Theoretical Foundations of the UML

Lecture 6: Compositional Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

25. Mai 2016

Joost-Pieter Katoen Theoretical Foundations of the

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

© A non-decomposable MSC

© Compositional Message Sequence Charts

© Compositional Message Sequence Graphs

@ Safe Compositional Message Sequence Graphs
© Existence of Safe Paths

© Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 2/29

Overview

© A non-decomposable MSC

Joost-Pieter Katoen Theoretical Foundations of the UML

An MSC that cannot be decomposed [Yannakakis 1999]

[p] [P2]
el

€3
€5

€2
€4

er
€9

€6
€s

€11

€10
€12

Joost-Pieter Katoen Theoretical Foundations of the UML

An MSC that cannot be decomposed [Yannakakis 1999]

[p] [P2]
el

€3
€5

€2
€4

er
€9

€6
€s

€11

€10
€12

This MSC cannot be decomposed as

MieMye...0 M, forn>1

Joost-Pieter Katoen Theoretical Foundations of the UML

An MSC that cannot be decomposed [Yannakakis 1999]

Lr]

[Pz]

€1

€5
€4
€9

€8

€12

€3
€2
er
€6
€11
€10

This MSC cannot be decomposed as
MieMye...0 M, forn>1

This can be seen as follows:

@ e; and ex = m(e;) must both belong to M

Joost-Pieter Katoen Theoretical Foundations of the UML

An MSC that cannot be decomposed [Yannakakis 1999]

Lr]

[Pz]

€1

€5
€4
€9

€8

€12

€3
€2
er
€6
€11
€10

This MSC cannot be decomposed as
MieMye...0 M, forn>1

This can be seen as follows:
@ ¢; and ey = m(ey) must both belong to M;

@ e3 =R e and e; <X ¢4 thus
es,eq ¢ M;, forj<landj>1
—> e3, e4 must belong to M;

Joost-Pieter Katoen Theoretical Foundations of the UML

An MSC that cannot be decomposed [Yannakakis 1999]

Lr]

[Pz]

€1

€5
€4
€9

€8

€12

€3
€2
er
€6
€11
€10

This MSC cannot be decomposed as
MieMye...0 M, forn>1

This can be seen as follows:
@ ¢; and ey = m(ey) must both belong to M;

@ e3 =R e and e; <X ¢4 thus
es,eq ¢ M;, forj<landj>1
—> e3, e4 must belong to M;

@ by similar reasoning: es, eg € M etc.

Joost-Pieter Katoen Theoretical Foundations of the UML

An MSC that cannot be decomposed [Yannakakis 1999]

Lr]

[Pz]

€1

€5
€4
€9

€8

€12

€3
€2
er
€6
€11
€10

Problem:

This MSC cannot be decomposed as
MieMye...0 M, forn>1

This can be seen as follows:
@ ¢; and ey = m(ey) must both belong to M;

@ e3 =R e and e; <X ¢4 thus
es,eq ¢ M;, forj<landj>1
= e3, e4 must belong to M;

@ by similar reasoning: es, eg € M etc.

Compulsory matching between send and receive events in the same MSG
vertex (i.e., send e and receive m(e) must belong to the same MSC).

Joost-Pieter Katoen Theoretical Foundations of the UML

Overview

© Compositional Message Sequence Charts

Joost-Pieter Katoen Theoretical Foundations of the UML

Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P,E,C,l,m,=) is a compositional MSC (CMSC, for short) where
P, E,C and [are defined as before, and

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

Compositional MSCs

[Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P,E,C,l,m,=) is a compositional MSC (CMSC, for short) where
P, E,C and [are defined as before, and

e m : Ey — E» is a partial, injective function such that (as before):

m(e) =€ Al(e) = !(p,q,a) implies (') = ?(q,p,a)

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P,E,C,l,m,=) is a compositional MSC (CMSC, for short) where
P, E,C and [are defined as before, and

e m : Ey — E» is a partial, injective function such that (as before):
m(e) =€ Al(e) = l(p,q,a) implies (') = ?(q,p,a)

