Theoretical Foundations of the UML

Lecture 18: Statecharts Semantics (1)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

14. Juli 2016

Joost-Pieter Katoen Theoretical Foundations of the

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

@ Formal Definition of Statecharts

© A Semantics for Statecharts
@ Intuition and Assumptions
o States and Configurations
@ FEnabledness
o Consistency
@ Priority

Joost-Pieter Katoen Theoretical Foundations of the UML 2/31

Overview

@ Formal Definition of Statecharts

Joost-Pieter Katoen Theoretical Foundations of the

What are Statecharts?

Statecharts := Mealy machines
-+ State hierarchy

+ Broadcast communication

-+ Orthogonality

Joost-Pieter Katoen Theoretical Foundations of the UML 4/31

Statecharts

Definition (Statecharts)
A statechart SC'is a triple (N, E, Edges) with:

© N is a set of nodes (or: states) structured in a tree

Q FE is a set of events

o pseudo-event after(d) € E denotes a delay of d € R>(time units
e | ¢ F stands for “no event available”

© Edges is a set of (hyper-) edges, defined later on.

Joost-Pieter Katoen Theoretical Foundations of the UML 5/31

Statecharts

Definition (Statecharts)
A statechart SC'is a triple (N, E, Edges) with:

© N is a set of nodes (or: states) structured in a tree

Q FE is a set of events

o pseudo-event after(d) € E denotes a delay of d € R>(time units
e | ¢ F stands for “no event available”

© Edges is a set of (hyper-) edges, defined later on.

Definition (System)

A system is described by a finite collection of statecharts

(SCh,...,SCy).

Joost-Pieter Katoen Theoretical Foundations of the UML 5/31

Tree structure

Function children
Nodes obey a tree structure defined by function children : N — 2V
where x € children(y) means that x is a child of y, or equivalently, y is

the parent of x.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/31

Tree structure

Function children

Nodes obey a tree structure defined by function children : N — 2V
where x € children(y) means that x is a child of y, or equivalently, y is
the parent of x.

Ancestor relation <

The partial order < C N x N is defined by:
eVrxe N.xz<x
o Vx,y € N.x Jy if x € children(y)
o Vr,y,ze Ne<dy ANy<z = x4z

x <y means that z is a descendant of y, or equivalently, y is an ancestor
of z. If x <y or y <z, nodes x and y are ancestrally related.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/31

Tree structure

Function children

Nodes obey a tree structure defined by function children : N — 2V
where x € children(y) means that x is a child of y, or equivalently, y is
the parent of x.

Ancestor relation <

The partial order < C N x N is defined by:
eVrxe N.xz<x
o Vx,y € N.x Jy if x € children(y)
o Vr,y,ze Ne<dy ANy<z = x4z

x <y means that z is a descendant of y, or equivalently, y is an ancestor
of . If x Jy or y <z, nodes x and y are ancestrally related.

Root node
There is a unique root with no ancestors, and V& € N.z < root.

Joost-Pieter Katoen Theoretical Foundations of the UML

Functions on nodes

The type of nodes

Nodes are typed, type(x) € { BASIC, AND, OR } such that for x € N:
@ type(root) = OR
o type(x) = BASIC iff children(x) = &, i.e., z is a leaf
o type(x) = AND implies (Vy € children(z). type(y) = OR)

Joost-Pieter Katoen Theoretical Foundations of the UML 7/31

Functions on nodes

The type of nodes

Nodes are typed, type(x) € { BASIC, AND, OR } such that for x € N:
@ type(root) = OR
o type(x) = BASIC iff children(x) = &, i.e., z is a leaf
o type(x) = AND implies (Vy € children(z). type(y) = OR)

y

Default nodes
default : N — N is a partial function on {z € N | type(z) = OR } with

default(x) =y implies y € children(z).

