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What are Statecharts?

Statecharts := Mealy machines

+ State hierarchy

+ Broadcast communication

+ Orthogonality
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Statecharts

Definition (Statecharts)

A statechart SC is a triple (N,E,Edges) with:

1 N is a set of nodes (or: states) structured in a tree
2 E is a set of events

pseudo-event after(d) ∈ E denotes a delay of d ∈ R>0 time units
⊥ 6∈ E stands for “no event available”

3 Edges is a set of (hyper-) edges, defined later on.
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Statecharts

Definition (Statecharts)

A statechart SC is a triple (N,E,Edges) with:

1 N is a set of nodes (or: states) structured in a tree
2 E is a set of events

pseudo-event after(d) ∈ E denotes a delay of d ∈ R>0 time units
⊥ 6∈ E stands for “no event available”

3 Edges is a set of (hyper-) edges, defined later on.

Definition (System)

A system is described by a finite collection of statecharts
(SC1, . . . ,SCk).
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Tree structure

Function children

Nodes obey a tree structure defined by function children : N → 2N

where x ∈ children(y) means that x is a child of y, or equivalently, y is
the parent of x.
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Tree structure

Function children

Nodes obey a tree structure defined by function children : N → 2N

where x ∈ children(y) means that x is a child of y, or equivalently, y is
the parent of x.

Ancestor relation E

The partial order E ⊆ N ×N is defined by:

∀x ∈ N.xE x

∀x, y ∈ N.xE y if x ∈ children(y)

∀x, y, z ∈ N.xE y ∧ y E z ⇒ xE z

xE y means that x is a descendant of y, or equivalently, y is an ancestor
of x. If xE y or y E x, nodes x and y are ancestrally related.
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Tree structure

Function children

Nodes obey a tree structure defined by function children : N → 2N

where x ∈ children(y) means that x is a child of y, or equivalently, y is
the parent of x.

Ancestor relation E

The partial order E ⊆ N ×N is defined by:

∀x ∈ N.xE x

∀x, y ∈ N.xE y if x ∈ children(y)

∀x, y, z ∈ N.xE y ∧ y E z ⇒ xE z

xE y means that x is a descendant of y, or equivalently, y is an ancestor
of x. If xE y or y E x, nodes x and y are ancestrally related.

Root node

There is a unique root with no ancestors, and ∀x ∈ N.xE root.
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Functions on nodes

The type of nodes

Nodes are typed, type(x) ∈ {basic,and,or } such that for x ∈ N :

type(root) = or

type(x) = basic iff children(x) = ∅, i.e., x is a leaf

type(x) = and implies (∀y ∈ children(x). type(y) = or)
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Functions on nodes

The type of nodes

Nodes are typed, type(x) ∈ {basic,and,or } such that for x ∈ N :

type(root) = or

type(x) = basic iff children(x) = ∅, i.e., x is a leaf

type(x) = and implies (∀y ∈ children(x). type(y) = or)

Default nodes

default : N → N is a partial function on {x ∈ N | type(x) = or } with

default(x) = y implies y ∈ children(x).
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Functions on nodes

The type of nodes

Nodes are typed, type(x) ∈ {basic,and,or } such that for x ∈ N :

type(root) = or

type(x) = basic iff children(x) = ∅, i.e., x is a leaf

type(x) = and implies (∀y ∈ children(x). type(y) = or)

Default nodes

default : N → N is a partial function on {x ∈ N | type(x) = or } with

default(x) = y implies y ∈ children(x).

The function default assigns to each or-node x one of its children as
default node that becomes active once node x becomes active.
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Example

A damage assessor

Physical
assessment

Phone
assessment
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Contacting
garage

Writing
report

report finished
/ send 2.end

Waiting for
invoice

check
finished /Checking

invoice

receive
invoice /

Invoice handling

Reporting

Idle start /

high damage damage
received /

low damage estimate
received /

assessed
/ send 2.repair

assessed
/ send 2.write offRepairing

Report
finished

Invoicing
finished

Finished
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Edges

Definition (Edges)

An edge is a quintuple (X, e, g,A, Y ), denoted X
e[g]/A

−−−−→Y with:

