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© A non-decomposable MSC
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An MSC that cannot be decomposed [Yannakakis 1999]

[p] [ P2 ]
el

€3
€5

€2
€4

er
€9

€6
€s

€11

€10
€12

Joost-Pieter Katoen Theoretical Foundations of the UML



An MSC that cannot be decomposed [Yannakakis 1999]
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An MSC that cannot be decomposed [Yannakakis 1999]
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This MSC cannot be decomposed as
MieMye...0 M, forn>1

This can be seen as follows:

@ e; and ex = m(e;) must both belong to M
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An MSC that cannot be decomposed [Yannakakis 1999]
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MieMye...0 M, forn>1

This can be seen as follows:
@ ¢; and ey = m(ey) must both belong to M;

@ e3 =R e and e; <X ¢4 thus
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—> e3, e4 must belong to M;
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An MSC that cannot be decomposed [Yannakakis 1999]
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An MSC that cannot be decomposed [Yannakakis 1999]

Lr]

[Pz ]

€1

€5
€4
€9

€8

€12

€3
€2
er
€6
€11
€10

Problem:

This MSC cannot be decomposed as
MieMye...0 M, forn>1

This can be seen as follows:
@ ¢; and ey = m(ey) must both belong to M;

@ e3 =R e and e; <X ¢4 thus
es,eq ¢ M;, forj<landj>1
= e3, e4 must belong to M;

@ by similar reasoning: es, eg € M etc.

Compulsory matching between send and receive events in the same MSG
vertex (i.e., send e and receive m(e) must belong to the same MSC).
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Overview

© Compositional Message Sequence Charts
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Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)
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Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P,E,C,l,m,=) is a compositional MSC (CMSC, for short) where
P, E,C and [ are defined as before, and
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Compositional MSCs

[Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P,E,C,l,m,=) is a compositional MSC (CMSC, for short) where
P, E,C and [ are defined as before, and

e m : Ey — E» is a partial, injective function such that (as before):

m(e) =€ Al(e) = !(p,q,a) implies (') = ?(q,p,a)
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Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P,E,C,l,m,=) is a compositional MSC (CMSC, for short) where
P, E,C and [ are defined as before, and

e m : Ey — E» is a partial, injective function such that (as before):
m(e) =€ Al(e) = l(p,q,a) implies (') = ?(q,p,a)

0 <X = (Upep <y U {(e,m(e)) | e € dom(m) })*

domain of m

“m(e) is defined”
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Compositional MSCs

[Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P,E,C,l,m, =) is a compositional MSC (CMSC, for short) where
P, E,C and [ are defined as before, and

e m : Ey — E» is a partial, injective function such that (as before):
m(e) =€ Al(e) = l(p,q,a) implies (') = ?(q,p,a)

0 <X = (Upep <y U {(e,m(e)) | e € dom(m) })*
domain of m

“m(e) is defined”

An MSC is a CMSC where m is total and bijective.
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CMSC example
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Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv jl) € CM 1€ {172}
be CMSCs with 1 N Ey =@
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Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv jl) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:
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Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:

o F=F UEy

o l(e) =li(e) if e € By, lz(e) otherwise
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Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:
o F=F UEy

o l(e) =li(e) if e € By, lz(e) otherwise
o m(e) = Ey — E» satisfies:

© m extends my and mg, i.e., e € dom(m;) implies m(e) = m;(e)
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Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:

o F=F UEy

o l(e) =li(e) if e € By, lz(e) otherwise

o m(e) = Ey — E» satisfies:

© m extends my and mg, i.e., e € dom(m;) implies m(e) = m;(e)
@ m matches unmatched send events in M; with unmatched
receive events in My according to order on process
(matching from top to bottom)
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Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:
o F=F UEy
o l(e) =li(e) if e € By, lz(e) otherwise
o m(e) = Ey — E» satisfies:
© m extends my and mg, i.e., e € dom(m;) implies m(e) = m;(e)
@ m matches unmatched send events in M; with unmatched
receive events in My according to order on process
(matching from top to bottom)

the k-th unmatched send in M; is matched with
the k-th unmatched receive in My (of the same “type”)
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Concatenation of CMSCs (1)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with 1 N Ey =@

The concatenation of CMSCs M7 and My is the CMSC
M e My = (Py UPy, E, Cy UCq,l,m, =) with:
o F=F UEy
o l(e) =li(e) if e € By, lz(e) otherwise
o m(e) = Ey — E» satisfies:
© m extends my and mg, i.e., e € dom(m;) implies m(e) = m;(e)
@ m matches unmatched send events in M; with unmatched
receive events in My according to order on process
(matching from top to bottom)
the k-th unmatched send in M; is matched with

the k-th unmatched receive in My (of the same “type”)