Joost-Pieter Katoen Theoretical Foundations of the UML 7/31

Functions on nodes

The type of nodes

Nodes are typed, type(x) € { BASIC, AND, OR } such that for x € N:
@ type(root) = OR
o type(x) = BASIC iff children(x) = &, i.e., z is a leaf
o type(x) = AND implies (Vy € children(x). type(y) = OR)

Default nodes

default : N — N is a partial function on {z € N | type(z) = OR } with

default(x) =y implies y € children(z).

The function default assigns to each OR-node x one of its children as
default node that becomes active once node x becomes active.

Joost-Pieter Katoen Theoretical Foundations of the UML 7/31

Example

damage assess

low damage estimate

Contacting
garage

high damage damage

received / received /
/ Assessmg\
hysical
assessment asse sment
assessed

/'send 2.repair / send 2.write off

‘ Repairing ‘

Invoice handling

check

receive
Wamn% for | invoice /
invoi

Checking | finished /

Invoice

|PVOICIn
inishel

Reporting

repor

report finished
/'send 2.end

rt
ooy

ieter Katoen

Theoretical Foundations of the U

Edges

Definition (Edges)

An edge is a quintuple (X, e, g, A,Y), denoted X /ALy with:
@ X C N is a set of source nodes with X # @&
e € EU{ L} is the trigger event

@ A C Act is a finite set of actions

@ such as v := expr for local variable v and expression expr
e or send j.e, i.e., send event e to statechart SC;

©

©

Guard g is a Boolean expression over all variables in (SCy, ..., SCy)
@ Y C N is a set of target nodes with Y # &

Joost-Pieter Katoen Theoretical Foundations of the UML 9/31

Edges

Definition (Edges)

An edge is a quintuple (X, e, g, A,Y), denoted X /ALy with:
@ X C N is a set of source nodes with X # @&
e € EU{ L} is the trigger event

@ A C Act is a finite set of actions

@ such as v := expr for local variable v and expression expr
e or send j.e, i.e., send event e to statechart SC;

©

©

Guard g is a Boolean expression over all variables in (SCy, ..., SCy)
@ Y C N is a set of target nodes with Y # &

The sets X and Y may contain nodes at different depth in the node tree. |

Joost-Pieter Katoen Theoretical Foundations of the UML 9/31

Example

Example statechart

(-0 ISSeR
T 2| (

2

el:x‘;cg]/ =0

edge 1: {C} L[true]/{x:=1} {D}

edge 2: {D}M){A,C}

Joost-Pieter Katoen Theoretical Foundations of the UML

© A Semantics for Statecharts
@ Intuition and Assumptions
o States and Configurations
@ FEnabledness
o Consistency
@ Priority

Joost-Pieter Katoen Theoretical Foundations of the U

Towards a Statechart semantics

o Formal semantics: map (SCi, ..., SC) onto a single Mealy machine

Joost-Pieter Katoen Theoretical Foundations of the UML 12/31

Towards a Statechart semantics

o Formal semantics: map (SCi, ..., SC) onto a single Mealy machine

@ This is done using a step semantics distinguishing macro and micro
steps

Joost-Pieter Katoen Theoretical Foundations of the UML 12/31

Towards a Statechart semantics

o Formal semantics: map (SCi, ..., SC) onto a single Mealy machine

@ This is done using a step semantics distinguishing macro and micro
steps

@ Macro steps are “observable” and are subdivided into a finite
number of micro steps that cannot be prolonged

Joost-Pieter Katoen Theoretical Foundations of the UML 12/31

Towards a Statechart semantics

o Formal semantics: map (SCi, ..., SC) onto a single Mealy machine

@ This is done using a step semantics distinguishing macro and micro
steps

@ Macro steps are “observable” and are subdivided into a finite
number of micro steps that cannot be prolonged

o In a macro step, a maximal set of edges is performed

Joost-Pieter Katoen Theoretical Foundations of the UML 12/31

Towards a Statechart semantics

o Formal semantics: map (SCi, ..., SC) onto a single Mealy machine

@ This is done using a step semantics distinguishing macro and micro
steps

@ Macro steps are “observable” and are subdivided into a finite
number of micro steps that cannot be prolonged

o In a macro step, a maximal set of edges is performed

o Events generated in macro step n are only available in macro step
n+1
o If such event is not “consumed” in step n+1, it dies, and is not
available in step n+2, n+3, ... RWh