0 <X = (Upep <y U {(e,m(e)) | e € dom(m) })*

domain of m

“m(e) is defined”

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

Compositional MSCs

[Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P,E,C,l,m, =) is a compositional MSC (CMSC, for short) where
P, E,C and [are defined as before, and

e m : Ey — E» is a partial, injective function such that (as before):
m(e) =€ Al(e) = l(p,q,a) implies (') = ?(q,p,a)

0 <X = (Upep <y U {(e,m(e)) | e € dom(m) })*
domain of m

“m(e) is defined”

An MSC is a CMSC where m is total and bijective.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

CMSC example

(P] [P]

message .
content & a U intended
recipient (o
m(e2) = e3
b
< €3 e1 ¢ dom(m)
& eq & rng(m)
pl O—> ¢4

I
AN

—intended sender

Joost-Pieter Katoen Theoretical Foundations of the

Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv jl) € CM 1€ {172}
be CMSCs with 1 N Ey =@

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv jl) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:

o F=F UEy

o l(e) =li(e) if e € By, lz(e) otherwise

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:
o F=F UEy

o l(e) =li(e) if e € By, lz(e) otherwise
o m(e) = Ey — E» satisfies:

© m extends my and mg, i.e., e € dom(m;) implies m(e) = m;(e)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:

o F=F UEy

o l(e) =li(e) if e € By, lz(e) otherwise

o m(e) = Ey — E» satisfies:

© m extends my and mg, i.e., e € dom(m;) implies m(e) = m;(e)
@ m matches unmatched send events in M; with unmatched
receive events in My according to order on process
(matching from top to bottom)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:
o F=F UEy
o l(e) =li(e) if e € By, lz(e) otherwise
o m(e) = Ey — E» satisfies:
© m extends my and mg, i.e., e € dom(m;) implies m(e) = m;(e)
@ m matches unmatched send events in M; with unmatched
receive events in My according to order on process
(matching from top to bottom)

the k-th unmatched send in M; is matched with
the k-th unmatched receive in My (of the same “type”)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and My is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:
o F=F UEy
o l(e) =li(e) if e € By, lz(e) otherwise
o m(e) = Ey — E» satisfies:
© m extends my and mg, i.e., e € dom(m;) implies m(e) = m;(e)
@ m matches unmatched send events in M; with unmatched
receive events in My according to order on process
(matching from top to bottom)
the k-th unmatched send in M; is matched with

the k-th unmatched receive in My (of the same “type”)

© M e M, is FIFO (when restricted to matched events)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Concatenation of CMSCs (2)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with By NEy =@

The concatenation of CMSCs M7 and Ms is the CMSC
M, e My = (771 UPy, B4 U Ey,CLUCy, I, m, j) with:

Joost-Pieter Katoen Theoretical Foundations of the UML 9/29

Concatenation of CMSCs (2)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with By NEy =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (P UPy, E1 U Ey,C; UCy,l,m, X) with:

@ [and m are defined as on the previous slide

@ < is the reflexive and transitive closure of:

(UpeP <p1 U <p72) U {(e€)|e€c E1NE,, ¢ € ExNE,}
U {(e,m(e) | e € dom(m)}

Joost-Pieter Katoen Theoretical Foundations of the UML 9/29

Examples

ieter Katoen

Examples

a b

€] e p2 plo— €3
[]
@ a
€2 e plo—] €4
— — — —

[p] [Pz] [p] [P]

a
el |—~ep2 c
pl o—
e b e3 L
a
c plo—] €
€y |—~op2
I LB

plo—{ €3

@
€ o2

[p] [P]

€1 \a

€ b e3
€4 @ es
€6

n:r:FI-FT) !

