Theoretical Foundations of the UML Lecture 10: Realisability

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

1. Juni 2016

Joost-Pieter Katoen Theoretical Foundations of the UML

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Outline

1 Introduction

2 Properties of CFMs

- Deterministic CFMs
- Deadlock-free CFMs
- Synchronisation messages add expressiveness
- 3 Realisability

Inference of MSCs

5 Characterisation and complexity of realisability by weak CFMs

→ Ξ → → Ξ →

Overview

1 Introduction

Properties of CFMs

- Deterministic CFMs
- Deadlock-free CFMs
- Synchronisation messages add expressiveness
- 3 Realisability

Inference of MSCs

5 Characterisation and complexity of realisability by weak CFMs

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

Practical use of MSCs and CFMs

- MSCs and MSGs are used by software engineers to capture requirements.
- These are the expected behaviours of the distributed system under design.
- Distributed systems can be viewed as a collection of communicating automata.

→ ∃ → < ∃ →</p>

Motivation

Practical use of MSCs and CFMs

- MSCs and MSGs are used by software engineers to capture requirements.
- These are the expected behaviours of the distributed system under design.
- Distributed systems can be viewed as a collection of communicating automata.

Central problem

Can we synthesize, preferably in an automated manner, a CFM whose behaviours are precisely the behaviours of the MSCs (or MSG)?

This is known as the realisability problem.

→ ∃ → → ∃

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Questions:

• Is this possible? (That is, is this decidable?)

(4) E > (4) E >

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Questions:

- Is this possible? (That is, is this decidable?)
- If so, how complex is it to obtain such CFM?

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Questions:

- Is this possible? (That is, is this decidable?)
- If so, how complex is it to obtain such CFM?
- If so, how do such algorithms work?

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

・ 同 ト ・ ヨ ト ・ ヨ ト

Joost-Pieter Katoen Theoretical Foundations of the UML

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

• Consider finite sets of MSCs, given as an enumerated set.

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

- Consider finite sets of MSCs, given as an enumerated set.
- Consider MSGs, that may describe an infinite set of MSCs.

→ ∃ → < ∃</p>

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

- Consider finite sets of MSCs, given as an enumerated set.
- Consider MSGs, that may describe an infinite set of MSCs.
- Consider MSCs whose set of linearisations is a regular word language.

< 3 >

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

- Consider finite sets of MSCs, given as an enumerated set.
- Consider MSGs, that may describe an infinite set of MSCs.
- Consider MSCs whose set of linearisations is a regular word language.
- Consider MSGs that are non-local choice.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Problem variants (2)

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Different system models

UNIVERSIT

< 回 > < 回 > < 回 >

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Different system models

• Consider CFMs without synchronisation messages.

LIMIVERSI

・ 戸 ・ ・ ヨ ・ ・ 日 ・

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Different system models

- Consider CFMs without synchronisation messages.
- Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
- Forbid CFMs that deadlock. No realisation will ever deadlock.

LINIVERSI

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Different system models

- Consider CFMs without synchronisation messages.
- Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
- Forbid CFMs that deadlock. No realisation will ever deadlock.
- Consider CFMs that are deterministic.

LINIVERSI

伺下 イヨト イヨト

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Different system models

- Consider CFMs without synchronisation messages.
- Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
- Forbid CFMs that deadlock. No realisation will ever deadlock.
- Consider CFMs that are deterministic.
- Consider CFMs that are bounded.

伺下 イヨト イヨト

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Different system models

- Consider CFMs without synchronisation messages.
- Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
- Forbid CFMs that deadlock. No realisation will ever deadlock.
- Consider CFMs that are deterministic.
- Consider CFMs that are bounded.

・ 戸 ・ ・ ヨ ・ ・ 日 ・

Today's lecture

Realisation of a finite set of MSCs by a CFM without synchronisation messages and that may possibly deadlock.

Realisation of a finite set of MSCs by a CFM without synchronisation messages and that may possibly deadlock.

Stated differently:

Realisation of a finite set of well-formed words (= language) by a CFM without synchronisation messages and that may possibly deadlock.

→ ∃ → < ∃ →</p>

Realisation of a finite set of MSCs by a CFM without synchronisation messages and that may possibly deadlock.

Stated differently:

Realisation of a finite set of well-formed words (= language) by a CFM without synchronisation messages and that may possibly deadlock.

Realisation of a finite set of MSCs by a CFM without synchronisation messages and that may possibly deadlock.

Stated differently:

Realisation of a finite set of well-formed words (= language) by a CFM without synchronisation messages and that may possibly deadlock.

Results:

• CFMs without synchronisation messages are weaker than CFMs.

Realisation of a finite set of MSCs by a CFM without synchronisation messages and that may possibly deadlock.

Stated differently:

Realisation of a finite set of well-formed words (= language) by a CFM without synchronisation messages and that may possibly deadlock.

Results:

• CFMs without synchronisation messages are weaker than CFMs.

② Conditions for realisability of a finite set of MSCs by a weak CFM.

(4) E (4) E

Realisation of a finite set of MSCs by a CFM without synchronisation messages and that may possibly deadlock.

Stated differently:

Realisation of a finite set of well-formed words (= language) by a CFM without synchronisation messages and that may possibly deadlock.

Results:

- CFMs without synchronisation messages are weaker than CFMs.
- ② Conditions for realisability of a finite set of MSCs by a weak CFM.
- Checking realisability for such sets is co-NP complete.