Joost-Pieter Katoen Theoretical Foundations of the UML 12/31

@ Input to a macro step is a set of events (and not a queue)
the order of event generation is ignored, i.e., if e and €’ are generated
in macro step ¢, the order in which they are generated is irrelevant
in step i+1

Joost-Pieter Katoen Theoretical Foundations of the U

@ Input to a macro step is a set of events (and not a queue)
the order of event generation is ignored, i.e., if e and €’ are generated
in macro step ¢, the order in which they are generated is irrelevant
in step i+1

@ A macro step reacts to all available events
events can only be used in macro step immediately following their
generation

Joost-Pieter Katoen Theoretical Foundations of the UML 13/31

@ Input to a macro step is a set of events (and not a queue)
the order of event generation is ignored, i.e., if e and €’ are generated
in macro step ¢, the order in which they are generated is irrelevant
in step i+1

@ A macro step reacts to all available events
events can only be used in macro step immediately following their
generation

o Instantaneous edges and actions

Joost-Pieter Katoen Theoretical Foundations of the U

@ Input to a macro step is a set of events (and not a queue)
the order of event generation is ignored, i.e., if e and €’ are generated
in macro step ¢, the order in which they are generated is irrelevant
in step i+1

@ A macro step reacts to all available events
events can only be used in macro step immediately following their
generation

o Instantaneous edges and actions

@ Unlimited concurrency
there is no limit on the number of events that can be consumed in a
macro step

Joost-Pieter Katoen Theoretical Foundations of the U

Assumptions

@ Input to a macro step is a set of events (and not a queue)
the order of event generation is ignored, i.e., if e and €’ are generated
in macro step ¢, the order in which they are generated is irrelevant
in step i+1

@ A macro step reacts to all available events

events can only be used in macro step immediately following their
generation

o Instantaneous edges and actions

@ Unlimited concurrency
there is no limit on the number of events that can be consumed in a
macro step

o Perfect communication, i.e., messages are not lost

Joost-Pieter Katoen Theoretical Foundations of the

What does a single StateChart mean?

Intuitive semantics as a transition system:

@ State = a set of nodes (“current control”) + the values of variables

Joost-Pieter Katoen Theoretical Foundations of the UML 14/31

What does a single StateChart mean?

Intuitive semantics as a transition system:

@ State = a set of nodes (“current control”) + the values of variables

o Edge is enabled if guard holds in current state

Joost-Pieter Katoen Theoretical Foundations of the UML 14/31

What does a single StateChart mean?

Intuitive semantics as a transition system:

@ State = a set of nodes (“current control”) + the values of variables

o Edge is enabled if guard holds in current state

o FExecuting edge X cld/A,y perform actions A, consume event e

@ leave source nodes X and switch to target nodes Y
= events are unordered, and considered as a set

Joost-Pieter Katoen Theoretical Foundations of the UML 14/31

What does a single StateChart mean?

Intuitive semantics as a transition system:

@ State = a set of nodes (“current control”) + the values of variables

o Edge is enabled if guard holds in current state

o FExecuting edge X cld/A,y perform actions A, consume event e

@ leave source nodes X and switch to target nodes Y
= events are unordered, and considered as a set

@ Principle: execute as many edges at once (without conflict)
= the total execution of such maximal set is a macro step

Joost-Pieter Katoen Theoretical Foundations of the UML 14/31

States and configurations

Definition (Configuration)

A configuration of SC = (N, E, Edges) is a set C C N of nodes
satisfying:

@ root € C

@ z € C and type(z) = OR implies |children(z) NC| =1

@ z € C and type(x) = AND implies children(z) C C
Let Conf denote the set of configurations of SC.