© M e M, is FIFO (when restricted to matched events)
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Concatenation of CMSCs (2)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with By NEy =@

The concatenation of CMSCs M7 and Ms is the CMSC
M, e My = (771 UPy, B4 U Ey,CLUCy, I, m, j) with:
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Concatenation of CMSCs (2)

Let MZ = (Pi)Ei)Ci)li)miv ji) € CM 1€ {172}
be CMSCs with By NEy =@

The concatenation of CMSCs M7 and Ms is the CMSC
M e My = (P UPy, E1 U Ey,C; UCy,l,m, X) with:

@ [ and m are defined as on the previous slide

@ < is the reflexive and transitive closure of:

(UpeP <p1 U <p72) U {(e€)|e€c E1NE,, ¢ € ExNE,}
U {(e,m(e) | e € dom(m)}
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Associativity
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Associativity
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Associativity

[P [P2] [P [P2]
M M’
(M eM)e M [P [P
M e (MeM): 7] [P
< this is non-FIFO
>< — (and thus undefined)
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Associativity

[P [P2] [P [P2]
M M’
(M eM)e M [P [P
M e (MeM): 7] [P
< this is non-FIFO
>< — (and thus undefined)

Concatenation of CMSCs is not associative. I
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Overview

© Compositional Message Sequence Graphs

Joost-Pieter Katoen Theoretical Foundations of the UML



Compositional MSG

Let CM be the set of all CMSCs.

Definition (Compositional MSG)

A compositional MSG (CMSG) G = (V, =, v, F, \) with A : V — CM,
where V, —, vy, and F' as for MSGs.

The difference with an MSG is that the vertices in a CMSG are labeled
with compositional MSCs (rather than “real” MSCs). J

Joost-Pieter Katoen Theoretical Foundations of the UML 13/29



ieter Katoen



Let G = (V,—,vg, F, \) be a CMSG.
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Let G = (V,—,vg, F, \) be a CMSG.
Definition (Path in a CMSG)

A path 7 of G is a finite sequence

T=uy Uy ... Uy Withu; €V (0<i<n)and u; = ujt1 (0<i<n)
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Let G = (V,—,vg, F, \) be a CMSG.
Definition (Path in a CMSG)

A path 7 of G is a finite sequence

T=uy Uy ... Uy Withu; €V (0<i<n)and u; = ujt1 (0<i<n)

Definition (Accepting path of a CMSG)

Path m = ug ... u, is accepting if: ug = vy and u,, € F.
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Let G = (V,—,vg, F, \) be a CMSG.
Definition (Path in a CMSG)

A path 7 of G is a finite sequence

T=uy Uy ... Uy Withu; €V (0<i<n)and u; = ujt1 (0<i<n)

Definition (Accepting path of a CMSG)

Path m = ug ... u, is accepting if: ug = vy and u,, € F.

Definition (CMSC of a path)

The CMSC of a path m =ug ... uy is:

M) = (... (AM(ug) @ AM(uy)) @ AM(usg) ...) @ Auy)
where CMSC concatenation is left associative.
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The MSC language of a CMSG

Definition (Language of a CMSG)

The (MSC) language of CMSG G is defined by:

L(G)={ M(m) e M | is an accepting path of G}.
N——

only “real” MSCs
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The MSC language of a CMSG

Definition (Language of a CMSG)

The (MSC) language of CMSG G is defined by:

L(G)={ M(m) e M | is an accepting path of G}.
N——

only “real” MSCs

Note: Accepting paths that give rise to an CMSC (which is not an MSC) are
not part of L(G).
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Yannakakis' example as compositional MSG
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Yannakakis' example as compositional MSG

61@ ] This MSC cannot be modeled for n > 1 by:
- b M=DM, eMe...e M, with M cM
M
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Yannakakis' example as compositional MSG

] [

o This MSC cannot be modeled for n > 1 by:
- ; M=MeMe.. oM, with M ecM
“ o Thus it cannot be modeled by a MSG.
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Yannakakis' example as compositional MSG

61@ . This MSC cannot be modeled for n > 1 by:

- M=M,eMe.. oM, with M ecM
< o Thus it cannot be modeled by a MSG.

en 5 o But it can be modeled as compositional MSG:
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Overview

@ Safe Compositional Message Sequence Graphs
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Safe paths and CMSGs
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Safe paths and CMSGs

Definition (Safe path)
Path 7 of CMSG G is safe whenever M (m) € M.
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Safe paths and CMSGs

Definition (Safe path)
Path 7 of CMSG G is safe whenever M () € M.