ter Katoen Theoretical Foundations of the U

Associativity

a
a pl 0—|

a
pl O—|

M M’

ieter Katoen Theoretical Foundations of the U

Associativity

41 D2 41 D2
a
a pl 0—|
[o p2 a
pl 0—|

M M’

M e (MeM):

Joost-Pieter Katoen Theoretical Foundations of the U

Associativity

[P [P2] [P [P2]
M M’
(M eM)e M [P [P
M e (MeM): 7] [P
< this is non-FIFO
>< — (and thus undefined)

Joost-Pieter Katoen Theoretical Foundations of the UML 11/29

Associativity

[P [P2] [P [P2]
M M’
(M eM)e M [P [P
M e (MeM): 7] [P
< this is non-FIFO
>< — (and thus undefined)

Concatenation of CMSCs is not associative. I

Joost-Pieter Katoen Theoretical Foundations of the UML 11/29

Overview

© Compositional Message Sequence Graphs

Joost-Pieter Katoen Theoretical Foundations of the UML

Compositional MSG

Let CM be the set of all CMSCs.

Definition (Compositional MSG)

A compositional MSG (CMSG) G = (V, =, v, F, \) with A : V — CM,
where V, —, vy, and F' as for MSGs.

The difference with an MSG is that the vertices in a CMSG are labeled
with compositional MSCs (rather than “real” MSCs). J

Joost-Pieter Katoen Theoretical Foundations of the UML 13/29

ieter Katoen

Let G = (V,—,vg, F, \) be a CMSG.

Joost-Pieter Katoen Theoretical Foundations of the UML

Let G = (V,—,vg, F, \) be a CMSG.
Definition (Path in a CMSG)

A path 7 of G is a finite sequence

T=uy Uy ... Uy Withu; €V (0<i<n)and u; = ujt1 (0<i<n)

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29

Let G = (V,—,vg, F, \) be a CMSG.
Definition (Path in a CMSG)

A path 7 of G is a finite sequence

T=uy Uy ... Uy Withu; €V (0<i<n)and u; = ujt1 (0<i<n)

Definition (Accepting path of a CMSG)

Path m = ug ... u, is accepting if: ug = vy and u,, € F.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29

Let G = (V,—,vg, F, \) be a CMSG.
Definition (Path in a CMSG)

A path 7 of G is a finite sequence

T=uy Uy ... Uy Withu; €V (0<i<n)and u; = ujt1 (0<i<n)

Definition (Accepting path of a CMSG)

Path m = ug ... u, is accepting if: ug = vy and u,, € F.

Definition (CMSC of a path)

The CMSC of a path m =ug ... uy is:

M) = (... (AM(ug) @ AM(uy)) @ AM(usg) ...) @ Auy)
where CMSC concatenation is left associative.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29

The MSC language of a CMSG

Definition (Language of a CMSG)

The (MSC) language of CMSG G is defined by:

L(G)={ M(m) e M | is an accepting path of G}.
N——

only “real” MSCs

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29

The MSC language of a CMSG

Definition (Language of a CMSG)

The (MSC) language of CMSG G is defined by:

L(G)={ M(m) e M | is an accepting path of G}.
N——

only “real” MSCs

Note: Accepting paths that give rise to an CMSC (which is not an MSC) are
not part of L(G).

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29

Yannakakis' example as compositional MSG

e
e3

€5
€2

ey
er

€9
€6

g
€11
€10

€12

Joost-Pieter Katoen Theoretical Foundations of the UML

Yannakakis' example as compositional MSG

61@] This MSC cannot be modeled for n > 1 by:
- b M=DM, eMe...e M, with M cM
M

Joost-Pieter Katoen Theoretical Foundations of the UML

Yannakakis' example as compositional MSG

] [

o This MSC cannot be modeled for n > 1 by:
- ; M=MeMe.. oM, with M ecM
“ o Thus it cannot be modeled by a MSG.

