
Overview

1 Lecture 1: Introduction

2 Lecture 2: Message Sequence Charts

Joost-Pieter Katoen Theoretical Foundations of the UML 1/32

Theoretical Foundations of the UML
Lecture 1: Introduction

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

13. April 2016

Joost-Pieter Katoen Theoretical Foundations of the UML 2/32

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

Target audience

You are studying:

Master Computer Science, or

Master Systems Software Engineering, or

Bachelor Computer Science, or

.

Joost-Pieter Katoen Theoretical Foundations of the UML 3/32

Target audience

You are studying:

Master Computer Science, or

Master Systems Software Engineering, or

Bachelor Computer Science, or

.

Usage as:

elective course Theoretical Computer Science

not a Wahlpflicht course for bachelor students

specialization MOVES (Modeling and Verification of Software)

complementary to Model-based Software Development (Rumpe)

Joost-Pieter Katoen Theoretical Foundations of the UML 3/32

Target audience (contd.)

In general:

interest in system software engineering

interest in formal methods for software

interest in semantics and verification

application of mathematical reasoning

Joost-Pieter Katoen Theoretical Foundations of the UML 4/32

Target audience (contd.)

In general:

interest in system software engineering

interest in formal methods for software

interest in semantics and verification

application of mathematical reasoning

Prerequisites:

mathematical logic

formal language and automata theory

algorithms and data structures

computability and complexity theory

Joost-Pieter Katoen Theoretical Foundations of the UML 4/32

Organization

Schedule:

Day Time Room

Lecture Tue 12:15 - 13:45 9U09
Thu 08:30 - 10:15 5056

Exercises Thu 14:15- 15:45 9U09

about 20 lectures in total; Keep track of website for precise dates!

Joost-Pieter Katoen Theoretical Foundations of the UML 5/32

Organization

Schedule:

Day Time Room

Lecture Tue 12:15 - 13:45 9U09
Thu 08:30 - 10:15 5056

Exercises Thu 14:15- 15:45 9U09

about 20 lectures in total; Keep track of website for precise dates!

People involved:

Lecturer EMail
Lectures Joost-Pieter Katoen katoen@cs.rwth-aachen.de

Exercises Hao Wu hao.wu@cs.rwth-aachen.de

Benjamin Kaminksi benjamin.kaminski@cs.rwth-aachen.de

Joost-Pieter Katoen Theoretical Foundations of the UML 5/32

katoen@cs.rwth-aachen.de
hao.wu@cs.rwth-aachen.de
benjamin.kaminski@cs.rwth-aachen.de

Organization (contd.)

Assignments:

(almost) weekly assignments

available from course web-site

first assignment: Thursday April 21

hand in solution at start next exercise class

groups of maximally two students

first exercise class: Thursday April 28

Joost-Pieter Katoen Theoretical Foundations of the UML 6/32

Organization (contd.)

Examination: (6 ECTS credit points)

written exam: July XY, 2016 (tba)

written re-exam: September WZ, 2016 (tba)

Joost-Pieter Katoen Theoretical Foundations of the UML 7/32

Organization (contd.)

Examination: (6 ECTS credit points)

written exam: July XY, 2016 (tba)

written re-exam: September WZ, 2016 (tba)

Admission:

at least 40% of exercise points

Joost-Pieter Katoen Theoretical Foundations of the UML 7/32

Motivation

Scope:

Goal: formal description + analysis of (concurr.) software systems

Focus: the Unified Modeling Language

Joost-Pieter Katoen Theoretical Foundations of the UML 8/32

Motivation

Scope:

Goal: formal description + analysis of (concurr.) software systems

Focus: the Unified Modeling Language

More specifically:

Sequence Diagrams (used for requirements analysis)

Propositional Dynamic Logic

Communicating Finite State Automata

Statecharts (behavioral description of systems)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/32

Motivation

Scope:

Goal: formal description + analysis of (concurr.) software systems

Focus: the Unified Modeling Language

More specifically:

Sequence Diagrams (used for requirements analysis)

Propositional Dynamic Logic

Communicating Finite State Automata

Statecharts (behavioral description of systems)

Aims:

clarify and make precise the semantics of some UML fragments

formal reasoning about basic properties of UML models

convince you that UML models are much harder than you think

Joost-Pieter Katoen Theoretical Foundations of the UML 8/32

What this course is NOT about:

What is it **not** about?

the use of the UML in the software development cycle

see the complementary course by Prof. Rumpe

other notations of the UML (e.g., class diagrams, activity diagrams)

what is precisely in the UML, and what is not

liberal interpretation of which constructs belong to the UML

applying the UML to concrete SW development case studies

empirical results on the usage of UML

drawing pictures

. . .

Joost-Pieter Katoen Theoretical Foundations of the UML 9/32

Overview

1 Lecture 1: Introduction

2 Lecture 2: Message Sequence Charts

Joost-Pieter Katoen Theoretical Foundations of the UML 10/32

Theoretical Foundations of the UML
Lecture 2: Message Sequence Charts

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

13. April 2016

Joost-Pieter Katoen Theoretical Foundations of the UML 11/32

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

History

70s - 80s: often used informally

1992: first version of MSCs standardized by CCITT (currently
ITU) Z.120

1992 - 1996: many extensions, e.g., high-level + formal semantics
(using process algebras)

1996: MSC’96 standard

2000: MSC 2000, time, data, o-o features

2005: MSC 2004 . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 12/32

Variants of MSCs

UML sequence diagrams

(instantiations of) use cases

triggered MSCs

netcharts (= Petri net + MSC)

STAIRS

Live sequence charts

. . .

Joost-Pieter Katoen Theoretical Foundations of the UML 13/32

Characteristics

scenario-based language

visual representation

“easy” to comprehend

generalization possible towards automata (states are MSCs)

widely used in industrial practice

Joost-Pieter Katoen Theoretical Foundations of the UML 14/32

Applications

requirements specification
(positive, negative scenarios, e.g., CREWS)

system design and software engineering

visualization of test cases
(graphical extension to TTCN)

feature interaction detection

workflow management systems

. . .

Joost-Pieter Katoen Theoretical Foundations of the UML 15/32

Example

p1 p2 p3

a
b

c

d

e

Joost-Pieter Katoen Theoretical Foundations of the UML 16/32

Example

p1 p2 p3

a
b

c

d

e

These pictures are formalized using partial orders.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/32

Partial orders

Definition

Let E be a set of events.
A partial order over E is a relation � ⊆E × E such that:

1 � is reflexive, i.e., ∀e ∈ E. e � e,

2 � is transitive, i.e., e � e′ ∧ e′ � e′′ implies e � e′′, and

3 � is anti-symmetric, i.e., ∀e, e′. (e � e′ ∧ e′ � e) ⇒ e = e′.

The pair (E,�) is called a partially ordered set (poset, for short).

Joost-Pieter Katoen Theoretical Foundations of the UML 17/32

Partial orders

Definition

Let E be a set of events.
A partial order over E is a relation � ⊆E × E such that:

1 � is reflexive, i.e., ∀e ∈ E. e � e,

2 � is transitive, i.e., e � e′ ∧ e′ � e′′ implies e � e′′, and

3 � is anti-symmetric, i.e., ∀e, e′. (e � e′ ∧ e′ � e) ⇒ e = e′.

The pair (E,�) is called a partially ordered set (poset, for short).

Definition

Let (E,�) be a poset and let e, e′ ∈ E. e and e′ are comparable if e � e′

or e′ � e. Otherwise, they are incomparable.

Joost-Pieter Katoen Theoretical Foundations of the UML 17/32

Partial orders

Definition

Let E be a set of events.
A partial order over E is a relation � ⊆E × E such that:

1 � is reflexive, i.e., ∀e ∈ E. e � e,

2 � is transitive, i.e., e � e′ ∧ e′ � e′′ implies e � e′′, and

3 � is anti-symmetric, i.e., ∀e, e′. (e � e′ ∧ e′ � e) ⇒ e = e′.

