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Motivation

Practical use of MSCs and CFMs

MSCs and MSGs are used by software engineers to capture
requirements.

These are the expected behaviours of the distributed system under
design.

Distributed systems can be viewed as a collection of
communicating automata.
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Motivation

Practical use of MSCs and CFMs

MSCs and MSGs are used by software engineers to capture
requirements.

These are the expected behaviours of the distributed system under
design.

Distributed systems can be viewed as a collection of
communicating automata.

Central problem

Can we synthesize, preferably in an automated manner, a CFM whose
behaviours are precisely the behaviours of the MSCs (or MSG)?

This is known as the realisability problem.
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From requirements to implementation

Realisability problem

Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.
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From requirements to implementation

Realisability problem

Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.

Questions:

1 Is this possible? (That is, is this decidable?)

2 If so, how complex is it to obtain such CFM?

3 If so, how do such algorithms work?
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Problem variants (1)

Realisability problem

Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.
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Problem variants (1)

Realisability problem

Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.

Different forms of requirements

Consider finite sets of MSCs, given as an enumerated set.

Consider MSGs, that may describe an infinite set of MSCs.

Consider MSCs whose set of linearisations is a regular word language.

Consider MSGs that are non-local choice.
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Problem variants (2)

Realisability problem

Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.
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Problem variants (2)

Realisability problem

Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.

Different system models

Consider CFMs without synchronisation messages.

Allow CFMs that may deadlock. Possibly, a realisation deadlocks.

Forbid CFMs that deadlock. No realisation will ever deadlock.
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Problem variants (2)

Realisability problem

Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.

Different system models

Consider CFMs without synchronisation messages.

Allow CFMs that may deadlock. Possibly, a realisation deadlocks.

Forbid CFMs that deadlock. No realisation will ever deadlock.

Consider CFMs that are deterministic.

Consider CFMs that are bounded.

. . . . . .
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Today’s lecture

Today’s setting

Realisation of a finite set of MSCs by a CFM without synchronisation
messages and that may possibly deadlock.

Stated differently:
Realisation of a finite set of well-formed words (= language) by a CFM
without synchronisation messages and that may possibly deadlock.

Results:
1 CFMs without synchronisation messages are weaker than CFMs.

2 Conditions for realisability of a finite set of MSCs by a weak CFM.

3 Checking realisability for such sets is co-NP complete.
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Determinism

Definition (Deterministic CFM)

A CFM A is deterministic if for all p ∈ P, the transition relation ∆p

satisfies the following two conditions:

1 (s, !(p, q, (a,m1)), s1) ∈ ∆p and (s, !(p, q, (a,m2)), s2) ∈ ∆p implies
m1 = m2 and s1 = s2

2 (s, ?(p, q, (a,m)), s1) ∈ ∆p and (s, ?(p, q, (a,m)), s2) ∈ ∆p implies
s1 = s2
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A CFM A is deterministic if for all p ∈ P, the transition relation ∆p

satisfies the following two conditions:

1 (s, !(p, q, (a,m1)), s1) ∈ ∆p and (s, !(p, q, (a,m2)), s2) ∈ ∆p implies
m1 = m2 and s1 = s2

2 (s, ?(p, q, (a,m)), s1) ∈ ∆p and (s, ?(p, q, (a,m)), s2) ∈ ∆p implies
s1 = s2

Note:

From a given state, process p may have the possibility of sending
messages to more than one process.
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Determinism

Definition (Deterministic CFM)

A CFM A is deterministic if for all p ∈ P, the transition relation ∆p

satisfies the following two conditions:

1 (s, !(p, q, (a,m1)), s1) ∈ ∆p and (s, !(p, q, (a,m2)), s2) ∈ ∆p implies
m1 = m2 and s1 = s2

2 (s, ?(p, q, (a,m)), s1) ∈ ∆p and (s, ?(p, q, (a,m)), s2) ∈ ∆p implies
s1 = s2

Note:

From a given state, process p may have the possibility of sending
messages to more than one process.