< 同下 < 回下 < 回下

Introduction

Properties of CFMs

- Deterministic CFMs
- Deadlock-free CFMs
- Synchronisation messages add expressiveness
- 3 Realisability

Inference of MSCs

5 Characterisation and complexity of realisability by weak CFMs

・ 同 ト ・ ヨ ト ・ ヨ ト

Determinism

Definition (Deterministic CFM)

A CFM \mathcal{A} is *deterministic* if for all $p \in \mathcal{P}$, the transition relation Δ_p satisfies the following two conditions:

- $(s, !(p, q, (a, m_1)), s_1) \in \Delta_p$ and $(s, !(p, q, (a, m_2)), s_2) \in \Delta_p$ implies $m_1 = m_2$ and $s_1 = s_2$
- ② $(s,?(p,q,(a,m)),s_1) \in \Delta_p$ and $(s,?(p,q,(a,m)),s_2) \in \Delta_p$ implies $s_1 = s_2$

伺 と く ヨ と く ヨ と

Determinism

Definition (Deterministic CFM)

A CFM \mathcal{A} is *deterministic* if for all $p \in \mathcal{P}$, the transition relation Δ_p satisfies the following two conditions:

- $(s, !(p, q, (a, m_1)), s_1) \in \Delta_p$ and $(s, !(p, q, (a, m_2)), s_2) \in \Delta_p$ implies $m_1 = m_2$ and $s_1 = s_2$
- ② $(s,?(p,q,(a,m)),s_1) \in \Delta_p$ and $(s,?(p,q,(a,m)),s_2) \in \Delta_p$ implies $s_1 = s_2$

Note:

From a given state, process p may have the possibility of sending messages to more than one process.

・ 同 ト ・ ヨ ト ・ ヨ ト

Determinism

Definition (Deterministic CFM)

A CFM \mathcal{A} is *deterministic* if for all $p \in \mathcal{P}$, the transition relation Δ_p satisfies the following two conditions:

- $(s, !(p, q, (a, m_1)), s_1) \in \Delta_p$ and $(s, !(p, q, (a, m_2)), s_2) \in \Delta_p$ implies $m_1 = m_2$ and $s_1 = s_2$
- ② $(s,?(p,q,(a,m)),s_1) \in \Delta_p$ and $(s,?(p,q,(a,m)),s_2) \in \Delta_p$ implies $s_1 = s_2$

Note:

From a given state, process p may have the possibility of sending messages to more than one process.

Example:

Example CFM (1) and (2) are deterministic, while (3) is not.

Joost-Pieter Katoen Theoretical Foundations of the UML

11/35

RWTHAACHEN UNIVERSITY

æ

★ E ► < E ►</p>

< A

Joost-Pieter Katoen Theoretical Foundations of the UML

UNIVERSITY

æ

< 注→ < 注→

Joost-Pieter Katoen Theoretical Foundations of the UML

UNIVERSITY

э

< 注→ < 注→
Definition (Deadlock-free CFM)

A CFM \mathcal{A} is *deadlock-free* if, for all $w \in Act^*$ and all runs γ of \mathcal{A} on w, there exist $w' \in Act^*$ and run γ' in \mathcal{A} such that $\gamma \cdot \gamma'$ is an accepting run of \mathcal{A} on $w \cdot w'$.

Definition (Deadlock-free CFM)

A CFM \mathcal{A} is *deadlock-free* if, for all $w \in Act^*$ and all runs γ of \mathcal{A} on w, there exist $w' \in Act^*$ and run γ' in \mathcal{A} such that $\gamma \cdot \gamma'$ is an accepting run of \mathcal{A} on $w \cdot w'$.

Example:

Example CFM (1) is deadlock-free, while (2) and (3) are not.

(신문) (문)

Joost-Pieter Katoen Theoretical Foundations of the UML

Definition (Deadlock-free CFM)

A CFM \mathcal{A} is *deadlock-free* if, for all $w \in Act^*$ and all runs γ of \mathcal{A} on w, there exist $w' \in Act^*$ and run γ' in \mathcal{A} such that $\gamma \cdot \gamma'$ is an accepting run of \mathcal{A} on $w \cdot w'$.

Example:

Example CFM (1) is deadlock-free, while (2) and (3) are not.

Theorem: [Genest et.	al, 2006]
For any $\exists B$ -bounded CFM \mathcal{A} , the decision problem "is \mathcal{A} deadlock-free?" is decidable (and is PSPACE-complete).	
loost-Pieter Katoen Theoretical Foundations of the UMI	14/3

A CFM is called *weak* if $|\mathbb{D}| = 1$.

Theoretical Foundations of the UML Joost-Pieter Katoen

A CFM is called *weak* if $|\mathbb{D}| = 1$.

Example (1) and (2) are weak CFMs. Example (3) is not.

Joost-Pieter Katoen Theoretical Foundations of the UML

A CFM is called *weak* if $|\mathbb{D}| = 1$.

Example (1) and (2) are weak CFMs. Example (3) is not.

Q: Are CFMs more expressive than weak CFMs?

Joost-Pieter Katoen Theoretical Foundations of the UML

A CFM is called *weak* if $|\mathbb{D}| = 1$.

Example (1) and (2) are weak CFMs. Example (3) is not.

Q: Are CFMs more expressive than weak CFMs? That is, do there exist languages (over linearizations or, equivalently, MSCs) that can be generated by CFMs but **not** by weak CFMs?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

A CFM is called *weak* if $|\mathbb{D}| = 1$.

Example (1) and (2) are weak CFMs. Example (3) is not.

Q: Are CFMs more expressive than weak CFMs? That is, do there exist languages (over linearizations or, equivalently, MSCs) that can be generated by CFMs but **not** by weak CFMs? Yes.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Joost-Pieter Katoen Theoretical Foundations of the UML

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Proof.

