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Summary of Lecture #3

1 A Message Sequence Chart is a visual partial order
between send and receive events
totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the FIFO property

2 Race: in practice, the order of receive events cannot be guaranteed

3 Causal order
send events should happen before their matching receive events
the ordering of events wrt. sends on same process is respected
receive events on a process sent from the same process are ordered
as their sends

4 A MSC has a race if causal order 6= visual order
checking whether an MSC has a race can be done in quadratic time
(in number of events)
using an optimized version of Warshall’s algorithm
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The need for composing MSCs

An MSC describes a possible single scenario

Typically: a set of scenarios

and dependencies between these scenarios:

after scenario 1, scenario 2 occurs
after scenario 1, scenario 2 or 3 occurs
scenario 1 occurs repeatedly

Need for: sequential composition (= concatenation),
alternative composition, and
iteration of MSCs

⇒ This yields Message Sequence Graphs

Alternatives: ensembles of MSCs, high-level MSCs (MSC’96)
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Message Sequence Graphs
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Message Sequence Graphs

Let M be the set of MSCs (up to isomorphism, i.e., event identities).
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Message Sequence Graphs

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

Definition

A Message Sequence Graph (MSG) G = (V,→, v0, F, λ) with:

(V,→) is a digraph with finite set V of vertices and →⊆ V × V a
set of edges

v0 ∈ V is the starting (or: initial) vertex

F ⊆ V is a set of final vertices

λ : V → M associates to each vertex v ∈ V , an MSC λ(v)
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Message Sequence Graphs

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

Definition

A Message Sequence Graph (MSG) G = (V,→, v0, F, λ) with:

(V,→) is a digraph with finite set V of vertices and →⊆ V × V a
set of edges

v0 ∈ V is the starting (or: initial) vertex

F ⊆ V is a set of final vertices

λ : V → M associates to each vertex v ∈ V , an MSC λ(v)

Note:

An MSG can be considered as a non-deterministic finite-state automaton without

input alphabet where states are MSCs. Obviously, every MSC is an MSG.
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Example
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Concatenation of MSCs: definition

Let Mi = (Pi, Ei, Ci, li,mi,�i) with i ∈ {1, 2}
be two MSCs with E1 ∩E2 = ∅
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Concatenation of MSCs: definition

Let Mi = (Pi, Ei, Ci, li,mi,�i) with i ∈ {1, 2}
be two MSCs with E1 ∩E2 = ∅

The concatenation of M1 and M2 is the MSC
M1 •M2 = (P, E, C, l,m,�) with:

P = P1 ∪ P2 E = E1 ∪ E2 C = C1 ∪ C2
(with E? = E1,? ∪ E2,? etc.)

l(e) =

{
l1(e) if e ∈ E1

l2(e) if e ∈ E2

m(e) =

{
m1(e) if e ∈ E1

m2(e) if e ∈ E2

� =
(
�1 ∪ �2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩ Ep , e

′ ∈ E2 ∩ Ep}
)
∗
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Concatenation of MSCs: observations

Ordering
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Concatenation of MSCs: observations

Ordering

� =
(
�1 ∪ �2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩ Ep , e

′ ∈ E2 ∩ Ep}
)
∗

Observations

events are ordered per process:

every event at p in MSC M1 precedes every event at p in MSC M2

events at distinct processes in M1 and M2 can be incomparable

thus: a process may start with M2 before other processes do pause

this differs from: first complete M1, then start with M2
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Example (1)
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Example (2)
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Example (2)
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Note:

Events e1 and e′1 are not ordered in M1 •M2
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Example (2)

e1 e2

e′1e′2
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e′1�:

�1:

�2:

Note:

Events e1 and e′1 are not ordered in M1 •M2

Example linearizations:

e1 e2 e′1 e′2 . . . ∈ Lin(M1 •M2)
e′1 e1 e2 e′2 . . . ∈ Lin(M1 •M2)
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Properties of concatenation

1 Concatenation is associative:

(M1 •M2) •M3 = M1 • (M2 •M3)

2 Concatenation preserves the FIFO property:

(M1 is FIFO ∧M2 is FIFO ) implies M1 •M2 is FIFO

3 Race-freeness, however, is not preserved

(M1 is race-free ∧M2 is race-free ) 6⇒ M1 •M2 is race-free
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Paths in MSGs

Let G = (V,→, v0, F, λ) be an MSG.
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Paths in MSGs

Let G = (V,→, v0, F, λ) be an MSG.