X ⊆ N is a set of source nodes with X 6= ∅

e ∈ E ∪ {⊥} is the trigger event

A ⊆ Act is a finite set of actions

such as v := expr for local variable v and expression expr
or send j.e, i.e., send event e to statechart SCj

Guard g is a Boolean expression over all variables in (SC1, . . . ,SCk)

Y ⊆ N is a set of target nodes with Y 6= ∅
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Edges

Definition (Edges)

An edge is a quintuple (X, e, g,A, Y ), denoted X
e[g]/A

−−−−→Y with:

X ⊆ N is a set of source nodes with X 6= ∅

e ∈ E ∪ {⊥} is the trigger event

A ⊆ Act is a finite set of actions

such as v := expr for local variable v and expression expr
or send j.e, i.e., send event e to statechart SCj

Guard g is a Boolean expression over all variables in (SC1, . . . ,SCk)

Y ⊆ N is a set of target nodes with Y 6= ∅

The sets X and Y may contain nodes at different depth in the node tree.
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Example

Example statechart

edge 1: {C }
⊥[true]/{x:=1 }

−−−−−−−−−−−→{D }

edge 2: {D }
e[x>0]/{x:=0 }

−−−−−−−−−−→{A,C }
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Towards a Statechart semantics

Formal semantics: map (SC1, . . . ,SCk) onto a single Mealy machine
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Towards a Statechart semantics

Formal semantics: map (SC1, . . . ,SCk) onto a single Mealy machine

This is done using a step semantics distinguishing macro and micro
steps

Macro steps are “observable” and are subdivided into a finite
number of micro steps that cannot be prolonged

In a macro step, a maximal set of edges is performed

Events generated in macro step n are only available in macro step
n+1

If such event is not “consumed” in step n+1, it dies, and is not
available in step n+2, n+3, . . .
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Assumptions [Eshuis & Wieringa, 2000]

Input to a macro step is a set of events (and not a queue)
the order of event generation is ignored, i.e., if e and e′ are generated
in macro step i, the order in which they are generated is irrelevant
in step i+1
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the order of event generation is ignored, i.e., if e and e′ are generated
in macro step i, the order in which they are generated is irrelevant
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events can only be used in macro step immediately following their
generation

Instantaneous edges and actions
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Input to a macro step is a set of events (and not a queue)
the order of event generation is ignored, i.e., if e and e′ are generated
in macro step i, the order in which they are generated is irrelevant
in step i+1

A macro step reacts to all available events
events can only be used in macro step immediately following their
generation

Instantaneous edges and actions

Unlimited concurrency
there is no limit on the number of events that can be consumed in a
macro step
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Assumptions [Eshuis & Wieringa, 2000]

Input to a macro step is a set of events (and not a queue)
the order of event generation is ignored, i.e., if e and e′ are generated
in macro step i, the order in which they are generated is irrelevant
in step i+1

A macro step reacts to all available events
events can only be used in macro step immediately following their
generation

Instantaneous edges and actions

Unlimited concurrency
there is no limit on the number of events that can be consumed in a
macro step

Perfect communication, i.e., messages are not lost
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What does a single StateChart mean?

Intuitive semantics as a transition system:

State = a set of nodes (“current control”) + the values of variables
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What does a single StateChart mean?

Intuitive semantics as a transition system:

State = a set of nodes (“current control”) + the values of variables

Edge is enabled if guard holds in current state

Executing edge X
e[g]/A

−−−−→Y = perform actions A, consume event e

leave source nodes X and switch to target nodes Y

⇒ events are unordered, and considered as a set
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What does a single StateChart mean?