For $m, n \ge 1$, let $M(m, n) \in \mathbb{M}$ over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req, ack}\}$ be:

- $M \upharpoonright 1 = (!(1, 2, req))^m (?(1, 2, ack) !(1, 2, req))^n$
- $M \upharpoonright 2 = (?(2, 1, \text{req}) ! (2, 1, \text{ack}))^n (?(2, 1, \text{req}))^m$

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Proof.

For $m, n \ge 1$, let $M(m, n) \in \mathbb{M}$ over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req, ack}\}$ be:

- $M \upharpoonright 1 = (!(1, 2, req))^m (?(1, 2, ack) !(1, 2, req))^n$
- $M \upharpoonright 2 = (?(2, 1, \text{req}) ! (2, 1, \text{ack}))^n (?(2, 1, \text{req}))^m$

Claim: there is no weak CFM over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req, ack}\}$ whose language is $L = \{M(n, n) \mid n > 0\}$.

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Proof.

For $m, n \ge 1$, let $M(m, n) \in \mathbb{M}$ over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req, ack}\}$ be:

- $M \upharpoonright 1 = (!(1, 2, req))^m (?(1, 2, ack) !(1, 2, req))^n$
- $M \upharpoonright 2 = (?(2, 1, \text{req}) ! (2, 1, \text{ack}))^n (?(2, 1, \text{req}))^m$

Claim: there is no weak CFM over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req}, \text{ack}\}$ whose language is $L = \{M(n, n) \mid n > 0\}$. By contraposition. Suppose there is a weak CFM $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), s_{init}, F)$ with $L(\mathcal{A}) = L$. For any n > 0, there is an accepting run of \mathcal{A} on M(n, n).

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Proof.

For $m, n \ge 1$, let $M(m, n) \in \mathbb{M}$ over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req, ack}\}$ be:

- $M \upharpoonright 1 = (!(1, 2, req))^m (?(1, 2, ack) !(1, 2, req))^n$
- $M \upharpoonright 2 = (?(2, 1, \text{req}) ! (2, 1, \text{ack}))^n (?(2, 1, \text{req}))^m$

Claim: there is no weak CFM over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req}, \text{ack}\}$ whose language is $L = \{M(n, n) \mid n > 0\}$. By contraposition. Suppose there is a weak CFM $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), s_{init}, F)$ with $L(\mathcal{A}) = L$. For any n > 0, there is an accepting run of \mathcal{A} on M(n, n). If n is sufficiently large, then

• \mathcal{A}_1 visits a cycle of length i > 0 to read the first n letters of $M(n, n) \upharpoonright 1$

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Proof.

For $m, n \ge 1$, let $M(m, n) \in \mathbb{M}$ over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req, ack}\}$ be:

- $M \upharpoonright 1 = (!(1, 2, req))^m (?(1, 2, ack) !(1, 2, req))^n$
- $M \upharpoonright 2 = (?(2, 1, \text{req}) ! (2, 1, \text{ack}))^n (?(2, 1, \text{req}))^m$

Claim: there is no weak CFM over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req}, \text{ack}\}$ whose language is $L = \{M(n, n) \mid n > 0\}$. By contraposition. Suppose there is a weak CFM $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), s_{init}, F)$ with $L(\mathcal{A}) = L$. For any n > 0, there is an accepting run of \mathcal{A} on M(n, n). If n is sufficiently large, then

- \mathcal{A}_1 visits a cycle of length i > 0 to read the first n letters of $M(n, n) \upharpoonright 1$
- \mathcal{A}_2 visits a cycle of length j > 0 to read the last n letters of $M(n,n) \upharpoonright 2$

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Proof.

For $m, n \ge 1$, let $M(m, n) \in \mathbb{M}$ over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req, ack}\}$ be:

- $M \upharpoonright 1 = (!(1, 2, req))^m (?(1, 2, ack) !(1, 2, req))^n$
- $M \upharpoonright 2 = (?(2, 1, \text{req}) ! (2, 1, \text{ack}))^n (?(2, 1, \text{req}))^m$

Claim: there is no weak CFM over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req}, \text{ack}\}$ whose language is $L = \{M(n, n) \mid n > 0\}$. By contraposition. Suppose there is a weak CFM $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), s_{init}, F)$ with $L(\mathcal{A}) = L$. For any n > 0, there is an accepting run of \mathcal{A} on M(n, n). If n is sufficiently large, then

• \mathcal{A}_1 visits a cycle of length i > 0 to read the first n letters of $M(n,n) \upharpoonright 1$

• \mathcal{A}_2 visits a cycle of length j > 0 to read the last n letters of $M(n,n) \upharpoonright 2$

Then there is an accepting run of \mathcal{A} on $M(n + (i \cdot j), n) \notin L$.

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Proof.

For $m, n \ge 1$, let $M(m, n) \in \mathbb{M}$ over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req, ack}\}$ be:

- $M \upharpoonright 1 = (!(1, 2, req))^m (?(1, 2, ack) !(1, 2, req))^n$
- $M \upharpoonright 2 = (?(2, 1, \text{req}) ! (2, 1, \text{ack}))^n (?(2, 1, \text{req}))^m$

Claim: there is no weak CFM over $\mathcal{P} = \{1, 2\}$ and $\mathcal{C} = \{\text{req}, \text{ack}\}$ whose language is $L = \{M(n, n) \mid n > 0\}$. By contraposition. Suppose there is a weak CFM $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), s_{init}, F)$ with $L(\mathcal{A}) = L$. For any n > 0, there is an accepting run of \mathcal{A} on M(n, n). If n is sufficiently large, then

• \mathcal{A}_1 visits a cycle of length i > 0 to read the first n letters of $M(n, n) \upharpoonright 1$

• \mathcal{A}_2 visits a cycle of length j > 0 to read the last n letters of $M(n,n) \upharpoonright 2$

Then there is an accepting run of \mathcal{A} on $M(n + (i \cdot j), n) \notin L$. Contradiction.