Joost-Pieter Katoen Theoretical Foundations of the UML

Yannakakis' example as compositional MSG

61@ . This MSC cannot be modeled for n > 1 by:

- M=M,eMe.. oM, with M ecM
< o Thus it cannot be modeled by a MSG.

en 5 o But it can be modeled as compositional MSG:

Joost-Pieter Katoen Theoretical Foundations of the UML

Overview

@ Safe Compositional Message Sequence Graphs

Joost-Pieter Katoen Theoretical Foundations of the

Safe paths and CMSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Safe paths and CMSGs

Definition (Safe path)
Path 7 of CMSG G is safe whenever M (m) € M.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Safe paths and CMSGs

Definition (Safe path)
Path 7 of CMSG G is safe whenever M () € M.

Definition (Safe CMSG)

CMSG G is safe if for every accepting path 7 of G, M (7) is an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Safe paths and CMSGs

Definition (Safe path)
Path 7 of CMSG G is safe whenever M () € M.

Definition (Safe CMSG)

CMSG G is safe if for every accepting path 7 of G, M (7) is an MSC.

CMSG G is safe if on any of its accepting paths there are no unmatched
sends and receipts, i.e., if any of its accepting paths is indeed an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Overview

© Existence of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the

Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29

Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

By a reduction from Post’s Correspondence Problem (PCP).

... black board ... O

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29

Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

By a reduction from Post’s Correspondence Problem (PCP).

... black board ... O

The complement decision problem “does CMSG G have no safe, accepting
path?” is undecidable too.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29

Overview

© Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the

Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

RWTHAACHEN
UNIVERSITY

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths

The decision problem “are all accepting paths of CMSG G safe?” is
decidable in PTIME.

RWTHAACHEN
UNIVERSITY

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths

The decision problem “are all accepting paths of CMSG G safe?” is
decidable in PTIME.

Proof.

Polynomial reduction to reachability problem in (non-deterministic)
pushdown automata.

| \

... see details on the next slides ... O

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

\

Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) K = (@, qo, ', X, A) with
@ (), a finite set of control states

qo € Q, the initial state

I, a finite stack alphabet

Y., a finite input alphabet

ACQxX XTI xQ xTI'*, the transition relation.

e ¢ ¢ ¢

Joost-Pieter Katoen Theoretical Foundations of the UML 23/29

Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) K = (@, qo, ', X, A) with
Q, a finite set of control states

qo € Q, the initial state

I, a finite stack alphabet

Y., a finite input alphabet

ACQxX XTI xQ xTI'*, the transition relation.

Transition relation

(¢,a,7,q,pop) € A means: in state g, on reading input symbol a and

©

e ¢ ¢ ¢

top of stack is symbol ~, change to ¢’ and pop v from the stack.

KWIH,

Joost-Pieter Katoen Theoretical Foundations of the UML 23/29

Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transition in A, a (direct) successor configuration ¢ of ¢ is
obtained: ¢ F ¢.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transition in A, a (direct) successor configuration ¢ of ¢ is
obtained: ¢ F ¢.

Reachability problem

For configuration ¢, and initial configuration cg: ¢o F* ¢?

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transition in A, a (direct) successor configuration ¢’ of ¢ is
obtained: ¢ F ¢.

Reachability problem

For configuration ¢, and initial configuration cg: ¢o F* ¢?

Theorem: [Esparza et al. 2000]
The reachability problem for PDA is decidable in PTIME.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

Checking whether a CMSG is safe is decidable

o Consider any ordered pair (p;,p;) of processes in CMSG G

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

Checking whether a CMSG is safe is decidable

o Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K ; = (Q,qo,I', X, A) such that

CMSG G is not safe wrt. (p;,p;) iff PDA K;; accepts

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

Checking whether a CMSG is safe is decidable

o Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K ; = (Q,qo,I', X, A) such that

CMSG G is not safe wrt. (p;,p;) iff PDA K;; accepts

@ For accepting path ug ...y in G, feed K; ; with the word
po--.pr where p; € Lin(\(u;))

such that unmatched sends (of some type) precede all unmatched receipts
(of the same type)