Joost-Pieter Katoen Theoretical Foundations of the UML 15/31

States and configurations

Definition (Configuration)
A configuration of SC = (N, E, Edges) is a set C C N of nodes
satisfying:

@ root € C

@ z € C and type(x) = OR implies |children(x) NC| =1

@ z € C and type(x) = AND implies children(z) C C
Let Conf denote the set of configurations of SC.

Definition (State)

State of SC = (N, E, Edges) is a triple (C,I,V’) where

o (' is a configuration of SC

@ [C V is the set of events to be processed

@ V is a valuation of the variables.

Joost-Pieter Katoen Theoretical Foundations of the UML 15/31

Example

ieter Katoen

Enabling of an edge

Definition (Enabledness)

Edge X —lol/4, y is enabled in state (C,1,V) whenever:
@ X C (,i.e. all source nodes are in configuration C

o ((Cy,...,Cn)y, (V1,...,V,)) Eg, ie., guard g is satisfied

configurations variable valuations
@ either e # | impliese € I, or e = L
Let En(C,1,V) denote the set of enabled edges in state (C,I,V).

Joost-Pieter Katoen Theoretical Foundations of the UML 17/31

Macro steps

@ On receiving an input e, several edges in SC may become enabled

Joost-Pieter Katoen Theoretical Foundations of the

Macro steps

@ On receiving an input e, several edges in SC may become enabled

® Then, a maximal and consistent set of enabled edges is taken

Joost-Pieter Katoen Theoretical Foundations of the

Macro steps

@ On receiving an input e, several edges in SC may become enabled

® Then, a maximal and consistent set of enabled edges is taken

o If there are several such sets, choose one nondeterministically

Joost-Pieter Katoen Theoretical Foundations of the

Macro steps

On receiving an input e, several edges in SC may become enabled

Then, a maximal and consistent set of enabled edges is taken

©

If there are several such sets, choose one nondeterministically

©

Edges in concurrent components can be taken simultaneously

Joost-Pieter Katoen Theoretical Foundations of the

Macro steps

On receiving an input e, several edges in SC may become enabled

Then, a maximal and consistent set of enabled edges is taken

©

If there are several such sets, choose one nondeterministically

©

Edges in concurrent components can be taken simultaneously

©

But edges in other components cannot; they are inconsistent

Joost-Pieter Katoen Theoretical Foundations of the

Macro steps

On receiving an input e, several edges in SC may become enabled

Then, a maximal and consistent set of enabled edges is taken

©

If there are several such sets, choose one nondeterministically

©

Edges in concurrent components can be taken simultaneously

©

But edges in other components cannot; they are inconsistent

To resolve nondeterminism (partly), priorities are used

Joost-Pieter Katoen Theoretical Foundations of the

Consistency: examples

To define consistency formally, we need some auxiliary concepts

Joost-Pieter Katoen Theoretical Foundations of the U

Least common ancestor

Definition (Least common ancestor)

For X C N, the least common ancestor, denoted Ica(X), is the node
y € N such that:

(Vxe X.x<y) and Vze N.(Vze€ X.z<Jz) implies y J 2.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/31

Least common ancestor

Definition (Least common ancestor)

For X C N, the least common ancestor, denoted Ica(X), is the node
y € N such that:

(Vxe X.x<y) and Vze N.(Vze€ X.z<Jz) implies y J 2.

Node y is an ancestor of any node in X (first clause), and is a
descendant of any node which is an ancestor of any node in X (second
clause).

Joost-Pieter Katoen Theoretical Foundations of the UML 20/31

Orthogonality of nodes

Definition (Orthogonality of nodes)

Nodes z,y € N are orthogonal, denoted x Ly, if

—(zx<dy) and —(y<z) and type(lca({z,y})) = AND.

