
Overview

1 Lecture 4: Message Sequence Graphs

Joost-Pieter Katoen Theoretical Foundations of the UML 1/21



Theoretical Foundations of the UML
Lecture 4: Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

20. April 2016

Joost-Pieter Katoen Theoretical Foundations of the UML 2/21

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/


Summary of Lecture #3

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21



Summary of Lecture #3

1 A Message Sequence Chart is a visual partial order
between send and receive events
totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the FIFO property

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21



Summary of Lecture #3

1 A Message Sequence Chart is a visual partial order
between send and receive events
totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the FIFO property

2 Race: in practice, the order of receive events cannot be guaranteed

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21



Summary of Lecture #3

1 A Message Sequence Chart is a visual partial order
between send and receive events
totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the FIFO property

2 Race: in practice, the order of receive events cannot be guaranteed

3 Causal order
send events should happen before their matching receive events
the ordering of events wrt. sends on same process is respected
receive events on a process sent from the same process are ordered
as their sends

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21



Summary of Lecture #3

1 A Message Sequence Chart is a visual partial order
between send and receive events
totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the FIFO property

2 Race: in practice, the order of receive events cannot be guaranteed

3 Causal order
send events should happen before their matching receive events
the ordering of events wrt. sends on same process is respected
receive events on a process sent from the same process are ordered
as their sends

4 A MSC has a race if causal order 6= visual order

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21



Summary of Lecture #3

1 A Message Sequence Chart is a visual partial order
between send and receive events
totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the FIFO property

2 Race: in practice, the order of receive events cannot be guaranteed

3 Causal order
send events should happen before their matching receive events
the ordering of events wrt. sends on same process is respected
receive events on a process sent from the same process are ordered
as their sends

4 A MSC has a race if causal order 6= visual order
checking whether an MSC has a race can be done in quadratic time
(in number of events)
using an optimized version of Warshall’s algorithm

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21



The need for composing MSCs

An MSC describes a possible single scenario

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21



The need for composing MSCs

An MSC describes a possible single scenario

Typically: a set of scenarios

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21



The need for composing MSCs

An MSC describes a possible single scenario

Typically: a set of scenarios

and dependencies between these scenarios:

after scenario 1, scenario 2 occurs
after scenario 1, scenario 2 or 3 occurs
scenario 1 occurs repeatedly

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21



The need for composing MSCs

An MSC describes a possible single scenario

Typically: a set of scenarios

and dependencies between these scenarios:

after scenario 1, scenario 2 occurs
after scenario 1, scenario 2 or 3 occurs
scenario 1 occurs repeatedly

Need for: sequential composition (= concatenation),
alternative composition, and
iteration of MSCs

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21



The need for composing MSCs

An MSC describes a possible single scenario

Typically: a set of scenarios

and dependencies between these scenarios:

after scenario 1, scenario 2 occurs
after scenario 1, scenario 2 or 3 occurs
scenario 1 occurs repeatedly

Need for: sequential composition (= concatenation),
alternative composition, and
iteration of MSCs

⇒ This yields Message Sequence Graphs

Alternatives: ensembles of MSCs, high-level MSCs (MSC’96)

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21



Message Sequence Graphs

U F S

conn

info

U F S

fail

ack

U F S

ack

grant

U F S

off

initial
vertex

MSG
edge

final
vertex

MSG vertex

u0 u1

u2 u3

Joost-Pieter Katoen Theoretical Foundations of the UML 5/21



Message Sequence Graphs

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

Joost-Pieter Katoen Theoretical Foundations of the UML 6/21



Message Sequence Graphs

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

Definition

Joost-Pieter Katoen Theoretical Foundations of the UML 6/21



Message Sequence Graphs

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

Definition

A Message Sequence Graph (MSG) G = (V,→, v0, F, λ) with:

(V,→) is a digraph with finite set V of vertices and →⊆ V × V a
set of edges

v0 ∈ V is the starting (or: initial) vertex

F ⊆ V is a set of final vertices

λ : V → M associates to each vertex v ∈ V , an MSC λ(v)

