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Summary of Lecture #2

1 A Message Sequence Chart is a partial order
between send and receive events
totally ordered per process vertical ordering

receive events happen after their send events horizontal ordering

respecting the first-in first out (FIFO) property

2 Linearizations are totally ordered extensions of partial orders
all linearizations of an MSC are well-formed

1 every receive is preceded by a corresponding send

2 respects the FIFO ordering

3 no send events without corresponding receive

3 Every well-formed word can be transformed into an MSC

two linearizations of the same MSC yield isomorphic MSCs

4 So: there is a 1-to-1 relation between an MSC and its linearizations
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Example

p1 p2 p3
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c

d

e

These pictures are formalized using partial orders.
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Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,�) with:
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Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,�) with:

P, a finite set of processes {p1, p2, . . . , pn} with n > 1

E, a finite set of events

E =
⊎

p∈P

Ep = E? ·∪ E!

C, a finite set of message contents

l : E → Act , a labelling function defined by:

l(e) =

{

!(p, q, a) if e ∈ Ep ∩ E!

?(p, q, a) if e ∈ Ep ∩ E?

, for p 6= q ∈ P, a ∈ C
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Message Sequence Chart (MSC) (2)
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Message Sequence Chart (MSC) (2)

Definition

m : E! → E? a bijection (“matching function”), satisfying:

m(e) = e′ ∧ l(e) = !(p, q, a) implies l(e′) = ?(q, p, a) (p 6= q, a ∈ C)
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Message Sequence Chart (MSC) (2)

Definition

m : E! → E? a bijection (“matching function”), satisfying:

m(e) = e′ ∧ l(e) = !(p, q, a) implies l(e′) = ?(q, p, a) (p 6= q, a ∈ C)

� ⊆E × E is a partial order (“visual order”) defined by:

6 =
( ⋃

p∈P

<p

︸ ︷︷ ︸

<p is a total order = “top-to-

bottom” order on process p

∪ {(e,m(e)) | e ∈ E!}

︸ ︷︷ ︸

communication order <c

)∗

where for relation R, R∗ denotes its reflexive and transitive closure.
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Visual order can be misleading

p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

can e6 occur
before e2?
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p1 p2 p3
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e1e2

e3 e4

e5e6

can e6 occur
before e2?

If message b takes much shorter than message a,
then c might arrive at p1 before a.

Joost-Pieter Katoen Theoretical Foundations of the UML 8/23



Visual order can be misleading

p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

can e6 occur
before e2?

If message b takes much shorter than message a,
then c might arrive at p1 before a.

In practice, e6 might occur before e2, but e2 <p1 e6 and thus e2 � e6.

This is misleading and called a race.
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What is a race?

A race condition asserts a particular order of events will occur because
of the visual ordering (i.e., the partial order �) when, in practice, this
order cannot be guaranteed to hold.
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What is a race?

A race condition asserts a particular order of events will occur because
of the visual ordering (i.e., the partial order �) when, in practice, this
order cannot be guaranteed to hold.

Q: When are race conditions possible and how to detect them?
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Causal order

Joost-Pieter Katoen Theoretical Foundations of the UML 10/23



Causal order

Main principles:

Send events should happen before their matching receive events

The ordering of events wrt. sends on same process is unaffected

Receive events on a process sent from the same process are ordered as
their sends

Definition

For MSC M = (P, E, C, l,m,�), relation ≪ ⊆ E ×E is defined by:

e ≪ e′ iff e′ = m(e)
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Causal order

Main principles:

Send events should happen before their matching receive events

The ordering of events wrt. sends on same process is unaffected

Receive events on a process sent from the same process are ordered as
their sends

Definition

For MSC M = (P, E, C, l,m,�), relation ≪ ⊆ E ×E is defined by:

e ≪ e′ iff e′ = m(e)

or e <p e
′ and E! ∩ {e, e′} 6= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m
−1(e′)

≪∗ is a partial order (referred to as causal order) in which events at the
same process are not necessarily ordered.
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Causal order: example

Definition
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Causal order: example

Definition

For MSC M = (P , E, C, l,m,�), relation ≪ ⊆ E × E is defined by:

e ≪ e′ iff e′ = m(e)
or e <p e′ and E! ∩ {e, e′} 6= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

Example

e1 ≪ e2, e3 ≪ e4, e5 ≪ e6, e1 ≪ e3, e4 ≪ e5,
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Causal order: example

Definition

For MSC M = (P , E, C, l,m,�), relation ≪ ⊆ E × E is defined by:

e ≪ e′ iff e′ = m(e)
or e <p e′ and E! ∩ {e, e′} 6= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

Example

e1 ≪ e2, e3 ≪ e4, e5 ≪ e6, e1 ≪ e3, e4 ≪ e5, not (e2 ≪ e6)

Joost-Pieter Katoen Theoretical Foundations of the UML 11/23



Races

Definition

MSC M contains a race if for some e, e′ ∈ E? and process p:

e <p e
′ but not (e ≪∗ e′)

where ≪∗ ⊆ E × E is the reflexive and transitive closure of ≪.
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Race: example

p1 p2 p3
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e3 e4
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Race: example

p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

Visual order versus causal order

1 e1 � e2, e3 � e4, e5 � e6, e1 � e3, e4 � e5, e2 � e6
2 e1 ≪ e2, e3 ≪ e4, e5 ≪ e6, e1 ≪ e3, e4 ≪ e5, not (e2 ≪ e6)

As ≪∗ 6⊆ �, this MSC contains a race.
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Other examples

On the black board.
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Why are races problematic?