Example:

Example CFM (1) and (2) are deterministic, while (3) is not.
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Example (1)

!(p, q, req) ?(q, p, req)

process p: process q:

p q

req

req

req

req

req
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Example (2)

!(p, q, req)

?(p, q, req)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

process p: process q:

p q

req

req

req

ack

ack
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Example (3)

!(p, q, req )

?(q, p, req )

?(p, q, ack)

!(q, p, ack)!(p, q, req ) ?(p, q, ack)

?(q, p, req ) !(q, p, ack)
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Deadlock-freeness

Definition (Deadlock-free CFM)

A CFM A is deadlock-free if, for all w ∈ Act
∗ and all runs γ of A on w,

there exist w′ ∈ Act
∗ and run γ′ in A such that γ·γ′ is an accepting run

of A on w·w′.
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Deadlock-freeness

Definition (Deadlock-free CFM)

A CFM A is deadlock-free if, for all w ∈ Act
∗ and all runs γ of A on w,

there exist w′ ∈ Act
∗ and run γ′ in A such that γ·γ′ is an accepting run

of A on w·w′.

Example:

Example CFM (1) is deadlock-free, while (2) and (3) are not.

Theorem: [Genest et. al, 2006]

For any ∃B-bounded CFM A, the decision problem “is A
deadlock-free?” is decidable (and is PSPACE-complete).
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Weak CFMs

Definition (Weak CFM)

A CFM is called weak if |D| = 1.
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Weak CFMs

Definition (Weak CFM)

A CFM is called weak if |D| = 1.

Example (1) and (2) are weak CFMs. Example (3) is not.

Q: Are CFMs more expressive than weak CFMs? That is, do there exist
languages (over linearizations or, equivalently, MSCs) that can be

generated by CFMs but not by weak CFMs?
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Weak CFMs

Definition (Weak CFM)

A CFM is called weak if |D| = 1.

Example (1) and (2) are weak CFMs. Example (3) is not.

Q: Are CFMs more expressive than weak CFMs? That is, do there exist
languages (over linearizations or, equivalently, MSCs) that can be

generated by CFMs but not by weak CFMs? Yes.
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CFM vs. weak CFM

Theorem:

Weak CFMs are strictly less expressive than CFMs.
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CFM vs. weak CFM

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Proof.

For m,n > 1, let M(m,n) ∈ M over P = {1, 2} and C = {req, ack} be:

M ↾1 = (!(1, 2, req))m (?(1, 2, ack) !(1, 2, req))n

M ↾2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))m
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For m,n > 1, let M(m,n) ∈ M over P = {1, 2} and C = {req, ack} be:

M ↾1 = (!(1, 2, req))m (?(1, 2, ack) !(1, 2, req))n

M ↾2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))m

Claim: there is no weak CFM over P = {1, 2} and C = {req, ack} whose
language is L = {M(n, n) | n > 0}.
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Claim: there is no weak CFM over P = {1, 2} and C = {req, ack} whose
language is L = {M(n, n) | n > 0}. By contraposition. Suppose there is a weak
CFM A = ((A1,A2), sinit , F ) with L(A) = L. For any n > 0, there is an
accepting run of A on M(n, n).
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language is L = {M(n, n) | n > 0}. By contraposition. Suppose there is a weak
CFM A = ((A1,A2), sinit , F ) with L(A) = L. For any n > 0, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i > 0 to read the first n letters of M(n, n)↾1
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Theorem:

Weak CFMs are strictly less expressive than CFMs.

Proof.