Joost-Pieter Katoen Theoretical Foundations of the UML 6/21



Message Sequence Graphs

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

Definition

A Message Sequence Graph (MSG) G = (V,→, v0, F, λ) with:

(V,→) is a digraph with finite set V of vertices and →⊆ V × V a
set of edges

v0 ∈ V is the starting (or: initial) vertex

F ⊆ V is a set of final vertices

λ : V → M associates to each vertex v ∈ V , an MSC λ(v)

Note:

An MSG can be considered as a non-deterministic finite-state automaton without

input alphabet where states are MSCs. Obviously, every MSC is an MSG.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/21



Example

Joost-Pieter Katoen Theoretical Foundations of the UML 7/21



Concatenation of MSCs: definition

Let Mi = (Pi, Ei, Ci, li,mi,�i) with i ∈ {1, 2}
be two MSCs with E1 ∩E2 = ∅

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21



Concatenation of MSCs: definition

Let Mi = (Pi, Ei, Ci, li,mi,�i) with i ∈ {1, 2}
be two MSCs with E1 ∩E2 = ∅

The concatenation of M1 and M2 is the MSC
M1 •M2 = (P, E, C, l,m,�) with:

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21



Concatenation of MSCs: definition

Let Mi = (Pi, Ei, Ci, li,mi,�i) with i ∈ {1, 2}
be two MSCs with E1 ∩E2 = ∅

The concatenation of M1 and M2 is the MSC
M1 •M2 = (P, E, C, l,m,�) with:

P = P1 ∪ P2 E = E1 ∪ E2 C = C1 ∪ C2
(with E? = E1,? ∪ E2,? etc.)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21



Concatenation of MSCs: definition

Let Mi = (Pi, Ei, Ci, li,mi,�i) with i ∈ {1, 2}
be two MSCs with E1 ∩E2 = ∅

The concatenation of M1 and M2 is the MSC
M1 •M2 = (P, E, C, l,m,�) with:

P = P1 ∪ P2 E = E1 ∪ E2 C = C1 ∪ C2
(with E? = E1,? ∪ E2,? etc.)

l(e) =

{
l1(e) if e ∈ E1

l2(e) if e ∈ E2

m(e) =

{
m1(e) if e ∈ E1

m2(e) if e ∈ E2

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21



Concatenation of MSCs: definition

Let Mi = (Pi, Ei, Ci, li,mi,�i) with i ∈ {1, 2}
be two MSCs with E1 ∩E2 = ∅

The concatenation of M1 and M2 is the MSC
M1 •M2 = (P, E, C, l,m,�) with:

P = P1 ∪ P2 E = E1 ∪ E2 C = C1 ∪ C2
(with E? = E1,? ∪ E2,? etc.)

l(e) =

{
l1(e) if e ∈ E1

l2(e) if e ∈ E2

m(e) =

{
m1(e) if e ∈ E1

m2(e) if e ∈ E2

� =
(
�1 ∪ �2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩ Ep , e

′ ∈ E2 ∩ Ep}
)
∗

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21



Concatenation of MSCs: observations

Ordering

� =
(
�1 ∪ �2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩ Ep , e

′ ∈ E2 ∩ Ep}
)
∗

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21



Concatenation of MSCs: observations

Ordering

� =
(
�1 ∪ �2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩ Ep , e

′ ∈ E2 ∩ Ep}
)
∗

Observations

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21



Concatenation of MSCs: observations

Ordering

� =
(
�1 ∪ �2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩ Ep , e

′ ∈ E2 ∩ Ep}
)
∗

Observations

events are ordered per process:

every event at p in MSC M1 precedes every event at p in MSC M2

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21



Concatenation of MSCs: observations

Ordering

� =
(
�1 ∪ �2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩ Ep , e

′ ∈ E2 ∩ Ep}
)
∗

Observations

events are ordered per process:

every event at p in MSC M1 precedes every event at p in MSC M2

events at distinct processes in M1 and M2 can be incomparable

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21



Concatenation of MSCs: observations

Ordering

� =
(
�1 ∪ �2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩ Ep , e

′ ∈ E2 ∩ Ep}
)
∗

Observations

events are ordered per process:

every event at p in MSC M1 precedes every event at p in MSC M2

events at distinct processes in M1 and M2 can be incomparable

thus: a process may start with M2 before other processes do pause

this differs from: first complete M1, then start with M2

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21



Example (1)

p1 p2 p3

a
e1 e2

•

p1 p2 p3

b

c

e′1e′2

e′3e′4

=

p1 p2 p3

a

b

c

e1 e2

e′1e′2

e′3e′4

M1:

M2:
M1 •M2

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21



Example (1)

p1 p2 p3

a
e1 e2

•

p1 p2 p3

b

c

e′1e′2

e′3e′4

=

p1 p2 p3

a

b

c

e1 e2

e′1e′2

e′3e′4

M1:

M2:
M1 •M2

e1 e2

e′1e′2

e′3e′4

e1 e2

e′2

e′3e′4

e′1�:

�1:

�2:

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21



Example (2)

e1 e2

e′1e′2

e′3e′4

e1 e2

e′2

e′3e′4

e′1�:

�1:

�2:

Joost-Pieter Katoen Theoretical Foundations of the UML 11/21



Example (2)

e1 e2

e′1e′2

e′3e′4

e1 e2

e′2

e′3e′4

e′1�:

�1:

�2:

Note:

Events e1 and e′1 are not ordered in M1 •M2

Joost-Pieter Katoen Theoretical Foundations of the UML 11/21



Example (2)

e1 e2

e′1e′2

e′3e′4

e1 e2

e′2

e′3e′4

e′1�:

�1:

�2:

Note:

Events e1 and e′1 are not ordered in M1 •M2

Example linearizations:

e1 e2 e′1 e′2 . . . ∈ Lin(M1 •M2)
e′1 e1 e2 e′2 . . . ∈ Lin(M1 •M2)

Joost-Pieter Katoen Theoretical Foundations of the UML 11/21



Properties of concatenation

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21



Properties of concatenation

1 Concatenation is associative:

(M1 •M2) •M3 = M1 • (M2 •M3)

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21



Properties of concatenation

1 Concatenation is associative:

(M1 •M2) •M3 = M1 • (M2 •M3)

2 Concatenation preserves the FIFO property:

(M1 is FIFO ∧M2 is FIFO ) implies M1 •M2 is FIFO

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21



Properties of concatenation

1 Concatenation is associative:

(M1 •M2) •M3 = M1 • (M2 •M3)

2 Concatenation preserves the FIFO property:

(M1 is FIFO ∧M2 is FIFO ) implies M1 •M2 is FIFO

3 Race-freeness, however, is not preserved

(M1 is race-free ∧M2 is race-free ) 6⇒ M1 •M2 is race-free

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21



Paths in MSGs

Let G = (V,→, v0, F, λ) be an MSG.

Joost-Pieter Katoen Theoretical Foundations of the UML 13/21



Paths in MSGs

Let G = (V,→, v0, F, λ) be an MSG.

A path through MSG G is a finite traversal through the graph G.

Definition

A path π in MSG G is a finite sequence

π = u0 u1 . . . un with ui ∈ V (0 ≤ i ≤ n) and ui → ui+1 (0 ≤ i < n)

Joost-Pieter Katoen Theoretical Foundations of the UML 13/21



Paths in MSGs

Let G = (V,→, v0, F, λ) be an MSG.

A path through MSG G is a finite traversal through the graph G.

Definition

A path π in MSG G is a finite sequence

π = u0 u1 . . . un with ui ∈ V (0 ≤ i ≤ n) and ui → ui+1 (0 ≤ i < n)

An accepting path through MSG G is a path starting in the initial
vertex and ending in a final vertex.

Definition

Path π = u0 . . . un is accepting if: u0 = v0 and un ∈ F .

Joost-Pieter Katoen Theoretical Foundations of the UML 13/21



Paths in an MSG represent MSCs

Let G = (V,→, v0, F, λ) be an MSG.