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

Checking whether a CMSG is safe is decidable

o Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K ; = (Q,qo,I', X, A) such that

CMSG G is not safe wrt. (p;,p;) iff PDA K;; accepts

@ For accepting path ug ...y in G, feed K; ; with the word
po--.pr where p; € Lin(\(u;))

such that unmatched sends (of some type) precede all unmatched receipts
(of the same type)
@ Possible violations that K; ; may encounter:

© unr. of unmatched !(p;, p;,-) > nr. of unmatched ?(pj, pi, -)
Q type of k-th unmatched send # type of k-th unmatched recejygn,
© non-FIFO communication

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

The nondeterministic PDA

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo,I', X, A) where:

o Control states Q = {q0,4a,,- - -+ ay> Gerr> QF }

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo,I', X, A) where:

o Control states Q = {q0,4a,,- - -+ ay> Gerr> QF }

@ Stack alphabet I' = {1, #}
1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo,I', X, A) where:

o Control states Q = {q0,4a,,- - -+ ay> Gerr> QF }

@ Stack alphabet I' = {1, #}
1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack

unmatched action !(p;, pj, am)
@ Input alphabet ¥ = ¢ unmatched action ?(p;, p;, am)
matched actions !?(p;, pj, am), 21 (pj, Pis am)

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo,I', X, A) where:

o Control states Q = {q0,4a,,- - -+ ay> Gerr> QF }

@ Stack alphabet I' = {1, #}
1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack

unmatched action !(p;, pj, am)
@ Input alphabet ¥ = ¢ unmatched action ?(p;, p;, am)
matched actions !?(p;, pj, am), 21 (pj, Pis am)

@ Transition function A is described on next slide

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

Safeness of CMSGs (2)

@ Initial configuration is (qo, #, w)
o w is linearization of actions at p; and p; on an accepting path of G

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (2)

@ Initial configuration is (qo, #, w)
o w is linearization of actions at p; and p; on an accepting path of G

@ On reading !(p;, pj, am) in o, push 1 on stack
o nondeterministically move to state g,,, or stay in qo

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (2)

@ Initial configuration is (qo, #, w)

o w is linearization of actions at p; and p; on an accepting path of G

@ On reading !(p;, pj, am) in o, push 1 on stack
o nondeterministically move to state g,,, or stay in qo

@ On reading ?(pj, pi, am) in qo, proceed as follows:
o if 1 is on stack, pop it

o otherwise, i.e., if stack is empty, accept (i.e., move to gr)

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (2)

@ Initial configuration is (qo, #, w)

o w is linearization of actions at p; and p; on an accepting path of G

@ On reading !(p;, pj, am) in o, push 1 on stack
o nondeterministically move to state g,,, or stay in qo

@ On reading ?(pj, pi, am) in qo, proceed as follows:
o if 1 is on stack, pop it

o otherwise, i.e., if stack is empty, accept (i.e., move to gr)

@ On reading matched send !?(p;, pj, ax) in qo

o stack empty (i.e., equal to #)? ignore input; otherwise, accept

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (2)

@ Initial configuration is (qo, #, w)
o w is linearization of actions at p; and p; on an accepting path of G

@ On reading !(p;, pj, am) in o, push 1 on stack
o nondeterministically move to state g,,, or stay in qo

@ On reading ?(pj, pi, am) in qo, proceed as follows:
o if 1 is on stack, pop it
o otherwise, i.e., if stack is empty, accept (i.e., move to gr)

@ On reading matched send !?(p;, pj, ax) in qo
o stack empty (i.e., equal to #)? ignore input; otherwise, accept

o Ignore the following inputs in state qo:
o matched send events !?(p;, p;, ax), and
e unmatched sends or receipts not related to p; and p;
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (2)

@ Initial configuration is (qo, #, w)
o w is linearization of actions at p; and p; on an accepting path of G