The pair (E,�) is called a partially ordered set (poset, for short).

Definition

Let (E,�) be a poset and let e, e′ ∈ E. e and e′ are comparable if e � e′

or e′ � e. Otherwise, they are incomparable.

� is a non-strict partial order as it is reflexive. A strict partial order is a relation ≺

that is irreflexive, transitive and asymmetric (i.e., if e ≺ e′ then not e′ ≺ e).

Joost-Pieter Katoen Theoretical Foundations of the UML 17/32

Hasse diagram

Definition

Let (E,�) be a poset.
The Hasse diagram (E,⋖) of (E,�) is defined by:

e⋖ e′ iff e � e′ and ¬(∃e′′ 6= e, e′. e � e′′ ∧ e′′ � e′)

Hasse diagrams can be used to visualize posets with finitely many elements in

a succinct way.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/32

Linearizations

Definition

Let (E,�) be a poset.
A linearization of (E,�) is a total order ⊑⊆ E × E such that

e � e′ implies e ⊑ e′

A linearization is a topological sort of the Hasse diagram of (E,�).

Note that every partial order has at least one linearization.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/32

Example

Example

Let E = {e1, . . . , e6},

� = { (e1, e2), (e1, e3), (e3, e4), (e4, e5), (e5, e6), (e1, e4),
(e3, e5), (e1, e5), (e1, e6), (e3, e6), (e4, e6)

}r where Rr denotes the reflexive closure of R

Hasse diagram:

e1

e2

e3 e4 e5 e6

Linearizations:
• e1e2e3e4e5e6,
• e1e3e2e4e5e6,
• e1e3e4e2e5e6,
• e1e3e4e5e2e6,
• e1e3e4e5e6e2

No linearizations:
• e2e1e3 . . ., and e1e4e3 . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 20/32

Processes and actions

Definition

Let P: finite set of (sequential) processes
C: finite set of message contents (a, b, c, . . . ∈ C)

Joost-Pieter Katoen Theoretical Foundations of the UML 21/32

Processes and actions

Definition

Let P: finite set of (sequential) processes
C: finite set of message contents (a, b, c, . . . ∈ C)

Definition

Communication action: p, q ∈ P, p 6= q, a ∈ C

!(p, q, a) “process p sends message a to process q”

?(p, q, a) “process p receives message a sent by process q”

Let Act denote the set of communication actions

Joost-Pieter Katoen Theoretical Foundations of the UML 21/32

Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,�) with:

Joost-Pieter Katoen Theoretical Foundations of the UML 22/32

Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,�) with:

P, a finite set of processes {p1, p2, . . . , pn} with n > 1

Joost-Pieter Katoen Theoretical Foundations of the UML 22/32

Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,�) with:

P, a finite set of processes {p1, p2, . . . , pn} with n > 1

E, a finite set of events

E =
⊎

p∈P

Ep = E? ·∪ E!

Joost-Pieter Katoen Theoretical Foundations of the UML 22/32

Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,�) with:

P, a finite set of processes {p1, p2, . . . , pn} with n > 1

E, a finite set of events

E =
⊎

p∈P

Ep = E? ·∪ E!

C, a finite set of message contents

Joost-Pieter Katoen Theoretical Foundations of the UML 22/32

Message Sequence Chart (MSC) (1)

Definition

An MSC M = (P, E, C, l,m,�) with:

P, a finite set of processes {p1, p2, . . . , pn} with n > 1

E, a finite set of events

E =
⊎

p∈P

Ep = E? ·∪ E!

C, a finite set of message contents

l : E → Act , a labelling function defined by:

l(e) =

{

!(p, q, a) if e ∈ Ep ∩ E!

?(p, q, a) if e ∈ Ep ∩ E?