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Joost-Pieter Katoen Theoretical Foundations of the UML

Weak CFMs are strictly less expressive than CFMs.

Intuition proof

If \mathcal{A}_1 traverses a cycle of size *i* at least once to "generate" $(!(1, 2, \text{req}))^n$, then it can autonomously traverse this cycle more often and thus "pump" to an expression of the form $(!(1, 2, \text{req}))^{n \cdot i}$.

◆御▶ ◆注▶ ◆注▶

Weak CFMs are strictly less expressive than CFMs.

Intuition proof

If \mathcal{A}_1 traverses a cycle of size *i* at least once to "generate" $(!(1, 2, \operatorname{req}))^n$, then it can autonomously traverse this cycle more often and thus "pump" to an expression of the form $(!(1, 2, \operatorname{req}))^{n \cdot i}$.

Similar reasoning applies to automaton \mathcal{A}_2 for the last *n* letters of the input word $M \upharpoonright 2$. Suppose its cycle is of size *j*.

Weak CFMs are strictly less expressive than CFMs.

Intuition proof

If \mathcal{A}_1 traverses a cycle of size *i* at least once to "generate" $(!(1, 2, \operatorname{req}))^n$, then it can autonomously traverse this cycle more often and thus "pump" to an expression of the form $(!(1, 2, \operatorname{req}))^{n \cdot i}$.

Similar reasoning applies to automaton \mathcal{A}_2 for the last *n* letters of the input word $M \upharpoonright 2$. Suppose its cycle is of size *j*.

Now if \mathcal{A}_1 traverses its cycle of size i, j times, and \mathcal{A}_2 traverses its cycle of size j, i times, then the number of requests sent by process 1 matches the number of receipts by process 2.

・ロト ・ 雪 ト ・ ヨ ト

Weak CFMs are strictly less expressive than CFMs.

Intuition proof

If \mathcal{A}_1 traverses a cycle of size *i* at least once to "generate" $(!(1, 2, \operatorname{req}))^n$, then it can autonomously traverse this cycle more often and thus "pump" to an expression of the form $(!(1, 2, \operatorname{req}))^{n \cdot i}$.

Similar reasoning applies to automaton \mathcal{A}_2 for the last *n* letters of the input word $M \upharpoonright 2$. Suppose its cycle is of size *j*.

Now if \mathcal{A}_1 traverses its cycle of size i, j times, and \mathcal{A}_2 traverses its cycle of size j, i times, then the number of requests sent by process 1 matches the number of receipts by process 2.

But this yields a word in $M(n + (i \cdot j), n)$ that is not in L.

・ロト ・ 雪 ト ・ ヨ ト

1 Introduction

2 Properties of CFMs

- Deterministic CFMs
- Deadlock-free CFMs
- Synchronisation messages add expressiveness

3 Realisability

4 Inference of MSCs

5 Characterisation and complexity of realisability by weak CFMs

・ 同 ト ・ ヨ ト ・ ヨ ト

Joost-Pieter Katoen Theoretical Foundations of the UML

Definition (Realisability)

• MSC M is realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .

Definition (Realisability)

- MSC M is realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- **2** A finite set $\{M_1, \ldots, M_n\}$ of MSCs is realisable whenever $\{M_1, \ldots, M_n\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .

・ 「 ・ ・ ・ ・ ・ ・ ・ ・

19/35

Definition (Realisability)

- MSC M is realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- **2** A finite set $\{M_1, \ldots, M_n\}$ of MSCs is realisable whenever $\{M_1, \ldots, M_n\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- So MSG G is realisable whenever $\mathcal{L}(G) = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .

伺下 イヨト イヨト

Definition (Realisability)

- MSC M is realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- **2** A finite set $\{M_1, \ldots, M_n\}$ of MSCs is realisable whenever $\{M_1, \ldots, M_n\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- So MSG G is realisable whenever $\mathcal{L}(G) = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .

Equivalently

• MSC M is realisable whenever $Lin(M) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .

Definition (Realisability)

- MSC M is realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- **2** A finite set $\{M_1, \ldots, M_n\}$ of MSCs is realisable whenever $\{M_1, \ldots, M_n\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- So MSG G is realisable whenever $\mathcal{L}(G) = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .

Equivalently

- MSC M is realisable whenever $Lin(M) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .
- ② Set $\{M_1, \ldots, M_n\}$ of MSCs is realisable whenever $\bigcup_{i=1}^n Lin(M_i) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .

・ 戸 ト ・ ヨ ト ・ ヨ ト

Definition (Realisability)

- MSC M is realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- **2** A finite set $\{M_1, \ldots, M_n\}$ of MSCs is realisable whenever $\{M_1, \ldots, M_n\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- So MSG G is realisable whenever $\mathcal{L}(G) = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .

Equivalently

- MSC M is realisable whenever $Lin(M) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .
- Set $\{M_1, \ldots, M_n\}$ of MSCs is realisable whenever $\bigcup_{i=1}^n Lin(M_i) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .
- So MSG G is realisable whenever $Lin(G) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .

・ 戸 ト ・ ヨ ト ・ ヨ ト

Definition (Realisability)

- MSC M is realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- **2** A finite set $\{M_1, \ldots, M_n\}$ of MSCs is realisable whenever $\{M_1, \ldots, M_n\} = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .
- So MSG G is realisable whenever $\mathcal{L}(G) = \mathcal{L}(\mathcal{A})$ for some CFM \mathcal{A} .

Equivalently

- MSC M is realisable whenever $Lin(M) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .
- ② Set { M_1, \ldots, M_n } of MSCs is realisable whenever $\bigcup_{i=1}^n Lin(M_i) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .
- So MSG G is realisable whenever $Lin(G) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .

We will consider realisability using its characterisation by linearisations.

1 Introduction

2 Properties of CFMs

- Deterministic CFMs
- Deadlock-free CFMs
- Synchronisation messages add expressiveness
- 3 Realisability

Inference of MSCs

5 Characterisation and complexity of realisability by weak CFMs

・ 同 ト ・ ヨ ト ・ ヨ ト

Two example MSCs

Consider the MSCs M_{inc} (top) and M_{db} (bottom):

Joost-Pieter Katoen Theoretical Foundations of the UML

< 注→ < 注→

21/35

Two example MSCs

Consider the MSCs M_{inc} (top) and M_{db} (bottom):

Intuition

In M_{inc} , the volume of U (uranium) and N (nitric acid) is increased by one unit; in M_{db} both volumes are doubled. For safety reasons, it is essential that both ingredients are increased by the same amount!

A third, inferred fatal scenario

A third, inferred fatal scenario

So:

The set { M_{inc}, M_{db} } is not realisable, as any CFM that realises this set also realises the inferred MSC M_{bad} above.

22/35

Joost-Pieter Katoen Theoretical Foundations of the UML

A third, inferred fatal scenario

So:

The set { M_{inc}, M_{db} } is not realisable, as any CFM that realises this set also realises the inferred MSC M_{bad} above.

Note that:

MSCs M_{inc} or M_{db} alone do not imply M_{bad} . Together they do.

Joost-Pieter Katoen Theoretical Foundations of the UML

・ 同 ト ・ ヨ ト ・ ヨ ト
Definition (Inference)

The set L of MSCs is said to infer MSC $M \notin L$ if and only if:

for any CFM \mathcal{A} . $(L \subseteq \mathcal{L}(\mathcal{A})$ implies $M \in \mathcal{L}(\mathcal{A}))$.

Definition (Inference)

The set L of MSCs is said to infer MSC $M \notin L$ if and only if:

for any CFM \mathcal{A} . $(L \subseteq \mathcal{L}(\mathcal{A})$ implies $M \in \mathcal{L}(\mathcal{A}))$.

What we will show later on:

The set L of MSCs is realisable iff L contains all MSCs that it infers.

Intuition

A realisable set of MSCs contains all its implied scenarios.

(4) E (4) = (4) E

Definition (Inference)

The set L of MSCs is said to infer MSC $M \notin L$ if and only if:

for any CFM \mathcal{A} . $(L \subseteq \mathcal{L}(\mathcal{A})$ implies $M \in \mathcal{L}(\mathcal{A}))$.

What we will show later on:

The set L of MSCs is realisable iff L contains all MSCs that it infers.

Intuition

A realisable set of MSCs contains all its implied scenarios.

For computational purposes, an alternative characterisation is requiredent

Definition (MSC projection)

For MSC M and process p let $M \upharpoonright p$, the projection of M on process p, be the ordered sequence of actions occurring at process p in M.

→ ∃ → < ∃ →</p>

24/35

Definition (MSC projection)

For MSC M and process p let $M \upharpoonright p$, the projection of M on process p, be the ordered sequence of actions occurring at process p in M.

Lemma

An MSC M over the processes $\mathcal{P} = \{p_1, \ldots, p_n\}$ is uniquely determined by the projections $M \upharpoonright p_i$ for $0 < i \leq n$.

< 同下 < 回下 < 回下

Definition (Word projection)

For word $w \in Act^*$ and process p, the projection of w on process p, denoted $w \upharpoonright p$, is defined by:

$$\begin{aligned} \epsilon \upharpoonright p &= \epsilon \\ (!(r,q,a) \cdot w) \upharpoonright p &= \begin{cases} !(r,q,a) \cdot (w \upharpoonright p) & \text{if } r = p \\ w \upharpoonright p & \text{otherwise} \end{cases} \end{aligned}$$

and similarly for receive actions.

→ ∃ → < ∃ →</p>

25/35

Definition (Word projection)

For word $w \in Act^*$ and process p, the projection of w on process p, denoted $w \upharpoonright p$, is defined by:

$$\begin{aligned} \epsilon \upharpoonright p &= \epsilon \\ (!(r,q,a) \cdot w) \upharpoonright p &= \begin{cases} !(r,q,a) \cdot (w \upharpoonright p) & \text{if } r = p \\ w \upharpoonright p & \text{otherwise} \end{cases} \end{aligned}$$

and similarly for receive actions.

Example

 $w = !(1, 2, \operatorname{req})!(1, 2, \operatorname{req})?(2, 1, \operatorname{req})!(2, 1, \operatorname{ack})?(2, 1, \operatorname{req})!(2, 1, \operatorname{ack})?(1, 2, \operatorname{ack})!(1, 2, \operatorname{req})!(2, 1, \operatorname{ack})?(2, 1, \operatorname{req})!(2, 1, \operatorname{req})$

(1)

Definition (Word projection)

For word $w \in Act^*$ and process p, the projection of w on process p, denoted $w \upharpoonright p$, is defined by:

$$\begin{aligned} \epsilon \upharpoonright p &= \epsilon \\ (!(r,q,a) \cdot w) \upharpoonright p &= \begin{cases} !(r,q,a) \cdot (w \upharpoonright p) & \text{if } r = p \\ w \upharpoonright p & \text{otherwise} \end{cases} \end{aligned}$$

and similarly for receive actions.