Definition

The MSC of a path π = u0 . . . un through MSG G is defined by:

M(π) = λ(u0)
︸ ︷︷ ︸

MSC of u0

• λ(u1)
︸ ︷︷ ︸

MSC of u1

• . . . • λ(un)
︸ ︷︷ ︸

MSC of un

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21



Example paths

U F S

conn

info

U F S

fail

ack

U F S

ack

grant

U F S

off

initial
vertex

MSG
edge

final
vertex

MSG vertex

u0 u1

u2 u3

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21



Example paths

U F S

conn

info

U F S

fail

ack

U F S

ack

grant

U F S

off

initial
vertex

MSG
edge

final
vertex

MSG vertex

u0 u1

u2 u3

u0 u2 u0 u1 is accepting;u0 u2 u0 u2 is not accepting

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21



Language of an MSG

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21



Language of an MSG

The language of an MSG, i.e., the set of MSCs it represents, is the set
of MSCs of its accepting paths.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21



Language of an MSG

The language of an MSG, i.e., the set of MSCs it represents, is the set
of MSCs of its accepting paths.

Definition

The MSC language of MSG G is defined by:

L(G) = {M(π) | π is an accepting path of G}.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21



Language of an MSG

The language of an MSG, i.e., the set of MSCs it represents, is the set
of MSCs of its accepting paths.

Definition

The MSC language of MSG G is defined by:

L(G) = {M(π) | π is an accepting path of G}.

Definition

The word language of MSG G is defined by Lin(L(G)) where

Lin({M1, . . . ,Mk}) =

k⋃

i=1

Lin(Mi).

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21



Example

Joost-Pieter Katoen Theoretical Foundations of the UML 17/21



Races in MSGs

Recall: MSC M has a race if ≪∗ 6⊆ �

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21



Races in MSGs

Recall: MSC M has a race if ≪∗ 6⊆ �

or, equivalently Lin(M,≪∗) 6⊆ Lin(M,�)

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21



Races in MSGs

Recall: MSC M has a race if ≪∗ 6⊆ �

or, equivalently Lin(M,≪∗) 6⊆ Lin(M,�)

or, equivalently Lin(M,≪∗) ⊂ Lin(M,�)

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21



Races in MSGs

Recall: MSC M has a race if ≪∗ 6⊆ �

or, equivalently Lin(M,≪∗) 6⊆ Lin(M,�)

or, equivalently Lin(M,≪∗) ⊂ Lin(M,�)

Definition

MSG G has a race if Lin(G,≪∗) ⊂ Lin(G,�)

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21



Example

Definition

MSG G has a race if Lin(G,≪∗) ⊂ Lin(G,�)

p1 p2 p3
a

b

p1 p2 p3

c

MSG G:

MSG G has a race.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/21



Deciding whether an MSG has a race is undecidable

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21



Deciding whether an MSG has a race is undecidable

Theorem [Muscholl & Peled, 1999]

The decision problem “does MSG G have a race?” is undecidable.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21



Deciding whether an MSG has a race is undecidable

Theorem [Muscholl & Peled, 1999]

The decision problem “does MSG G have a race?” is undecidable.

Proof.

By a reduction from the universality of semi-trace languages. Requires
some Mazurkiewicz’ trace theory. Omitted here. We will see other
reduction proofs later on.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21



Deciding whether an MSG has a race is undecidable

Theorem [Muscholl & Peled, 1999]

The decision problem “does MSG G have a race?” is undecidable.

Proof.

By a reduction from the universality of semi-trace languages. Requires
some Mazurkiewicz’ trace theory. Omitted here. We will see other
reduction proofs later on.

No undecidable problem can ever be solved by a computer or computer

program of any kind.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21



Do MSGs have an MSC in common?

Theorem: undecidability of empty intersection

The decision problem:

for MSGs G1 and G2, do we have L(G1) ∩ L(G2) = ∅?

is undecidable.

Joost-Pieter Katoen Theoretical Foundations of the UML 21/21



Do MSGs have an MSC in common?

Theorem: undecidability of empty intersection

The decision problem:

for MSGs G1 and G2, do we have L(G1) ∩ L(G2) = ∅?

is undecidable.

Proof: Reduction from Post’s Correspondence Problem (PCP)

. . . black board . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 21/21


	Lecture 4: Message Sequence Graphs