For m,n > 1, let M(m,n) ∈ M over P = {1, 2} and C = {req, ack} be:

M ↾1 = (!(1, 2, req))m (?(1, 2, ack) !(1, 2, req))n

M ↾2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))m

Claim: there is no weak CFM over P = {1, 2} and C = {req, ack} whose
language is L = {M(n, n) | n > 0}. By contraposition. Suppose there is a weak
CFM A = ((A1,A2), sinit , F ) with L(A) = L. For any n > 0, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i > 0 to read the first n letters of M(n, n)↾1

A2 visits a cycle of length j > 0 to read the last n letters of M(n, n)↾2

Then there is an accepting run of A on M(n+ (i · j), n) 6∈ L. Contradiction.
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CFM vs. weak CFM

Theorem:

Weak CFMs are strictly less expressive than CFMs.
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CFM vs. weak CFM

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Intuition proof

If A1 traverses a cycle of size i at least once to “generate” (!(1, 2, req))n, then
it can autonomously traverse this cycle more often and thus “pump” to an
expression of the form (!(1, 2, req))n·i.
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If A1 traverses a cycle of size i at least once to “generate” (!(1, 2, req))n, then
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Similar reasoning applies to automaton A2 for the last n letters of the input
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CFM vs. weak CFM

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Intuition proof

If A1 traverses a cycle of size i at least once to “generate” (!(1, 2, req))n, then
it can autonomously traverse this cycle more often and thus “pump” to an
expression of the form (!(1, 2, req))n·i.

Similar reasoning applies to automaton A2 for the last n letters of the input
word M ↾2. Suppose its cycle is of size j.

Now if A1 traverses its cycle of size i, j times, and A2 traverses its cycle of
size j, i times, then the number of requests sent by process 1 matches the
number of receipts by process 2.
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CFM vs. weak CFM

Theorem:

Weak CFMs are strictly less expressive than CFMs.

Intuition proof

If A1 traverses a cycle of size i at least once to “generate” (!(1, 2, req))n, then
it can autonomously traverse this cycle more often and thus “pump” to an
expression of the form (!(1, 2, req))n·i.

Similar reasoning applies to automaton A2 for the last n letters of the input
word M ↾2. Suppose its cycle is of size j.

Now if A1 traverses its cycle of size i, j times, and A2 traverses its cycle of
size j, i times, then the number of requests sent by process 1 matches the
number of receipts by process 2.

But this yields a word in M(n+ (i · j), n) that is not in L.
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1 MSC M is realisable whenever Lin(M) = Lin(A) for some CFM A.
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What is realisability?

Definition (Realisability)

1 MSC M is realisable whenever {M} = L(A) for some CFM A.

2 A finite set {M1, . . . ,Mn} of MSCs is realisable whenever
{M1, . . . ,Mn} = L(A) for some CFM A.
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1 MSC M is realisable whenever {M} = L(A) for some CFM A.

2 A finite set {M1, . . . ,Mn} of MSCs is realisable whenever
{M1, . . . ,Mn} = L(A) for some CFM A.

3 MSG G is realisable whenever L(G) = L(A) for some CFM A.

Equivalently

1 MSC M is realisable whenever Lin(M) = Lin(A) for some CFM A.

2 Set {M1, . . . ,Mn} of MSCs is realisable whenever
⋃n

i=1
Lin(Mi) = Lin(A) for some CFM A.

3 MSG G is realisable whenever Lin(G) = Lin(A) for some CFM A.

We will consider realisability using its characterisation by linearisations.
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Two example MSCs

Consider the MSCs Minc (top) and Mdb (bottom):

p1 U N p2

inc

inc

p1 U N p2

double

double
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Two example MSCs

Consider the MSCs Minc (top) and Mdb (bottom):

p1 U N p2

inc

inc

p1 U N p2

double

double

Intuition

In Minc , the volume of U (uranium) and N (nitric acid) is increased by one

unit; in Mdb both volumes are doubled. For safety reasons, it is essential that

both ingredients are increased by the same amount!
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A third, inferred fatal scenario

p1 U N p2

double

inc
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A third, inferred fatal scenario

p1 U N p2

double

inc

So:

The set {Minc ,Mdb } is not realisable, as any CFM that realises this set
also realises the inferred MSC Mbad above.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/35



A third, inferred fatal scenario

p1 U N p2

double

inc

So:

The set {Minc ,Mdb } is not realisable, as any CFM that realises this set
also realises the inferred MSC Mbad above.