Example

$$\begin{split} &w=!(1,2,\mathrm{req})!(1,2,\mathrm{req})?(2,1,\mathrm{req})!(2,1,\mathrm{ack})?(2,1,\mathrm{req})!(2,1,\mathrm{ack})?(1,2,\mathrm{ack})!(1,2,\mathrm{req})\\ &w\!\upharpoonright\!1=!(1,2,\mathrm{req})!(1,2,\mathrm{req})?(1,2,\mathrm{ack})!(1,2,\mathrm{req}) \end{split}$$

A (1) > A (2) > A (3) > A

Definition (Word projection)

For word $w \in Act^*$ and process p, the projection of w on process p, denoted $w \upharpoonright p$, is defined by:

$$\begin{aligned} \epsilon \upharpoonright p &= \epsilon \\ (!(r,q,a) \cdot w) \upharpoonright p &= \begin{cases} !(r,q,a) \cdot (w \upharpoonright p) & \text{if } r = p \\ w \upharpoonright p & \text{otherwise} \end{cases} \end{aligned}$$

and similarly for receive actions.

Example

$$\begin{split} &w=!(1,2,\mathrm{req})!(1,2,\mathrm{req})?(2,1,\mathrm{req})!(2,1,\mathrm{ack})?(2,1,\mathrm{req})!(2,1,\mathrm{ack})?(1,2,\mathrm{ack})!(1,2,\mathrm{req})\\ &w\!\upharpoonright\!1=!(1,2,\mathrm{req})!(1,2,\mathrm{req})?(1,2,\mathrm{ack})!(1,2,\mathrm{req})\\ &w\!\upharpoonright\!2=?(2,1,\mathrm{req})!(2,1,\mathrm{ack})?(2,1,\mathrm{req})!(2,1,\mathrm{ack}) \end{split}$$

Definition (Word projection)

For word $w \in Act^*$ and process p, the projection of w on process p, denoted $w \upharpoonright p$, is defined by:

$$\begin{aligned} \epsilon \upharpoonright p &= \epsilon \\ (!(r,q,a) \cdot w) \upharpoonright p &= \begin{cases} \ !(r,q,a) \cdot (w \upharpoonright p) & \text{if } r = p \\ w \upharpoonright p & \text{otherwise} \end{cases} \end{aligned}$$

and similarly for receive actions.

・ロト ・四ト ・ヨト ・ヨト

Definition (Word projection)

For word $w \in Act^*$ and process p, the projection of w on process p, denoted $w \upharpoonright p$, is defined by:

$$\begin{split} \epsilon \upharpoonright p &= \epsilon \\ (!(r,q,a) \cdot w) \upharpoonright p &= \begin{cases} \ !(r,q,a) \cdot (w \upharpoonright p) & \text{if } r = p \\ w \upharpoonright p & \text{otherwise} \end{cases} \end{split}$$

and similarly for receive actions.

Lemma

A well-formed word w over Act^* given as projections $w \upharpoonright p_1, \ldots, w \upharpoonright p_n$ uniquely characterises an MSC M(w) over $\mathcal{P} = \{p_1, \ldots, p_n\}.$

Closure

Definition (Inference relation)

For well-formed^{*a*} $L \subseteq Act^*$, and well-formed word $w \in Act^*$, let:

$$L \models w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in L. w \restriction p = v \restriction p)$$

^aLanguage L is called well-formed iff all its words are well-formed.

Closure

Definition (Inference relation)

For well-formed $a \ L \subseteq Act^*$, and well-formed word $w \in Act^*$, let:

$$L \models w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in L. w \restriction p = v \restriction p)$$

^aLanguage L is called well-formed iff all its words are well-formed.

Definition (Closure under \models)

Language L is closed under \models whenever $L \models w$ implies $w \in L$.

イロト イポト イヨト イヨト

27/35

Closure

Definition (Inference relation)

For well-formed^{*a*} $L \subseteq Act^*$, and well-formed word $w \in Act^*$, let:

$$L \models w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in L. w \restriction p = v \restriction p)$$

^aLanguage L is called well-formed iff all its words are well-formed.

Definition (Closure under \models)

Language L is closed under \models whenever $L \models w$ implies $w \in L$.

Intuition

The closure condition says that the set of MSCs (or, equivalently, well-formed words) can be obtained from the projections of the MSCs in L onto individual processes.

< 日 > < 同 > < 回 > < 回 > < 回 > <

ъ

Example

 $L = Lin(\{M_{up}, M_{db}\})$ is not closed under \models .

< 47 >

(신문) (문)

RNTHAAC

Example

 $L = Lin(\{M_{up}, M_{db}\})$ is not closed under \models . This is shown as follows:

 $w = !(p_1, U, double)?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \notin L$

(신문) (문)

< A >

Example

 $L = Lin(\{M_{up}, M_{db}\})$ is not closed under \models . This is shown as follows:

 $w = !(p_1, U, double)?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \notin L$

But: $L \models w$

Example

 $L = Lin(\{M_{up}, M_{db}\})$ is not closed under \models . This is shown as follows:

 $w = !(p_1, U, double)?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \notin L$

But: $L \models w$ since

Example

 $L = Lin(\{M_{up}, M_{db}\})$ is not closed under \models . This is shown as follows:

 $w = !(p_1, U, double)?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \notin L$

But: $L \models w$ since

• for process p_1 , there is $u \in L$ with $w \upharpoonright p_1 = !(p_1, U, double) = u \upharpoonright p_1$, and

Example

 $L = Lin(\{M_{up}, M_{db}\})$ is not closed under \models . This is shown as follows:

 $w = !(p_1, U, double)?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \notin L$

But: $L \models w$ since

- for process p_1 , there is $u \in L$ with $w \upharpoonright p_1 = !(p_1, U, double) = u \upharpoonright p_1$, and
- for process p_2 , there is $v \in L$ with $w \upharpoonright p_2 = !(p_2, N, inc) = v \upharpoonright p_2$, and

Example

 $L = Lin(\{M_{up}, M_{db}\})$ is not closed under \models . This is shown as follows:

 $w = !(p_1, U, double)?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \notin L$

But: $L \models w$ since

- for process p_1 , there is $u \in L$ with $w \upharpoonright p_1 = !(p_1, U, double) = u \upharpoonright p_1$, and
- for process p_2 , there is $v \in L$ with $w \upharpoonright p_2 = !(p_2, N, inc) = v \upharpoonright p_2$, and
- for process U, there is $u \in L$ with $w \upharpoonright U = ?(U, p_1, double) = u \upharpoonright U$, and

イロト イポト イヨト イヨト

Example

 $L = Lin(\{M_{up}, M_{db}\})$ is not closed under \models . This is shown as follows:

 $w = !(p_1, U, double)?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \notin L$

But: $L \models w$ since

- for process p_1 , there is $u \in L$ with $w \upharpoonright p_1 = !(p_1, U, double) = u \upharpoonright p_1$, and
- for process p_2 , there is $v \in L$ with $w \upharpoonright p_2 = !(p_2, N, inc) = v \upharpoonright p_2$, and
- for process U, there is $u \in L$ with $w \upharpoonright U = ?(U, p_1, double) = u \upharpoonright U$, and
- for process N, there is $v \in L$ with $w \upharpoonright N = ?(N, p_2, inc) = v \upharpoonright N$.

イロト イポト イヨト イヨト

CFM \mathcal{A} is weak if $|\mathbb{D}| = 1$.

CFM \mathcal{A} is weak if $|\mathbb{D}| = 1$.

Intuition

A weak CFM can be considered as CFM without synchronisation messages. (Therefore, the component \mathbb{D} may be omitted.)

CFM \mathcal{A} is weak if $|\mathbb{D}| = 1$.

Intuition

A weak CFM can be considered as CFM without synchronisation messages. (Therefore, the component \mathbb{D} may be omitted.) For simplicity, today we address realisability with the aim of using weak CFMs as implementation.

伺下 イヨト イヨト

CFM \mathcal{A} is weak if $|\mathbb{D}| = 1$.

Intuition

A weak CFM can be considered as CFM without synchronisation messages. (Therefore, the component \mathbb{D} may be omitted.) For simplicity, today we address realisability with the aim of using weak CFMs as implementation. Recall: weak CFMs are strictly less expressive than CFMs.

(신문) (문)

CFM \mathcal{A} is weak if $|\mathbb{D}| = 1$.

Intuition

A weak CFM can be considered as CFM without synchronisation messages. (Therefore, the component \mathbb{D} may be omitted.) For simplicity, today we address realisability with the aim of using weak CFMs as implementation. Recall: weak CFMs are strictly less expressive than CFMs.

Realisability by a weak CFM

A finite set $\{M_1, \ldots, M_n\}$ of MSCs is realisable (by a weak CFM) whenever $\{M_1, \ldots, M_n\} = L(\mathcal{A})$ for some weak CFM \mathcal{A}

Joost-Pieter Katoen Theoretical Foundations of the UML

・ロット (雪) (日) (日)

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Joost-Pieter Katoen Theoretical Foundations of the UML

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof.

Let ${\mathcal A}$ be a weak CFM.

▲御▶ ▲臣▶ ★臣▶

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof.

Let \mathcal{A} be a weak CFM. Since \mathcal{A} is a CFM, any $w \in Lin(\mathcal{A})$ is well-formed.

→ Ξ → → Ξ

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof.

Let \mathcal{A} be a weak CFM. Since \mathcal{A} is a CFM, any $w \in Lin(\mathcal{A})$ is well-formed. Let $w \in Act^*$ be well-formed and assume $Lin(\mathcal{A}) \models w$.

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof.

Let \mathcal{A} be a weak CFM. Since \mathcal{A} is a CFM, any $w \in Lin(\mathcal{A})$ is well-formed. Let $w \in Act^*$ be well-formed and assume $Lin(\mathcal{A}) \models w$. To show that $Lin(\mathcal{A})$ is closed under \models , we prove that $w \in Lin(\mathcal{A})$.

▲ 同 ▶ → 目 ▶ → 目

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof.

Let \mathcal{A} be a weak CFM. Since \mathcal{A} is a CFM, any $w \in Lin(\mathcal{A})$ is well-formed. Let $w \in Act^*$ be well-formed and assume $Lin(\mathcal{A}) \models w$. To show that $Lin(\mathcal{A})$ is closed under \models , we prove that $w \in Lin(\mathcal{A})$. By definition of \models , for any process p there is $v^p \in Lin(\mathcal{A})$ with $v^p \upharpoonright p = w \upharpoonright p$.

< □> < □> < □

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof.

Let \mathcal{A} be a weak CFM. Since \mathcal{A} is a CFM, any $w \in Lin(\mathcal{A})$ is well-formed. Let $w \in Act^*$ be well-formed and assume $Lin(\mathcal{A}) \models w$. To show that $Lin(\mathcal{A})$ is closed under \models , we prove that $w \in Lin(\mathcal{A})$. By definition of \models , for any process p there is $v^p \in Lin(\mathcal{A})$ with $v^p \upharpoonright p = w \upharpoonright p$. Let π be an accepting run of \mathcal{A} on v^p and let run $\pi \upharpoonright p$ visit only states of \mathcal{A}_p while taking only transitions in Δ_p .

・ロト ・部ト ・ヨト ・ヨ

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof.