Joost-Pieter Katoen Theoretical Foundations of the UML 21/31

Orthogonality of nodes

Definition (Orthogonality of nodes)
Nodes z,y € N are orthogonal, denoted x Ly, if

—(zx<dy) and —(y<z) and type(lca({z,y})) = AND.

Orthogonality captures the notion of independence. Orthogonal nodes can
execute enabled edges independently, and thus concurrently. J

Joost-Pieter Katoen Theoretical Foundations of the UML 21/31

Definition (Scope of edge)

The scope of edge X ==Y is the most nested OR-node that is an
ancestor of both X and Y.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/31

Definition (Scope of edge)

The scope of edge X ==Y is the most nested OR-node that is an
ancestor of both X and Y.

The scope of edge X —=Y is the most nested OR-node that is
unaffected by executing the edge X —= Y.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/31

Scope: example

1 F
t——{a}—{8]

o) (g

scope(A— D) =root and scope(A—C)=G and scope(A— B)=F

Joost-Pieter Katoen Theoretical Foundations of the UML 23/31

Consistency: formal definition

Definition (Consistency)
© Edges ed, ed’ € Edges are consistent if:

ed =ed or scope(ed) L scope(ed').

Joost-Pieter Katoen Theoretical Foundations of the UML 24/31

Consistency: formal definition

Definition (Consistency)
© Edges ed, ed’ € Edges are consistent if:

ed =ed or scope(ed) L scope(ed').

© T C Edges is consistent if all edges in 1" are pairwise consistent.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/31

Consistency: formal definition

Definition (Consistency)

© Edges ed, ed’ € Edges are consistent if:

ed =ed or scope(ed) L scope(ed').

© T C Edges is consistent if all edges in 1" are pairwise consistent.
Cons(T) is the set of edges that are consistent with all edges in
T C Edges

Cons(T) = {ed € Edges | Ved' € T : ed is consistent with ed'}

On the black board.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/31

What is now a macro step?

A macro step is a set T" of edges such that:

o all edges in step T are enabled

Joost-Pieter Katoen Theoretical Foundations of the UML 25/31

What is now a macro step?

A macro step is a set T" of edges such that:

o all edges in step T are enabled

o all edges in T are pairwise consistent, that is:

o they are identical or
@ scopes are (descendants of) different children of the same AND-node

Joost-Pieter Katoen Theoretical Foundations of the UML 25/31

What is now a macro step?

A macro step is a set T" of edges such that:

o all edges in step T are enabled

o all edges in T are pairwise consistent, that is:

o they are identical or
@ scopes are (descendants of) different children of the same AND-node

o enabled edge ed is not in step 7' implies

there exists ed’ € T such that ed is inconsistent with ed’, and
the priority of ed’ is not smaller than ed

Joost-Pieter Katoen Theoretical Foundations of the UML 25/31

What is now a macro step?

A macro step is a set T" of edges such that:

o all edges in step T are enabled

o all edges in T are pairwise consistent, that is:

o they are identical or
@ scopes are (descendants of) different children of the same AND-node

o enabled edge ed is not in step 7' implies

there exists ed’ € T such that ed is inconsistent with ed’, and
the priority of ed’ is not smaller than ed

o step T' is maximal (wrt. set inclusion)

Joost-Pieter Katoen Theoretical Foundations of the UML 25/31

Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.

Joost-Pieter Katoen Theoretical Foundations of the UML

Priorities

Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.

Definition (Priority relation)

The priority relation < C Edges x Edges is a partial order defined for
ed,ed € Edges by:

ed < ed if scope(ed) < scope(ed)

So, ed’ has priority over ed if its scope is a descendant of ed’s scope.

Joost-Pieter Katoen Theoretical Foundations of the UML 26/31

Priorities

Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.

Definition (Priority relation)

The priority relation < C Edges x Edges is a partial order defined for
ed,ed € Edges by:

ed < ed if scope(ed) < scope(ed)

So, ed’ has priority over ed if its scope is a descendant of ed’s scope.