, for p 6= q ∈ P, a ∈ C

Joost-Pieter Katoen Theoretical Foundations of the UML 22/32

Message Sequence Chart (MSC) (2)

Joost-Pieter Katoen Theoretical Foundations of the UML 23/32

Message Sequence Chart (MSC) (2)

Definition

m : E! → E? a bijection (“matching function”), satisfying:

m(e) = e′ ∧ l(e) = !(p, q, a) implies l(e′) = ?(q, p, a) (p 6= q, a ∈ C)

Joost-Pieter Katoen Theoretical Foundations of the UML 23/32

Message Sequence Chart (MSC) (2)

Definition

m : E! → E? a bijection (“matching function”), satisfying:

m(e) = e′ ∧ l(e) = !(p, q, a) implies l(e′) = ?(q, p, a) (p 6= q, a ∈ C)

� ⊆E × E is a partial order (“visual order”) defined by:

6 =
(⋃

p∈P

<p

︸ ︷︷ ︸

<p is a total order = “top-to-
bottom” order on process p

∪ {(e,m(e)) | e ∈ E!}

︸ ︷︷ ︸

communication order <c

)∗

where for relation R, R∗ denotes its reflexive and transitive closure.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/32

Example (1)

p1 p2

a

b

MSC M :

e1 e2

e3e4

M = (P , E, C, l,m,�) with:
P = {p1, p2} Ep1

= {e1, e4}
E = {e1, e2, e3, e4} Ep2

= {e2, e3}
C = {a, b} E! = {e1, e3},

E? = {e2, e4}

l(e1) = !(p1, p2, a) m(e1) = e2
l(e2) = ?(p2, p1, a)
l(e3) = !(p2, p1, b) m(e3) = e4
l(e4) = ?(p1, p2, b)

Ordering at processes: e1 <p1 e4 and e2 <p2 e3
Hasse diagram of (E,�):

e1 e2 e3 e4

Linearizations?

Joost-Pieter Katoen Theoretical Foundations of the UML 24/32

Example (2)

p1 p2

a b

MSC M ′:

e1

e2

e3

e4

M ′ = (P, E, C, l,m
︸ ︷︷ ︸

as above

,�′) with:

e1

e3

e2

e4

<′
c:

e1

e3

e4

e2

<′
p1

:

<′
p2

:

e1

e3

e2

e4

�′:

Joost-Pieter Katoen Theoretical Foundations of the UML 25/32

This is not an MSC

p1 p2

a

b

Joost-Pieter Katoen Theoretical Foundations of the UML 26/32

FIFO property

MSC M = (P, E, C, l,m,�) has the First-In-First-Out (FIFO) property
whenever: for all e, e′ ∈ E! we have

e ≺ e′ ∧ l(e) = !(p, q, a) ∧ l(e′) = !(p, q, b) implies m(e) ≺ m(e′)

i.e., “no message overtaking allowed”

Joost-Pieter Katoen Theoretical Foundations of the UML 27/32

FIFO property

MSC M = (P, E, C, l,m,�) has the First-In-First-Out (FIFO) property
whenever: for all e, e′ ∈ E! we have

e ≺ e′ ∧ l(e) = !(p, q, a) ∧ l(e′) = !(p, q, b) implies m(e) ≺ m(e′)

i.e., “no message overtaking allowed”

p1 p2

a

b
e

e′

m(e)

m(e′)

p1 p2

a

b

e

e′

m(e′)

m(e)

FIFO

non-FIFO

l(e) = !(p1, p2, a)
l(e′) = !(p1, p2, b)
e ≺ e′

⇒ m(e) ≺ m(e′)

Joost-Pieter Katoen Theoretical Foundations of the UML 27/32

FIFO property

MSC M = (P, E, C, l,m,�) has the First-In-First-Out (FIFO) property
whenever: for all e, e′ ∈ E! we have

e ≺ e′ ∧ l(e) = !(p, q, a) ∧ l(e′) = !(p, q, b) implies m(e) ≺ m(e′)

i.e., “no message overtaking allowed”

p1 p2

a

b
e

e′

m(e)

m(e′)

p1 p2

a

b

e

e′

m(e′)

m(e)

FIFO

non-FIFO

l(e) = !(p1, p2, a)
l(e′) = !(p1, p2, b)
e ≺ e′

⇒ m(e) ≺ m(e′)

Note:

We assume an MSC to
possess the FIFO property,
unless stated otherwise!