Let \mathcal{A} be a weak CFM. Since \mathcal{A} is a CFM, any $w \in Lin(\mathcal{A})$ is well-formed. Let $w \in Act^*$ be well-formed and assume $Lin(\mathcal{A}) \models w$. To show that $Lin(\mathcal{A})$ is closed under \models , we prove that $w \in Lin(\mathcal{A})$. By definition of \models , for any process p there is $v^p \in Lin(\mathcal{A})$ with $v^p \upharpoonright p = w \upharpoonright p$. Let π be an accepting run of \mathcal{A} on v^p and let run $\pi \upharpoonright p$ visit only states of \mathcal{A}_p while taking only transitions in Δ_p . Then, $\pi \upharpoonright p$ is an accepting run of "local" automaton \mathcal{A}_p on the word $v^p \upharpoonright p = w \upharpoonright p$.

・ロト ・聞ト ・ヨト ・ヨト

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof.

Let \mathcal{A} be a weak CFM. Since \mathcal{A} is a CFM, any $w \in Lin(\mathcal{A})$ is well-formed. Let $w \in Act^*$ be well-formed and assume $Lin(\mathcal{A}) \models w$. To show that $Lin(\mathcal{A})$ is closed under \models , we prove that $w \in Lin(\mathcal{A})$. By definition of \models , for any process p there is $v^p \in Lin(\mathcal{A})$ with $v^p \upharpoonright p = w \upharpoonright p$. Let π be an accepting run of \mathcal{A} on v^p and let run $\pi \upharpoonright p$ visit only states of \mathcal{A}_p while taking only transitions in Δ_p . Then, $\pi \upharpoonright p$ is an accepting run of "local" automaton \mathcal{A}_p on the word $v^p \upharpoonright p = w \upharpoonright p$.

In absence of synchronisation messages, the "local" accepting runs $\pi \upharpoonright p$ for all processes p together can be combined to obtain an accepting run of \mathcal{A} on w.

・ロト ・四ト ・ヨト ・ヨト
Lemma:

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof.

Let \mathcal{A} be a weak CFM. Since \mathcal{A} is a CFM, any $w \in Lin(\mathcal{A})$ is well-formed. Let $w \in Act^*$ be well-formed and assume $Lin(\mathcal{A}) \models w$. To show that $Lin(\mathcal{A})$ is closed under \models , we prove that $w \in Lin(\mathcal{A})$. By definition of \models , for any process p there is $v^p \in Lin(\mathcal{A})$ with $v^p \upharpoonright p = w \upharpoonright p$. Let π be an accepting run of \mathcal{A} on v^p and let run $\pi \upharpoonright p$ visit only states of \mathcal{A}_p while taking only transitions in Δ_p . Then, $\pi \upharpoonright p$ is an accepting run of "local" automaton \mathcal{A}_p on the word $v^p \upharpoonright p = w \upharpoonright p$. In absence of synchronisation messages, the "local" accepting runs $\pi \upharpoonright p$ for all processes p together can be combined to obtain an accepting run of \mathcal{A} on w. Thus, $w \in Lin(\mathcal{A})$.

(日) (四) (日) (日) (日)

Introduction

2 Properties of CFMs

- Deterministic CFMs
- Deadlock-free CFMs
- Synchronisation messages add expressiveness
- 3 Realisability

4 Inference of MSCs

5 Characterisation and complexity of realisability by weak CFMs

・ 同 ト ・ ヨ ト ・ ヨ ト

[Alur et al., 2001]

→ ∃ → < ∃ →</p>

< 一 →

Finite $L \subseteq Act^*$ is realisable (by a weak CFM) iff L is closed under \models .

[Alur et al., 2001]

Finite $L \subseteq Act^*$ is realisable (by a weak CFM) iff L is closed under \models .

Proof.

On the black board.

32/35

Joost-Pieter Katoen Theoretical Foundations of the UML

[Alur et al., 2001]

Finite $L \subseteq Act^*$ is realisable (by a weak CFM) iff L is closed under \models .

Proof.

On the black board.

Corollary

The finite set of MSCs $\{M_1, \ldots, M_n\}$ is realisable (by a weak CFM) iff $\bigcup_{i=1}^n Lin(M_i)$ is closed under \models .

Joost-Pieter Katoen Theoretical Foundations of the UML

For any well-formed $L \subseteq Act^*$:

 $L \text{ is regular and closed under} \models \\ \text{if and only if} \\ L = Lin(\mathcal{A}) \text{ for some } \forall\text{-bounded weak CFM } \mathcal{A}.$

→ ∃ → < ∃ →</p>

33/35

Complexity of realisability

Let co-NP be the class of all decision problems C with \overline{C} , the complement of C, is in NP.

Complexity of realisability

Let co-NP be the class of all decision problems C with \overline{C} , the complement of C, is in NP.

A problem C is co-NP complete if it is in co-NP, and it is co-NP hard, i.e., each for any co-NP problem there is a polynomial reduction to C.

4 B M 4 B M

34/35

Complexity of realisability

Let co-NP be the class of all decision problems C with \overline{C} , the complement of C, is in NP.

A problem C is co-NP complete if it is in co-NP, and it is co-NP hard, i.e., each for any co-NP problem there is a polynomial reduction to C.

Complexity of realisability (by a weak CFM)

Theorem:

[Alur et al., 2001]

(신문) (문)

35/35

The decision problem "is a given finite set of MSCs realisable by a weak CFM?" is decidable and is co-NP complete.

[Alur et al., 2001]

The decision problem "is a given finite set of MSCs realisable by a weak CFM?" is decidable and is co-NP complete.

Proof.

• Membership in co-NP is proven by showing that its complement is in NP. This is rather standard.

[Alur et al., 2001]

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The decision problem "is a given finite set of MSCs realisable by a weak CFM?" is decidable and is co-NP complete.

Proof.

- Membership in co-NP is proven by showing that its complement is in NP. This is rather standard.
- The co-NP hardness proof is based on a polynomial reduction of the join dependency problem to the above realisability problem. (Details on the black board.)