Intuitive semantics as a transition system:

State = a set of nodes (“current control”) + the values of variables

Edge is enabled if guard holds in current state

Executing edge X
e[g]/A

−−−−→Y = perform actions A, consume event e

leave source nodes X and switch to target nodes Y

⇒ events are unordered, and considered as a set

Principle: execute as many edges at once (without conflict)

⇒ the total execution of such maximal set is a macro step
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States and configurations

Definition (Configuration)

A configuration of SC = (N,E,Edges) is a set C ⊆ N of nodes
satisfying:

root ∈ C

x ∈ C and type(x) = or implies |children(x) ∩ C| = 1

x ∈ C and type(x) = and implies children(x) ⊆ C

Let Conf denote the set of configurations of SC.
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States and configurations

Definition (Configuration)

A configuration of SC = (N,E,Edges) is a set C ⊆ N of nodes
satisfying:

root ∈ C

x ∈ C and type(x) = or implies |children(x) ∩ C| = 1

x ∈ C and type(x) = and implies children(x) ⊆ C

Let Conf denote the set of configurations of SC.

Definition (State)

State of SC = (N,E,Edges) is a triple (C, I, V ) where

C is a configuration of SC

I ⊆ V is the set of events to be processed

V is a valuation of the variables.
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Example
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Enabling of an edge

Definition (Enabledness)

Edge X
e[g]/A

−−−−→ Y is enabled in state (C, I, V ) whenever:

X ⊆ C, i.e. all source nodes are in configuration C

((C1, . . . , Cn)
︸ ︷︷ ︸

configurations

, (V1, . . . , Vn)
︸ ︷︷ ︸

variable valuations

) |= g, i.e., guard g is satisfied

either e 6= ⊥ implies e ∈ I, or e = ⊥

Let En(C, I, V ) denote the set of enabled edges in state (C, I, V ).
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Macro steps

On receiving an input e, several edges in SC may become enabled
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Macro steps

On receiving an input e, several edges in SC may become enabled

Then, a maximal and consistent set of enabled edges is taken

If there are several such sets, choose one nondeterministically

Edges in concurrent components can be taken simultaneously

But edges in other components cannot; they are inconsistent

To resolve nondeterminism (partly), priorities are used
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Consistency: examples

To define consistency formally, we need some auxiliary concepts
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Least common ancestor

Definition (Least common ancestor)

For X ⊆ N , the least common ancestor, denoted lca(X), is the node
y ∈ N such that:

(∀x ∈ X.xE y) and ∀z ∈ N. (∀x ∈ X.xE z) implies y E z.
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Least common ancestor

Definition (Least common ancestor)

For X ⊆ N , the least common ancestor, denoted lca(X), is the node
y ∈ N such that:

(∀x ∈ X.xE y) and ∀z ∈ N. (∀x ∈ X.xE z) implies y E z.

Intuition

Node y is an ancestor of any node in X (first clause), and is a
descendant of any node which is an ancestor of any node in X (second
clause).
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Orthogonality of nodes

Definition (Orthogonality of nodes)

Nodes x, y ∈ N are orthogonal, denoted x⊥y, if

¬(xE y) and ¬(y E x) and type(lca({x, y })) = and.
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Orthogonality of nodes

Definition (Orthogonality of nodes)

Nodes x, y ∈ N are orthogonal, denoted x⊥y, if

¬(xE y) and ¬(y E x) and type(lca({x, y })) = and.

Orthogonality captures the notion of independence. Orthogonal nodes can

execute enabled edges independently, and thus concurrently.
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Scope

Definition (Scope of edge)

The scope of edge X ...−−→Y is the most nested or-node that is an
ancestor of both X and Y .
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Scope

Definition (Scope of edge)

The scope of edge X ...−−→Y is the most nested or-node that is an
ancestor of both X and Y .

Intuition

The scope of edge X ...−−→Y is the most nested or-node that is
unaffected by executing the edge X ...−−→Y .
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Scope: example

F

A B

D E

C
G

scope(A−→D) = root and scope(A−→C) = G and scope(A−→B) = F
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Consistency: formal definition

Definition (Consistency)

1 Edges ed, ed′ ∈ Edges are consistent if:

ed = ed′ or scope(ed)⊥ scope(ed′).
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Consistency: formal definition

Definition (Consistency)

1 Edges ed, ed′ ∈ Edges are consistent if:

ed = ed′ or scope(ed)⊥ scope(ed′).

2 T ⊆ Edges is consistent if all edges in T are pairwise consistent.
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Consistency: formal definition

Definition (Consistency)

1 Edges ed, ed′ ∈ Edges are consistent if:

ed = ed′ or scope(ed)⊥ scope(ed′).