Joost-Pieter Katoen Theoretical Foundations of the UML 27/32

Linearizations

Definition

Let Lin(M) = denote the set of linearizations of MSC M .

Joost-Pieter Katoen Theoretical Foundations of the UML 28/32

Linearizations

Definition

Let Lin(M) = denote the set of linearizations of MSC M .

MSCs and its linearizations are interchangeable

There is a one-to-one correspondence between an MSC and its set of
linearizations.

Joost-Pieter Katoen Theoretical Foundations of the UML 28/32

Linearizations

Definition

Let Lin(M) = denote the set of linearizations of MSC M .

MSCs and its linearizations are interchangeable

There is a one-to-one correspondence between an MSC and its set of
linearizations.

Thus:

Lin(M) uniquely characterizes the MSC M .

Joost-Pieter Katoen Theoretical Foundations of the UML 28/32

Linearizations

Definition

Let Lin(M) = denote the set of linearizations of MSC M .

MSCs and its linearizations are interchangeable

There is a one-to-one correspondence between an MSC and its set of
linearizations.

Thus:

Lin(M) uniquely characterizes the MSC M .

From MSCs to its set of linearizations is straightforward. The reverse direction

is discussed in the following. First: well-formedness.

Joost-Pieter Katoen Theoretical Foundations of the UML 28/32

Well-formedness

Let Ch := {(p, q) | p 6= q , p, q ∈ P} be the set of channels over P.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/32

Well-formedness

Let Ch := {(p, q) | p 6= q , p, q ∈ P} be the set of channels over P.

We call w = a1 . . . an ∈ Act
∗ proper if

Joost-Pieter Katoen Theoretical Foundations of the UML 29/32

Well-formedness

Let Ch := {(p, q) | p 6= q , p, q ∈ P} be the set of channels over P.

We call w = a1 . . . an ∈ Act
∗ proper if

1 every receive in w is preceded by a corresponding send, i.e.:
∀(p, q) ∈ Ch and prefix u of w, we have:

∑

m∈C

|u|!(p,q,m)

︸ ︷︷ ︸

sends from p to q

>
∑

m∈C

|u|?(q,p,m)

︸ ︷︷ ︸

receipts by q from p

where |u|a denotes the number of occurrences of action a in u

Joost-Pieter Katoen Theoretical Foundations of the UML 29/32

Well-formedness

Let Ch := {(p, q) | p 6= q , p, q ∈ P} be the set of channels over P.

We call w = a1 . . . an ∈ Act
∗ proper if

1 every receive in w is preceded by a corresponding send, i.e.:
∀(p, q) ∈ Ch and prefix u of w, we have:

∑

m∈C

|u|!(p,q,m)

︸ ︷︷ ︸

sends from p to q

>
∑

m∈C

|u|?(q,p,m)

︸ ︷︷ ︸

receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 6 i < j 6 n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):

∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m) implies m1 = m2

Joost-Pieter Katoen Theoretical Foundations of the UML 29/32

Well-formedness

Let Ch := {(p, q) | p 6= q , p, q ∈ P} be the set of channels over P.