Note that:

MSCs Minc or Mdb alone do not imply Mbad . Together they do.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/35



Inference

Definition (Inference)

The set L of MSCs is said to infer MSC M 6∈ L if and only if:

for any CFM A. (L ⊆ L(A) implies M ∈ L(A)) .
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Inference

Definition (Inference)

The set L of MSCs is said to infer MSC M 6∈ L if and only if:

for any CFM A. (L ⊆ L(A) implies M ∈ L(A)) .

What we will show later on:

The set L of MSCs is realisable iff L contains all MSCs that it infers.

Intuition

A realisable set of MSCs contains all its implied scenarios.
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Inference

Definition (Inference)

The set L of MSCs is said to infer MSC M 6∈ L if and only if:

for any CFM A. (L ⊆ L(A) implies M ∈ L(A)) .

What we will show later on:

The set L of MSCs is realisable iff L contains all MSCs that it infers.

Intuition

A realisable set of MSCs contains all its implied scenarios.

For computational purposes, an alternative characterisation is required.
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Projection (1)

Definition (MSC projection)

For MSC M and process p let M ↾p, the projection of M on process p,
be the ordered sequence of actions occurring at process p in M .
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Projection (1)

Definition (MSC projection)

For MSC M and process p let M ↾p, the projection of M on process p,
be the ordered sequence of actions occurring at process p in M .

Lemma

An MSC M over the processes P = { p1, . . . , pn } is uniquely determined
by the projections M ↾pi for 0 < i 6 n.
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Projection (2)

Definition (Word projection)

For word w ∈ Act
∗ and process p, the projection of w on process p,

denoted w ↾p, is defined by:

ǫ↾p = ǫ

(!(r, q, a)·w)↾p =

{

!(r, q, a)·(w ↾p) if r = p

w ↾p otherwise

and similarly for receive actions.
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denoted w ↾p, is defined by:

ǫ↾p = ǫ

(!(r, q, a)·w)↾p =

{

!(r, q, a)·(w ↾p) if r = p

w ↾p otherwise

and similarly for receive actions.

Example

w =!(1, 2, req)!(1, 2, req)?(2, 1, req)!(2, 1, ack)?(2, 1, req)!(2, 1, ack)?(1, 2, ack)!(1, 2, req)
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(!(r, q, a)·w)↾p =

{
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w ↾p otherwise
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Example

w =!(1, 2, req)!(1, 2, req)?(2, 1, req)!(2, 1, ack)?(2, 1, req)!(2, 1, ack)?(1, 2, ack)!(1, 2, req)

w ↾1 = !(1, 2, req)!(1, 2, req)?(1, 2, ack)!(1, 2, req)
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Projection (2)

Definition (Word projection)

For word w ∈ Act
∗ and process p, the projection of w on process p,

denoted w ↾p, is defined by:

ǫ↾p = ǫ

(!(r, q, a)·w)↾p =

{

!(r, q, a)·(w ↾p) if r = p

w ↾p otherwise

and similarly for receive actions.

Example

w =!(1, 2, req)!(1, 2, req)?(2, 1, req)!(2, 1, ack)?(2, 1, req)!(2, 1, ack)?(1, 2, ack)!(1, 2, req)

w ↾1 = !(1, 2, req)!(1, 2, req)?(1, 2, ack)!(1, 2, req)

w ↾2 = ?(2, 1, req)!(2, 1, ack)?(2, 1, req)!(2, 1, ack)
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Projection (3)

Definition (Word projection)

For word w ∈ Act
∗ and process p, the projection of w on process p, denoted

w ↾p, is defined by:

ǫ↾p = ǫ

(!(r, q, a)·w)↾p =

{

!(r, q, a)·(w ↾p) if r = p

w ↾p otherwise

and similarly for receive actions.