2 T ⊆ Edges is consistent if all edges in T are pairwise consistent.
Cons(T ) is the set of edges that are consistent with all edges in
T ⊆ Edges

Cons(T ) = {ed ∈ Edges | ∀ed′ ∈ T : ed is consistent with ed′}

Example

On the black board.
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What is now a macro step?

A macro step is a set T of edges such that:

all edges in step T are enabled
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all edges in step T are enabled
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they are identical or
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enabled edge ed is not in step T implies

there exists ed′ ∈ T such that ed is inconsistent with ed′, and
the priority of ed′ is not smaller than ed
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What is now a macro step?

A macro step is a set T of edges such that:

all edges in step T are enabled

all edges in T are pairwise consistent, that is:

they are identical or
scopes are (descendants of) different children of the same and-node

enabled edge ed is not in step T implies

there exists ed′ ∈ T such that ed is inconsistent with ed′, and
the priority of ed′ is not smaller than ed

step T is maximal (wrt. set inclusion)

Joost-Pieter Katoen Theoretical Foundations of the UML 25/31



Priorities

Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.
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Priorities

Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.

Definition (Priority relation)

The priority relation � ⊆ Edges × Edges is a partial order defined for
ed, ed′ ∈ Edges by:

ed � ed′ if scope(ed′)E scope(ed)

So, ed′ has priority over ed if its scope is a descendant of ed’s scope.
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Priorities

Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.

Definition (Priority relation)

The priority relation � ⊆ Edges × Edges is a partial order defined for
ed, ed′ ∈ Edges by:

ed � ed′ if scope(ed′)E scope(ed)

So, ed′ has priority over ed if its scope is a descendant of ed’s scope.

Example:

2 � 1 since scope(1) = D E scope(2) = root.
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Priority: examples
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Nondeterminism

Priorities rule out some nondeterminism, but not necessarily all.
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What is now a macro step?
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all edges in step T are enabled
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What is now a macro step?

A macro step is a set T of edges such that:

all edges in step T are enabled

all edges in T are pairwise consistent

they are identical or
scopes are (descendants of) different children of the same and-node

step T is maximal (wrt. set inclusion)

T cannot be extended with any enabled, consistent edge

priorities: enabled edge ed is not in step T implies

∃ed′ ∈ T. (ed is inconsistent with ed′ ∧ ¬(ed′ � ed))
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A macro step — formally

A macro step is a set T of edges such that:
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A macro step — formally

A macro step is a set T of edges such that:

enabledness: T ⊆ En(C, I, V )

consistency: T ⊆ Cons(T )
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A macro step — formally

A macro step is a set T of edges such that:
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A macro step — formally

A macro step is a set T of edges such that:

enabledness: T ⊆ En(C, I, V )

consistency: T ⊆ Cons(T )

maximality: En(C, I, V ) ∩ Cons(T ) ⊆ T

priority: ∀ed ∈ En(C, I, V )− T we have

(∃ed′ ∈ T. (ed is inconsistent with ed′ ∧ ¬(ed′ � ed)))
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A macro step — formally

A macro step is a set T of edges such that:

enabledness: T ⊆ En(C, I, V )

consistency: T ⊆ Cons(T )

maximality: En(C, I, V ) ∩ Cons(T ) ⊆ T

priority: ∀ed ∈ En(C, I, V )− T we have

(∃ed′ ∈ T. (ed is inconsistent with ed′ ∧ ¬(ed′ � ed)))

Note:

The first three points yield: T = En(C, I, V ) ∩ Cons(T ).

Joost-Pieter Katoen Theoretical Foundations of the UML 30/31



Computing the set T of macro steps in state (C, I, V )

function nextStep(C, I, V )

T := ∅

while T ⊂ En(C, I, V ) ∩ Cons(T )

do let ed ∈ High ((En(C, I, V ) ∩ Cons(T ))− T ) ;

T := T ∪ {ed}

od

return T .

where High(T ) = {ed ∈ T | ¬(∃ed′ ∈ T. ed � ed′)}
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