Example:

| \

2 < 1 since scope(l) = D < scope(2) = root.

Joost-Pieter Katoen Theoretical Foundations of the UML

Priority: examples

ieter Katoen Theoretical Foundations of the U

Nondeterminism

Priorities rule out some nondeterminism, but not necessarily all.

Joost-Pieter Katoen Theoretical Foundations of the

What is now a macro step?

A macro step is a set T" of edges such that:

@ all edges in step T are enabled

Joost-Pieter Katoen Theoretical Foundations of the UML 29/31

What is now a macro step?

A macro step is a set T" of edges such that:

@ all edges in step T are enabled

@ all edges in T are pairwise consistent
o they are identical or
o scopes are (descendants of) different children of the same AND-node

Joost-Pieter Katoen Theoretical Foundations of the UML 29/31

What is now a macro step?

A macro step is a set T" of edges such that:

@ all edges in step T are enabled

@ all edges in T are pairwise consistent
o they are identical or
o scopes are (descendants of) different children of the same AND-node

@ step T' is maximal (wrt. set inclusion)
o T cannot be extended with any enabled, consistent edge

Joost-Pieter Katoen Theoretical Foundations of the UML 29/31

What is now a macro step?

A macro step is a set T" of edges such that:

@ all edges in step T are enabled

@ all edges in T are pairwise consistent
o they are identical or
o scopes are (descendants of) different children of the same AND-node

@ step T' is maximal (wrt. set inclusion)
o T cannot be extended with any enabled, consistent edge

o priorities: enabled edge ed is not in step 7" implies

Jded € T. (ed is inconsistent with ed’ A —(ed’ < ed))
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 29/31

A macro step — formally

A macro step is a set T" of edges such that:

Joost-Pieter Katoen Theoretical Foundations of the UML 30/31

A macro step — formally

A macro step is a set T" of edges such that:

@ enabledness: T'C En(C,I,V)

Joost-Pieter Katoen Theoretical Foundations of the UML 30/31

A macro step — formally

A macro step is a set T" of edges such that:
@ enabledness: T'C En(C,I,V)

o consistency: T' C Cons(T)

Joost-Pieter Katoen Theoretical Foundations of the UML 30/31

A macro step — formally

A macro step is a set T" of edges such that:
@ enabledness: T'C En(C,I,V)
o consistency: T' C Cons(T)

e maximality: En(C,I,V) N Cons(T) C T

Joost-Pieter Katoen Theoretical Foundations of the UML 30/31

A macro step — formally

A macro step is a set T" of edges such that:
@ enabledness: T C En(C, I,V)
o consistency: T' C Cons(T)
e maximality: En(C,I,V) N Cons(T) C T

@ priority: Yed € En(C,1,V) — T we have
(Jed’ € T. (ed is inconsistent with ed’ A =(ed’ < ed)))

Joost-Pieter Katoen Theoretical Foundations of the UML 30/31

A macro step — formally

A macro step is a set T" of edges such that:

enabledness: T C En(C, I,V)
o consistency: T' C Cons(T)
e maximality: En(C,I,V) N Cons(T) C T

@ priority: Yed € En(C,1,V) — T we have
(Jed’ € T. (ed is inconsistent with ed’ A =(ed’ < ed)))

The first three points yield: T'= En(C,I,V) N Cons(T).

Joost-Pieter Katoen Theoretical Foundations of the UML 30/31

Computing the set T' of macro steps in state (C, 1,V

function nextStep(C,1,V)

T:=9

while ' C En(C,1,V) N Cons(T)

do let ed € High ((En(C,1,V) N Cons(T)) —T);
T:=T U {ed}

od

return 7.

where High(T) = {ed € T | =(3ed € T.ed < ed')}

Joost-Pieter Katoen Theoretical Foundations of the UML 31/31

	Formal Definition of Statecharts
	A Semantics for Statecharts
	Intuition and Assumptions
	States and Configurations
	Enabledness
	Consistency
	Priority