Joost-Pieter Katoen Theoretical Foundations of the UML 26/35



Projection (3)

Definition (Word projection)

For word w ∈ Act
∗ and process p, the projection of w on process p, denoted

w ↾p, is defined by:

ǫ↾p = ǫ

(!(r, q, a)·w)↾p =

{

!(r, q, a)·(w ↾p) if r = p

w ↾p otherwise

and similarly for receive actions.

Lemma

A well-formed word w over Act
∗ given as projections w ↾p1, . . . , w ↾pn

uniquely characterises an MSC M(w) over P = { p1, . . . , pn }.

Joost-Pieter Katoen Theoretical Foundations of the UML 26/35



Closure

Definition (Inference relation)

For well-formeda L ⊆ Act
∗, and well-formed word w ∈ Act

∗, let:

L |= w iff (∀p ∈ P.∃v ∈ L.w ↾p = v ↾p)

aLanguage L is called well-formed iff all its words are well-formed.
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Closure

Definition (Inference relation)

For well-formeda L ⊆ Act
∗, and well-formed word w ∈ Act

∗, let:

L |= w iff (∀p ∈ P.∃v ∈ L.w ↾p = v ↾p)

aLanguage L is called well-formed iff all its words are well-formed.

Definition (Closure under |=)

Language L is closed under |= whenever L |= w implies w ∈ L.
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Closure

Definition (Inference relation)

For well-formeda L ⊆ Act
∗, and well-formed word w ∈ Act

∗, let:

L |= w iff (∀p ∈ P.∃v ∈ L.w ↾p = v ↾p)

aLanguage L is called well-formed iff all its words are well-formed.

Definition (Closure under |=)

Language L is closed under |= whenever L |= w implies w ∈ L.

Intuition

The closure condition says that the set of MSCs (or, equivalently, well-formed

words) can be obtained from the projections of the MSCs in L onto individual

processes.
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Closure: example

Language L is closed under |= whenever L |= w implies w ∈ L.

Example

L = Lin({Mup ,Mdb}) is not closed under |=.
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Closure: example

Language L is closed under |= whenever L |= w implies w ∈ L.

Example

L = Lin({Mup ,Mdb}) is not closed under |=. This is shown as follows:

w = !(p1, U, double)?(U, p1, double)!(p2, N, inc)?(N, p2, inc) 6∈ L
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Language L is closed under |= whenever L |= w implies w ∈ L.

Example

L = Lin({Mup ,Mdb}) is not closed under |=. This is shown as follows:

w = !(p1, U, double)?(U, p1, double)!(p2, N, inc)?(N, p2, inc) 6∈ L

But: L |= w since

for process p1, there is u ∈ L with w ↾p1 = !(p1, U, double) = u↾p1, and

for process p2, there is v ∈ L with w ↾p2 = !(p2, N, inc) = v ↾p2, and

for process U , there is u ∈ L with w ↾U =?(U, p1, double) = u↾U , and

for process N , there is v ∈ L with w ↾N =?(N, p2, inc) = v ↾N .
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Weak CFMs

Definition (Recall: weak CFM)

CFM A is weak if |D| = 1.
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(Therefore, the component D may be omitted.)
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Weak CFMs

Definition (Recall: weak CFM)

CFM A is weak if |D| = 1.

Intuition
A weak CFM can be considered as CFM without synchronisation messages.

(Therefore, the component D may be omitted.) For simplicity, today we

address realisability with the aim of using weak CFMs as implementation.

Recall: weak CFMs are strictly less expressive than CFMs.

Realisability by a weak CFM

A finite set {M1, . . . ,Mn} of MSCs is realisable (by a weak CFM)
whenever {M1, . . . ,Mn} = L(A) for some weak CFM A

Joost-Pieter Katoen Theoretical Foundations of the UML 29/35



Weak CFMs are closed under |=

Lemma:

For any weak CFM A, Lin(A) is closed under |=.
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Lemma:

For any weak CFM A, Lin(A) is closed under |=.

Proof.