Recall: MSC M has a race if � 6⊆ ≪∗ or equivalently:

∃e, e′ ∈ E? . (e <p e
′ and e 6≪∗ e′)

Whenever � 6⊆ ≪∗, implementations based on <p may cause problems:
1 unspecified message reception

a process receives a message which by the MSC is not possible

2 deadlocks

a process blocking on receipt of an unexpected message may block
others too

3 message loss

unexpectedly received messages may be ignored

4 exploiting wrong message content
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Checking whether an MSC has a race

1for digraphs without negative cycles.
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Checking whether an MSC has a race

MSC M has a race if � 6⊆ ≪∗

How to check whether MSC M has a race?

compute ≪∗ and check whether � ⊆ ≪∗

transitive closure ≪∗ is computed using Floyd-Warshall’s algorithm

algorithm for finding shortest paths in a weighted digraph with
positive or negative edge weights1

easily adapted for computing the transitive closure of digraphs
worst-case time complexity O(|E|3)
by using some specifics of MSC, this is reduced to O(|E|2)

So: race checking can be done quadratically in the number of events

1for digraphs without negative cycles.
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Computing ≪∗: Warshall’s algorithm

Algorithm

compute ≪∗

︸ ︷︷ ︸

Warshall’s Algorithm

and compare with �

Warshall’s Algorithm: input: R ⊆ X ×X where X is a set

output: R∗
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Computing ≪∗: Warshall’s algorithm

Algorithm

compute ≪∗

︸ ︷︷ ︸

Warshall’s Algorithm

and compare with �

Warshall’s Algorithm: input: R ⊆ X ×X where X is a set

output: R∗

Idea:

Consider R and R∗ as directed graphs

There is an edge x ⇒ y in R∗ iff there is a (possibly empty) sequence

x = x0 → x1 → x2 → . . . → xn = y in R

(our setting: X = E,R = ≪ , R∗ = ≪∗)
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Warshall’s algorithm: preliminaries
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Warshall’s algorithm: preliminaries

assume: graph vertices are numbered {1, 2, . . . , n} where n = |E|

for j ∈ {1, . . . , n+1} define relation
j

=⇒ as follows:

x
j

=⇒ y iff ∃ path in R from x to y such that all vertices
on the path (6= x, y) have a smaller number than j
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Warshall’s algorithm: preliminaries

assume: graph vertices are numbered {1, 2, . . . , n} where n = |E|

for j ∈ {1, . . . , n+1} define relation
j

=⇒ as follows:

x
j

=⇒ y iff ∃ path in R from x to y such that all vertices
on the path (6= x, y) have a smaller number than j

Then: (1) x =⇒ y iff x
n+1
=⇒ y

(2) x
1

=⇒ y iff x = y or x ≪ y

(3) x
y+1
=⇒ z iff x

y
=⇒ z or x

y
=⇒ y

y
=⇒ z
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Warshall’s algorithm: preliminaries

assume: graph vertices are numbered {1, 2, . . . , n} where n = |E|

for j ∈ {1, . . . , n+1} define relation
j

=⇒ as follows:

x
j

=⇒ y iff ∃ path in R from x to y such that all vertices
on the path (6= x, y) have a smaller number than j

Then: (1) x =⇒ y iff x
n+1
=⇒ y

(2) x
1

=⇒ y iff x = y or x ≪ y

(3) x
y+1
=⇒ z iff x

y
=⇒ z or x

y
=⇒ y

y
=⇒ z

Algorithm: determine the relations
1

=⇒, . . . ,
n

=⇒,
n+1
=⇒ iteratively

using properties (2) + (3);
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Then: (1) x =⇒ y iff x
n+1
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1

=⇒ y iff x = y or x ≪ y

(3) x
y+1
=⇒ z iff x

y
=⇒ z or x

y
=⇒ y

y
=⇒ z

Algorithm: determine the relations
1

=⇒, . . . ,
n

=⇒,
n+1
=⇒ iteratively

using properties (2) + (3); Result is then given by (1).

Store
i

=⇒ in a boolean matrix C
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Warshall’s algorithm: preliminaries

assume: graph vertices are numbered {1, 2, . . . , n} where n = |E|

for j ∈ {1, . . . , n+1} define relation
j

=⇒ as follows:

x
j

=⇒ y iff ∃ path in R from x to y such that all vertices
on the path (6= x, y) have a smaller number than j

Then: (1) x =⇒ y iff x
n+1
=⇒ y

(2) x
1

=⇒ y iff x = y or x ≪ y

(3) x
y+1
=⇒ z iff x

y
=⇒ z or x

y
=⇒ y

y
=⇒ z

Algorithm: determine the relations
1

=⇒, . . . ,
n

=⇒,
n+1
=⇒ iteratively

using properties (2) + (3); Result is then given by (1).