Definition (Safe CMSG)

CMSG G is safe if for every accepting path 7 of G, M (7) is an MSC.
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Safe paths and CMSGs

Definition (Safe path)
Path 7 of CMSG G is safe whenever M () € M.

Definition (Safe CMSG)

CMSG G is safe if for every accepting path 7 of G, M (7) is an MSC.

CMSG G is safe if on any of its accepting paths there are no unmatched
sends and receipts, i.e., if any of its accepting paths is indeed an MSC.
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Overview

© Existence of Safe Paths
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Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.
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Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

By a reduction from Post’s Correspondence Problem (PCP).

... black board ... O
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Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

By a reduction from Post’s Correspondence Problem (PCP).

... black board ... O

The complement decision problem “does CMSG G have no safe, accepting
path?” is undecidable too.
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Overview

© Universality of Safe Paths
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Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

RWTHAACHEN
UNIVERSITY

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29



Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths

The decision problem “are all accepting paths of CMSG G safe?” is
decidable in PTIME.

RWTHAACHEN
UNIVERSITY
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Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths

The decision problem “are all accepting paths of CMSG G safe?” is
decidable in PTIME.

Proof.

Polynomial reduction to reachability problem in (non-deterministic)
pushdown automata.

| \

... see details on the next slides ... O
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Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) K = (@, qo, ', X, A) with
@ (), a finite set of control states

qo € Q, the initial state

I, a finite stack alphabet

Y., a finite input alphabet

ACQxX XTI xQ xTI'*, the transition relation.

e ¢ ¢ ¢
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Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) K = (@, qo, ', X, A) with
Q, a finite set of control states

qo € Q, the initial state

I, a finite stack alphabet

Y., a finite input alphabet

ACQxX XTI xQ xTI'*, the transition relation.

Transition relation

(¢,a,7,q,pop) € A means: in state g, on reading input symbol a and

©

e ¢ ¢ ¢

top of stack is symbol ~, change to ¢’ and pop v from the stack.

KWIH,
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Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).
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Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transition in A, a (direct) successor configuration ¢ of ¢ is
obtained: ¢ F ¢.
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Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transition in A, a (direct) successor configuration ¢ of ¢ is
obtained: ¢ F ¢.

Reachability problem

For configuration ¢, and initial configuration cg: ¢o F* ¢?
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Reachability in pushdown automata

Definition

A configuration c is a triple (state g, stack content Z, rest input w).

Definition

Given a transition in A, a (direct) successor configuration ¢’ of ¢ is
obtained: ¢ F ¢.

Reachability problem

For configuration ¢, and initial configuration cg: ¢o F* ¢?

Theorem: [Esparza et al. 2000]
The reachability problem for PDA is decidable in PTIME.
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Checking whether a CMSG is safe is decidable

o Consider any ordered pair (p;,p;) of processes in CMSG G
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Checking whether a CMSG is safe is decidable

o Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K ; = (Q,qo,I', X, A) such that

CMSG G is not safe wrt. (p;,p;) iff PDA K;; accepts
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Checking whether a CMSG is safe is decidable

o Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K ; = (Q,qo,I', X, A) such that

CMSG G is not safe wrt. (p;,p;) iff PDA K;; accepts

@ For accepting path ug ...y in G, feed K; ; with the word
po--.pr where p; € Lin(\(u;))

such that unmatched sends (of some type) precede all unmatched receipts
(of the same type)
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Checking whether a CMSG is safe is decidable

o Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K ; = (Q,qo,I', X, A) such that

CMSG G is not safe wrt. (p;,p;) iff PDA K;; accepts

@ For accepting path ug ...y in G, feed K; ; with the word
po--.pr where p; € Lin(\(u;))

such that unmatched sends (of some type) precede all unmatched receipts
(of the same type)
@ Possible violations that K; ; may encounter:

© unr. of unmatched !(p;, p;,-) > nr. of unmatched ?(pj, pi, -)
Q type of k-th unmatched send # type of k-th unmatched recejygn,
© non-FIFO communication
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The nondeterministic PDA

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
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The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo,I', X, A) where:

o Control states Q = {q0,4a,,- - -+ ay> Gerr> QF }
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The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo,I', X, A) where:

o Control states Q = {q0,4a,,- - -+ ay> Gerr> QF }

@ Stack alphabet I' = {1, #}
1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack
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The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo,I', X, A) where:

o Control states Q = {q0,4a,,- - -+ ay> Gerr> QF }

@ Stack alphabet I' = {1, #}
1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack

unmatched action !(p;, pj, am)
@ Input alphabet ¥ = ¢ unmatched action ?(p;, p;, am)
matched actions !?(p;, pj, am), 21 (pj, Pis am)
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The nondeterministic PDA K ;