Let A be a weak CFM.
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Lemma:

For any weak CFM A, Lin(A) is closed under |=.
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Let A be a weak CFM. Since A is a CFM, any w ∈ Lin(A) is well-formed.
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Proof.
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∗ be well-formed and assume Lin(A) |= w.
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By definition of |=, for any process p there is vp ∈ Lin(A) with vp ↾p = w ↾p.
Let π be an accepting run of A on vp and let run π ↾p visit only states of Ap

while taking only transitions in ∆p. Then, π ↾p is an accepting run of “local“
automaton Ap on the word vp ↾p = w ↾p.
In absence of synchronisation messages, the “local“ accepting runs π ↾p for all
processes p together can be combined to obtain an accepting run of A on w.

Joost-Pieter Katoen Theoretical Foundations of the UML 30/35



Weak CFMs are closed under |=

Lemma:

For any weak CFM A, Lin(A) is closed under |=.

Proof.

Let A be a weak CFM. Since A is a CFM, any w ∈ Lin(A) is well-formed.
Let w ∈ Act

∗ be well-formed and assume Lin(A) |= w.
To show that Lin(A) is closed under |=, we prove that w ∈ Lin(A).
By definition of |=, for any process p there is vp ∈ Lin(A) with vp ↾p = w ↾p.
Let π be an accepting run of A on vp and let run π ↾p visit only states of Ap

while taking only transitions in ∆p. Then, π ↾p is an accepting run of “local“
automaton Ap on the word vp ↾p = w ↾p.
In absence of synchronisation messages, the “local“ accepting runs π ↾p for all
processes p together can be combined to obtain an accepting run of A on w.

Thus, w ∈ Lin(A).

Joost-Pieter Katoen Theoretical Foundations of the UML 30/35



Overview

1 Introduction

2 Properties of CFMs

Deterministic CFMs
Deadlock-free CFMs
Synchronisation messages add expressiveness

3 Realisability

4 Inference of MSCs

5 Characterisation and complexity of realisability by weak CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 31/35



Characterisation of realisability

Theorem: [Alur et al., 2001]

Finite L ⊆ Act
∗ is realisable (by a weak CFM) iff L is closed under |=.
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Characterisation of realisability

Theorem: [Alur et al., 2001]

Finite L ⊆ Act
∗ is realisable (by a weak CFM) iff L is closed under |=.

Proof.

On the black board.
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Characterisation of realisability

Theorem: [Alur et al., 2001]

Finite L ⊆ Act
∗ is realisable (by a weak CFM) iff L is closed under |=.

Proof.

On the black board.

Corollary

The finite set of MSCs {M1, . . . ,Mn} is realisable (by a weak CFM) iff
⋃n

i=1
Lin(Mi) is closed under |=.
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Characterisation of realisability

Theorem

For any well-formed L ⊆ Act
∗:

L is regular and closed under |=
if and only if

L = Lin(A) for some ∀-bounded weak CFM A.
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Complexity of realisability

Let co-NP be the class of all decision problems C with C, the
complement of C, is in NP.
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A problem C is co-NP complete if it is in co-NP, and it is co-NP hard,
i.e., each for any co-NP problem there is a polynomial reduction to C.
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Complexity of realisability (by a weak CFM)

Theorem: [Alur et al., 2001]

The decision problem “is a given finite set of MSCs realisable by a weak
CFM?” is decidable and is co-NP complete.
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Complexity of realisability (by a weak CFM)

Theorem: [Alur et al., 2001]

The decision problem “is a given finite set of MSCs realisable by a weak
CFM?” is decidable and is co-NP complete.

Proof.
1 Membership in co-NP is proven by showing that its complement is

in NP. This is rather standard.
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Complexity of realisability (by a weak CFM)

Theorem: [Alur et al., 2001]

The decision problem “is a given finite set of MSCs realisable by a weak
CFM?” is decidable and is co-NP complete.

Proof.
1 Membership in co-NP is proven by showing that its complement is

in NP. This is rather standard.

2 The co-NP hardness proof is based on a polynomial reduction of
the join dependency problem to the above realisability problem.
(Details on the black board.)
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