Store
i

=⇒ in a boolean matrix C

Postcondition: C[x, y] = true iff (x, y) ∈ R∗

Precondition: ∀x, y ∈ X . C[x, y] = false
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Warshall’s algorithm

/* first compute x
1

=⇒ y */

for x := 1 to n do
for y := 1 to n do

C[x, y] := (x = y or (x, y) ∈ R
︸ ︷︷ ︸

x≪y

)

/* loop invariant: after the j-th iteration of */

/* outermost loop it holds: C[x, y] = true iff x
j+1
=⇒ y */

for y := 1 to n do
for x := 1 to n do

if C[x, y] then
for z := 1 to n do

if C[y, z] then
C[x, z] := true
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Correctness and complexity

Lemma: correctness

After j iterations: x
j+1
=⇒ y iff C[x, y] = true.

Proof.

if: trivial; only if: by induction on j.
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Correctness and complexity

Lemma: correctness

After j iterations: x
j+1
=⇒ y iff C[x, y] = true.

Proof.

if: trivial; only if: by induction on j.

Complexity

Worst-case time complexity of Warshall’s algorithm : O(n3) with
n = |X|

Proof.

follows from the facts that there is a triple-nested loop of which each loop has

at most n iterations.
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Efficiency improvement [Alur et al. ’96]

Warshall’s algorithm computes R∗ for every binary relation R ⊆ X ×X.
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Efficiency improvement [Alur et al. ’96]

Warshall’s algorithm computes R∗ for every binary relation R ⊆ X ×X.

Recall: our interest is in determining R∗ for R = ≪

Using some properties of ≪ the complexity can be improved.

Exploit that for ≪:

1 ≪ is acyclic (as it is a partial order)

2 number of immediate predecessors of e ∈ E
under ≪ is at most two (why?)

Recall that e is an immediate predecessor of e′ (under ≪) if:

e ≪ e′ and ¬(∃e′′ /∈ {e, e′}. e ≪ e′′ ∧ e′′ ≪ e′)
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Efficiency improvement [Alur et al. ’96]

The main loop of Warshall’s algorithm:

for e := 1 to n do
for e′ := 1 to n do

if C[e′, e] then
for e′′ := 1 to n do

if C[e, e′′] then
C[e′, e′′] := true
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Efficiency improvement [Alur et al. ’96]

The main loop of Warshall’s algorithm:

for e := 1 to n do
for e′ := 1 to n do

if C[e′, e] then
for e′′ := 1 to n do

if C[e, e′′] then
C[e′, e′′] := true

The main loop of Alur et. al.’s algorithm for detecting races in MSCs:

for e := 1 to n do
for e′ := e− 1 downto 1 do

if (not C[e′, e] and e′ ≪ e) then
C[e′, e] := true

for e′′ := 1 to e′ − 1 do
if C[e′′, e′] then

C[e′′, e] := true
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Detecting races in MSCs

Theorem

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n2).

Proof.
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Detecting races in MSCs

Theorem

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n2).

Proof.

Since ≪ is acyclic, we number the events such that the numbering defines a total

order that is consistent with visual order �. This can be done in O(n) using a

standard topological sort.
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Detecting races in MSCs

Theorem

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n2).

Proof.

Since ≪ is acyclic, we number the events such that the numbering defines a total

order that is consistent with visual order �. This can be done in O(n) using a

standard topological sort. Then observe that the innermost loop:

for e′′ := 1 to e′ − 1 do

if C[e′′, e′] then C[e′′, e] := true

of the triple-nested main loop is executed for (e, e′) only if e′ is an immediate

predecessor of e under ≪.
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Detecting races in MSCs

Theorem

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n2).

Proof.

Since ≪ is acyclic, we number the events such that the numbering defines a total

order that is consistent with visual order �. This can be done in O(n) using a

standard topological sort. Then observe that the innermost loop:

for e′′ := 1 to e′ − 1 do

if C[e′′, e′] then C[e′′, e] := true

of the triple-nested main loop is executed for (e, e′) only if e′ is an immediate

predecessor of e under ≪. As for MSCs, an event can have at most two immediate

predecessors, the innermost loop is executed at most 2 · n times.
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Detecting races in MSCs

Theorem

Let M be an MSC with set E of events and n = |E|. Checking whether
M has a race can be done in O(n2).

Proof.

Since ≪ is acyclic, we number the events such that the numbering defines a total

order that is consistent with visual order �. This can be done in O(n) using a

standard topological sort. Then observe that the innermost loop:

for e′′ := 1 to e′ − 1 do

if C[e′′, e′] then C[e′′, e] := true

of the triple-nested main loop is executed for (e, e′) only if e′ is an immediate

predecessor of e under ≪. As for MSCs, an event can have at most two immediate

predecessors, the innermost loop is executed at most 2 · n times. This yields a total

worst-case time complexity of n2+2·n.
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