@ On reading !(p;, pj, am) in o, push 1 on stack
o nondeterministically move to state g,,, or stay in qo

@ On reading ?(pj, pi, am) in qo, proceed as follows:
o if 1 is on stack, pop it
o otherwise, i.e., if stack is empty, accept (i.e., move to gr)

@ On reading matched send !?(p;, pj, ax) in qo
o stack empty (i.e., equal to #)? ignore input; otherwise, accept

o Ignore the following inputs in state qo:
o matched send events !?(p;, p;, ax), and
e unmatched sends or receipts not related to p; and p;
RWTH

@ Remaining input w empty? Accept, if stack: non=empty; else reject

Joost-Pieter Katoen Theoretical Foundations of the UML

Safeness of CMSGs (3)

The behaviour in state q,,, for 0 < m < k:

@ Ignore all actions except ?(pj, pi, ap) for all 0 < £ < k

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Safeness of CMSGs (3)

The behaviour in state q,,, for 0 < m < k:
@ Ignore all actions except ?(pj, pi, ap) for all 0 < £ < k

@ On reading ?(p;, pi, ag) (for some 0 < ¢ < k) in state ¢, do:
o if 1 is on top of stack, pop it

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Safeness of CMSGs (3)

The behaviour in state q,,, for 0 < m < k:

@ Ignore all actions except ?(pj, pi, ap) for all 0 < £ < k

@ On reading ?(p;, pi, ag) (for some 0 < ¢ < k) in state ¢, do:
o if 1 is on top of stack, pop it

o If stack is empty:
o if last receive differs from a,,, accept
@ otherwise reject, while ignoring the rest (if any) of the input

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Safeness of CMSGs (4)

It follows: PDA K; ; accepts iff CMSG G is not safe wrt. (p;,p;)

= CMSG G is not safe wrt. (p;,p;) iff configuration (¢p, -,) is
reachable.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Safeness of CMSGs (4)

It follows: PDA K; ; accepts iff CMSG G is not safe wrt. (p;,p;)

= CMSG G is not safe wrt. (p;,p;) iff configuration (¢p, -,) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Safeness of CMSGs (4)

It follows: PDA K; ; accepts iff CMSG G is not safe wrt. (p;,p;)

= CMSG G is not safe wrt. (p;,p;) iff configuration (¢p, -,) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k?-N2.L-|E|?) where k = |P|, N = |V|, and L = |C|.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Safeness of CMSGs (4)

It follows: PDA K; ; accepts iff CMSG G is not safe wrt. (p;,p;)

= CMSG G is not safe wrt. (p;,p;) iff configuration (¢p, -,) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k?-N2.L-|E|?) where k = |P|, N = |V|, and L = |C|.

Checking reachability in PDA K; ; is in O(L-|E|?).

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Safeness of CMSGs (4)

It follows: PDA K; ; accepts iff CMSG G is not safe wrt. (p;,p;)

= CMSG G is not safe wrt. (p;,p;) iff configuration (¢p, -,) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k?-N2.L-|E|?) where k = |P|, N = |V|, and L = |C|.

Checking reachability in PDA K; ; is in O(L+|E|?). The number of
PDAs is k2, as we consider ordered pairs in P.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

Safeness of CMSGs (4)

It follows: PDA K; ; accepts iff CMSG G is not safe wrt. (p;,p;)

= CMSG G is not safe wrt. (p;,p;) iff configuration (¢p, -,) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k?-N2.L-|E|?) where k = |P|, N = |V|, and L = |C|.

Checking reachability in PDA K; ; is in O(L+|E|?). The number of
PDAs is k2, as we consider ordered pairs in P. The number of paths in
the CMSG G for each pair that need to be checked is in O(N?), as a
single traversal for each loop in G suffices. O

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

	A non-decomposable MSC
	Compositional Message Sequence Charts
	Compositional Message Sequence Graphs
	Safe Compositional Message Sequence Graphs
	Existence of Safe Paths
	Universality of Safe Paths

