.

Definition (Safe CMSG)

CMSG G is safe if for every accepting path π of G, M(π) is an MSC.

So:

CMSG G is safe if on any of its accepting paths there are no unmatched
sends and receipts, i.e., if any of its accepting paths is indeed an MSC.
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Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.
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Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Proof.

By a reduction from Post’s Correspondence Problem (PCP).

. . . black board . . .
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Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Proof.

By a reduction from Post’s Correspondence Problem (PCP).

. . . black board . . .

The complement decision problem “does CMSG G have no safe, accepting

path?” is undecidable too.
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Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.
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Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths

The decision problem “are all accepting paths of CMSG G safe?” is
decidable in PTIME.
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Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths

The decision problem “are all accepting paths of CMSG G safe?” is
decidable in PTIME.

Proof.

Polynomial reduction to reachability problem in (non-deterministic)
pushdown automata.

. . . see details on the next slides . . .
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Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) K = (Q, q0,Γ,Σ,∆) with

Q, a finite set of control states

q0 ∈ Q, the initial state

Γ, a finite stack alphabet

Σ, a finite input alphabet

∆ ⊆ Q× Σ× Γ×Q× Γ∗, the transition relation.
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Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) K = (Q, q0,Γ,Σ,∆) with

Q, a finite set of control states

q0 ∈ Q, the initial state

Γ, a finite stack alphabet

Σ, a finite input alphabet

∆ ⊆ Q× Σ× Γ×Q× Γ∗, the transition relation.

Transition relation

(q, a, γ, q′, pop) ∈ ∆ means: in state q, on reading input symbol a and

top of stack is symbol γ, change to q′ and pop γ from the stack.
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Reachability in pushdown automata

Definition

A configuration c is a triple (state q, stack content Z, rest input w).
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Reachability in pushdown automata

Definition

A configuration c is a triple (state q, stack content Z, rest input w).

Definition

Given a transition in ∆, a (direct) successor configuration c′ of c is
obtained: c ⊢ c′.
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Reachability in pushdown automata

Definition

A configuration c is a triple (state q, stack content Z, rest input w).
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Reachability in pushdown automata

Definition

A configuration c is a triple (state q, stack content Z, rest input w).

Definition

Given a transition in ∆, a (direct) successor configuration c′ of c is
obtained: c ⊢ c′.

Reachability problem

For configuration c, and initial configuration c0: c0 ⊢
∗ c?

Theorem: [Esparza et al. 2000]

The reachability problem for PDA is decidable in PTIME.
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Checking whether a CMSG is safe is decidable

Consider any ordered pair (pi, pj) of processes in CMSG G
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Checking whether a CMSG is safe is decidable

Consider any ordered pair (pi, pj) of processes in CMSG G

Proof idea: construct a PDA Ki,j = (Q, q0,Γ,Σ,∆) such that

CMSG G is not safe wrt. (pi, pj) iff PDA Ki,j accepts

For accepting path u0 . . . uk in G, feed Ki,j with the word

ρ0 . . . ρk where ρi ∈ Lin(λ(ui))

such that unmatched sends (of some type) precede all unmatched receipts

(of the same type)

Possible violations that Ki,j may encounter:
1 nr. of unmatched !(pi, pj, ·) > nr. of unmatched ?(pj , pi, ·)
2 type of k-th unmatched send 6= type of k-th unmatched receive
3 non-FIFO communication

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29



The nondeterministic PDA Ki,j

Let {a1, . . . , ak} be the message contents in CMSG G for (pi, pj).
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The nondeterministic PDA Ki,j

Let {a1, . . . , ak} be the message contents in CMSG G for (pi, pj).

Nondeterministic PDA Ki,j = (Q, q0,Γ,Σ,∆) where:

Control states Q = {q0, qa1 , . . . , qak , qerr , qF }

Stack alphabet Γ = {1,#}

1 counts nr. of unmatched !(pi, pj , am), and # is bottom of stack

Input alphabet Σ =







unmatched action !(pi, pj , am)
unmatched action ?(pj , pi, am)
matched actions !?(pi, pj , am), ?!(pj , pi, am)

Transition function ∆ is described on next slide
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Safeness of CMSGs (2)

Initial configuration is (q0,#, w)
w is linearization of actions at pi and pj on an accepting path of G
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Safeness of CMSGs (2)

Initial configuration is (q0,#, w)
w is linearization of actions at pi and pj on an accepting path of G

On reading !(pi, pj , am) in q0, push 1 on stack
nondeterministically move to state qam

or stay in q0

On reading ?(pj, pi, am) in q0, proceed as follows:
if 1 is on stack, pop it
otherwise, i.e., if stack is empty, accept (i.e., move to qF )

On reading matched send !?(pi, pj, ak) in q0
stack empty (i.e., equal to #)? ignore input; otherwise, accept

Ignore the following inputs in state q0:
matched send events !?(pj , pi, ak), and
unmatched sends or receipts not related to pi and pj

Remaining input w empty? Accept, if stack non-empty; else reject
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Safeness of CMSGs (3)

The behaviour in state qam for 0 < m 6 k:

Ignore all actions except ?(pj, pi, aℓ) for all 0 < ℓ 6 k
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if 1 is on top of stack, pop it
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Safeness of CMSGs (3)

The behaviour in state qam for 0 < m 6 k:

Ignore all actions except ?(pj, pi, aℓ) for all 0 < ℓ 6 k

On reading ?(pj, pi, aℓ) (for some 0 < ℓ 6 k) in state qam do:

if 1 is on top of stack, pop it

If stack is empty:

if last receive differs from am, accept
otherwise reject, while ignoring the rest (if any) of the input
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Safeness of CMSGs (4)

It follows: PDA Ki,j accepts iff CMSG G is not safe wrt. (pi, pj)

=⇒ CMSG G is not safe wrt. (pi, pj) iff configuration (qF , ·, ·) is
reachable.
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Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k2·N2·L·|E|2) where k = |P|, N = |V |, and L = |C|.
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Safeness of CMSGs (4)

It follows: PDA Ki,j accepts iff CMSG G is not safe wrt. (pi, pj)

=⇒ CMSG G is not safe wrt. (pi, pj) iff configuration (qF , ·, ·) is
reachable.

=⇒ reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (pi, pj) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k2·N2·L·|E|2) where k = |P|, N = |V |, and L = |C|.

Proof.

Checking reachability in PDA Ki,j is in O(L·|E|2). The number of
PDAs is k2, as we consider ordered pairs in P. The number of paths in
the CMSG G for each pair that need to be checked is in O(N2), as a
single traversal for each loop in G suffices.
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