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (Q, qo,I', X, A) where:

o Control states Q = {q0,4a,,- - -+ ay> Gerr> QF }

@ Stack alphabet I' = {1, #}
1 counts nr. of unmatched !(p;, pj, am), and # is bottom of stack

unmatched action !(p;, pj, am)
@ Input alphabet ¥ = ¢ unmatched action ?(p;, p;, am)
matched actions !?(p;, pj, am), 21 (pj, Pis am)

@ Transition function A is described on next slide
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Safeness of CMSGs (2)

@ Initial configuration is (qo, #, w)
o w is linearization of actions at p; and p; on an accepting path of G
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o otherwise, i.e., if stack is empty, accept (i.e., move to gr)
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@ On reading matched send !?(p;, pj, ax) in qo

o stack empty (i.e., equal to #)? ignore input; otherwise, accept
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Safeness of CMSGs (2)

@ Initial configuration is (qo, #, w)
o w is linearization of actions at p; and p; on an accepting path of G

@ On reading !(p;, pj, am) in o, push 1 on stack
o nondeterministically move to state g,,, or stay in qo

@ On reading ?(pj, pi, am) in qo, proceed as follows:
o if 1 is on stack, pop it
o otherwise, i.e., if stack is empty, accept (i.e., move to gr)

@ On reading matched send !?(p;, pj, ax) in qo
o stack empty (i.e., equal to #)? ignore input; otherwise, accept

o Ignore the following inputs in state qo:
o matched send events !?(p;, p;, ax), and
e unmatched sends or receipts not related to p; and p;
RWTH
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Safeness of CMSGs (2)

@ Initial configuration is (qo, #, w)
o w is linearization of actions at p; and p; on an accepting path of G

@ On reading !(p;, pj, am) in o, push 1 on stack
o nondeterministically move to state g,,, or stay in qo

@ On reading ?(pj, pi, am) in qo, proceed as follows:
o if 1 is on stack, pop it
o otherwise, i.e., if stack is empty, accept (i.e., move to gr)

@ On reading matched send !?(p;, pj, ax) in qo
o stack empty (i.e., equal to #)? ignore input; otherwise, accept

o Ignore the following inputs in state qo:
o matched send events !?(p;, p;, ax), and
e unmatched sends or receipts not related to p; and p;
RWTH

@ Remaining input w empty? Accept, if stack: non=empty; else reject
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Safeness of CMSGs (3)

The behaviour in state q,,, for 0 < m < k:

@ Ignore all actions except ?(pj, pi, ap) for all 0 < £ < k
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The behaviour in state q,,, for 0 < m < k:
@ Ignore all actions except ?(pj, pi, ap) for all 0 < £ < k

@ On reading ?(p;, pi, ag) (for some 0 < ¢ < k) in state ¢, do:
o if 1 is on top of stack, pop it
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Safeness of CMSGs (3)

The behaviour in state q,,, for 0 < m < k:

@ Ignore all actions except ?(pj, pi, ap) for all 0 < £ < k

@ On reading ?(p;, pi, ag) (for some 0 < ¢ < k) in state ¢, do:
o if 1 is on top of stack, pop it

o If stack is empty:
o if last receive differs from a,,, accept
@ otherwise reject, while ignoring the rest (if any) of the input
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Safeness of CMSGs (4)

It follows: PDA K; ; accepts iff CMSG G is not safe wrt. (p;,p;)

= CMSG G is not safe wrt. (p;,p;) iff configuration (¢p, -, ) is
reachable.
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= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.
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= CMSG G is not safe wrt. (p;,p;) iff configuration (¢p, -, ) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k?-N2.L-|E|?) where k = |P|, N = |V|, and L = |C|.
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PDAs is k2, as we consider ordered pairs in P.
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Safeness of CMSGs (4)

It follows: PDA K; ; accepts iff CMSG G is not safe wrt. (p;,p;)

= CMSG G is not safe wrt. (p;,p;) iff configuration (¢p, -, ) is
reachable.

= reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is
in O(k?-N2.L-|E|?) where k = |P|, N = |V|, and L = |C|.

Checking reachability in PDA K; ; is in O(L+|E|?). The number of
PDAs is k2, as we consider ordered pairs in P. The number of paths in
the CMSG G for each pair that need to be checked is in O(N?), as a
single traversal for each loop in G suffices. O
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