We call w = a1 . . . an ∈ Act
∗ proper if

1 every receive in w is preceded by a corresponding send, i.e.:
∀(p, q) ∈ Ch and prefix u of w, we have:

∑

m∈C

|u|!(p,q,m)

︸ ︷︷ ︸

sends from p to q

>
∑

m∈C

|u|?(q,p,m)

︸ ︷︷ ︸

receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 6 i < j 6 n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):

∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
∑

m∈C
|w|!(p,q,m) =

∑

m∈C
|w|?(q,p,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 29/32

Properties of well-formedness

Proposition

For every MSC M and every w ∈ Lin(M), w is well-formed.

Lin(M) denotes a set of words (and not linearizations)

the word of linearization e1 . . . en equals ℓ(e1) . . . ℓ(en)

Joost-Pieter Katoen Theoretical Foundations of the UML 30/32

From linearizations to posets

Joost-Pieter Katoen Theoretical Foundations of the UML 31/32

From linearizations to posets

Associate to w = a1 . . . an ∈ Act
∗ an Act-labelled poset

M(w) = (E,�, ℓ)

Joost-Pieter Katoen Theoretical Foundations of the UML 31/32

From linearizations to posets

Associate to w = a1 . . . an ∈ Act
∗ an Act-labelled poset

M(w) = (E,�, ℓ)

such that:

E = {1, . . . , n} are the positions in w labelled with ℓ(i) = ai

Joost-Pieter Katoen Theoretical Foundations of the UML 31/32

From linearizations to posets

Associate to w = a1 . . . an ∈ Act
∗ an Act-labelled poset

M(w) = (E,�, ℓ)

such that:

E = {1, . . . , n} are the positions in w labelled with ℓ(i) = ai

�=
(
⋃

p∈P ≺p ∪ ≺msg

)∗

where

i ≺p j if and only if i < j for every i, j ∈ Ep

Joost-Pieter Katoen Theoretical Foundations of the UML 31/32

From linearizations to posets

Associate to w = a1 . . . an ∈ Act
∗ an Act-labelled poset

M(w) = (E,�, ℓ)

such that:

E = {1, . . . , n} are the positions in w labelled with ℓ(i) = ai

�=
(
⋃

p∈P ≺p ∪ ≺msg

)∗

where

i ≺p j if and only if i < j for every i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

ℓ(i) = !(p, q,m) and ℓ(j) = ?(q, p,m) and
∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 31/32

From linearizations to posets

Associate to w = a1 . . . an ∈ Act
∗ an Act-labelled poset

M(w) = (E,�, ℓ)

such that:

E = {1, . . . , n} are the positions in w labelled with ℓ(i) = ai

�=
(
⋃

p∈P ≺p ∪ ≺msg

)∗

where

i ≺p j if and only if i < j for every i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

ℓ(i) = !(p, q,m) and ℓ(j) = ?(q, p,m) and
∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 31/32

From linearizations to posets

Associate to w = a1 . . . an ∈ Act
∗ an Act-labelled poset

M(w) = (E,�, ℓ)

such that:

E = {1, . . . , n} are the positions in w labelled with ℓ(i) = ai

�=
(
⋃

p∈P ≺p ∪ ≺msg

)∗

where

i ≺p j if and only if i < j for every i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

ℓ(i) = !(p, q,m) and ℓ(j) = ?(q, p,m) and
∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m)

Example

construct M(w) for w = !(r, q,m)!(p, q,m1)!(p, q,m2)?(q, p,m1)?(q, p,m2)?(q, r,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 31/32

Properties

Relating well-formed words to MSCs

For every well-formed w ∈ Act
∗, M(w) is an MSC.

Definition

(E,�, ℓ) and (E′,�′, ℓ′) are isomorphic if there exists a bijection
f : E → E′ such that e � e′ iff f(e) �′ f(e′) and ℓ(e) = ℓ′(f(e)).

Linearizations yield isomorphic MSCs

For every well-formed w ∈ Act
∗ and w′ ∈ Lin(M(w)):

M(w) and M(w′) are isomorphic.

Joost-Pieter Katoen Theoretical Foundations of the UML 32/32

	Lecture 1: Introduction
	Lecture 2: Message Sequence Charts