A path through MSG G is a finite traversal through the graph G.

Definition

A path π in MSG G is a finite sequence

π = u0 u1 . . . un with ui ∈ V (0 ≤ i ≤ n) and ui → ui+1 (0 ≤ i < n)
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Paths in MSGs

Let G = (V,→, v0, F, λ) be an MSG.

A path through MSG G is a finite traversal through the graph G.

Definition

A path π in MSG G is a finite sequence

π = u0 u1 . . . un with ui ∈ V (0 ≤ i ≤ n) and ui → ui+1 (0 ≤ i < n)

An accepting path through MSG G is a path starting in the initial
vertex and ending in a final vertex.

Definition

Path π = u0 . . . un is accepting if: u0 = v0 and un ∈ F .
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Paths in an MSG represent MSCs

Let G = (V,→, v0, F, λ) be an MSG.

Definition

The MSC of a path π = u0 . . . un through MSG G is defined by:

M(π) = λ(u0)
︸ ︷︷ ︸

MSC of u0

• λ(u1)
︸ ︷︷ ︸

MSC of u1

• . . . • λ(un)
︸ ︷︷ ︸

MSC of un
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Language of an MSG
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Language of an MSG

The language of an MSG, i.e., the set of MSCs it represents, is the set
of MSCs of its accepting paths.
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Language of an MSG

The language of an MSG, i.e., the set of MSCs it represents, is the set
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The MSC language of MSG G is defined by:

L(G) = {M(π) | π is an accepting path of G}.
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Language of an MSG

The language of an MSG, i.e., the set of MSCs it represents, is the set
of MSCs of its accepting paths.

Definition

The MSC language of MSG G is defined by:

L(G) = {M(π) | π is an accepting path of G}.

Definition

The word language of MSG G is defined by Lin(L(G)) where

Lin({M1, . . . ,Mk}) =

k⋃

i=1

Lin(Mi).
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Example
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Races in MSGs

Recall: MSC M has a race if ≪∗ 6⊆ �
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Races in MSGs

Recall: MSC M has a race if ≪∗ 6⊆ �

or, equivalently Lin(M,≪∗) 6⊆ Lin(M,�)

or, equivalently Lin(M,≪∗) ⊂ Lin(M,�)

Definition

MSG G has a race if Lin(G,≪∗) ⊂ Lin(G,�)
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Example

Definition

MSG G has a race if Lin(G,≪∗) ⊂ Lin(G,�)

p1 p2 p3
a

b

p1 p2 p3

c

MSG G:

MSG G has a race.
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Deciding whether an MSG has a race is undecidable
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Deciding whether an MSG has a race is undecidable

Theorem [Muscholl & Peled, 1999]

The decision problem “does MSG G have a race?” is undecidable.
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Deciding whether an MSG has a race is undecidable

Theorem [Muscholl & Peled, 1999]

The decision problem “does MSG G have a race?” is undecidable.

Proof.

By a reduction from the universality of semi-trace languages. Requires
some Mazurkiewicz’ trace theory. Omitted here. We will see other
reduction proofs later on.
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Deciding whether an MSG has a race is undecidable

Theorem [Muscholl & Peled, 1999]

The decision problem “does MSG G have a race?” is undecidable.

Proof.

By a reduction from the universality of semi-trace languages. Requires
some Mazurkiewicz’ trace theory. Omitted here. We will see other
reduction proofs later on.

No undecidable problem can ever be solved by a computer or computer

program of any kind.
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Do MSGs have an MSC in common?

Theorem: undecidability of empty intersection

The decision problem:

for MSGs G1 and G2, do we have L(G1) ∩ L(G2) = ∅?

is undecidable.
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Do MSGs have an MSC in common?

Theorem: undecidability of empty intersection

The decision problem:

for MSGs G1 and G2, do we have L(G1) ∩ L(G2) = ∅?

is undecidable.

Proof: Reduction from Post’s Correspondence Problem (PCP)

. . . black board . . .
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