Theoretical Foundations of the UML Lecture 18: Statecharts Semantics (1)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

14. Juli 2016

Joost-Pieter Katoen Theoretical Foundations of the UML

1/31

< 口 > < 同 >

1 Formal Definition of Statecharts

2 A Semantics for Statecharts

- Intuition and Assumptions
- States and Configurations
- Enabledness
- Consistency
- Priority

→ Ξ → → Ξ →

< 同 >

1 Formal Definition of Statecharts

A Semantics for Statecharts

- Intuition and Assumptions
- States and Configurations
- Enabledness
- Consistency
- Priority

< 67 ▶

(신문) (문)

State charts := Mealy machines

- + State hierarchy
- + Broadcast communication
- + Orthogonality

(B)

Definition (Statecharts)

- A state chart SC is a triple (N, E, Edges) with:
 - **(**) N is a set of **nodes** (or: states) structured in a **tree**
 - **2** E is a set of **events**
 - pseudo-event $after(d) \in E$ denotes a delay of $d \in \mathbb{R}_{\geq 0}$ time units
 - $\perp \not\in E$ stands for "no event available"
 - Solution Edges is a set of (hyper-) edges, defined later on.

~ 프 > ~ 프 >

Definition (Statecharts)

- A statechart SC is a triple (N, E, Edges) with:
 - **(**) N is a set of **nodes** (or: states) structured in a **tree**
 - **2** E is a set of **events**
 - pseudo-event $after(d) \in E$ denotes a delay of $d \in \mathbb{R}_{\geq 0}$ time units
 - $\perp \not\in E$ stands for "no event available"
 - Solution Edges is a set of (hyper-) edges, defined later on.

Definition (System)

A system is described by a finite collection of statecharts (SC_1, \ldots, SC_k) .

・ 同 ト ・ ヨ ト ・ ヨ ト

Function children

Nodes obey a tree structure defined by function children : $N \to 2^N$ where $x \in children(y)$ means that x is a child of y, or equivalently, y is the parent of x.

(B)

Function *children*

Nodes obey a tree structure defined by function children : $N \to 2^N$ where $x \in children(y)$ means that x is a child of y, or equivalently, y is the parent of x.

Ancestor relation \trianglelefteq

The partial order $\trianglelefteq \subseteq N \times N$ is defined by:

- $\forall x \in N. x \leq x$
- $\forall x, y \in N. x \leq y$ if $x \in children(y)$
- $\bullet \ \forall x,y,z \in N. \, x \trianglelefteq y \, \land \, y \trianglelefteq z \, \Rightarrow \, x \trianglelefteq z$

 $x \leq y$ means that x is a descendant of y, or equivalently, y is an ancestor of x. If $x \leq y$ or $y \leq x$, nodes x and y are ancestrally related.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Function *children*

Nodes obey a tree structure defined by function children : $N \to 2^N$ where $x \in children(y)$ means that x is a child of y, or equivalently, y is the parent of x.

Ancestor relation \trianglelefteq

The partial order $\trianglelefteq \subseteq N \times N$ is defined by:

- $\forall x \in N. x \leq x$
- $\forall x, y \in N. x \leq y$ if $x \in children(y)$
- $\forall x, y, z \in N. x \leq y \land y \leq z \Rightarrow x \leq z$

 $x \leq y$ means that x is a descendant of y, or equivalently, y is an ancestor of x. If $x \leq y$ or $y \leq x$, nodes x and y are ancestrally related.

Root node

There is a unique root with no ancestors, and $\forall x \in N. x \leq \text{root}$.

Functions on nodes

The type of nodes

Nodes are typed, $type(x) \in \{BASIC, AND, OR\}$ such that for $x \in N$:

- type(root) = OR
- type(x) = BASIC iff $children(x) = \emptyset$, i.e., x is a leaf
- type(x) = AND implies $(\forall y \in children(x), type(y) = OR)$

(신문) (문)

Functions on nodes

The type of nodes

Nodes are typed, $type(x) \in \{BASIC, AND, OR\}$ such that for $x \in N$:

- type(root) = OR
- type(x) = BASIC iff $children(x) = \emptyset$, i.e., x is a leaf
- type(x) = AND implies $(\forall y \in children(x), type(y) = OR)$

Default nodes

default : $N \to N$ is a partial function on $\{x \in N \mid type(x) = \text{OR} \}$ with

default(x) = y implies $y \in children(x)$.

イロト イポト イヨト イヨト

Functions on nodes

The type of nodes

Nodes are typed, $type(x) \in \{BASIC, AND, OR\}$ such that for $x \in N$:

- type(root) = OR
- type(x) = BASIC iff $children(x) = \emptyset$, i.e., x is a leaf
- type(x) = AND implies $(\forall y \in children(x), type(y) = OR)$

Default nodes

default : $N \to N$ is a partial function on $\{x \in N \mid type(x) = OR\}$ with

default(x) = y implies $y \in children(x)$.

The function default assigns to each OR-node x one of its children as default node that becomes active once node x becomes active.

・ロッ ・雪ッ ・ヨッ

ъ

Example

A damage assessor

Joost-Pieter Katoen Theoretical Foundations of the UML

Definition (Edges)

An edge is a quintuple (X, e, g, A, Y), denoted $X \xrightarrow{-e[g]/A} Y$ with:

- $X \subseteq N$ is a set of source nodes with $X \neq \emptyset$
- $e \in E \cup \{\perp\}$ is the trigger event
- $A \subseteq Act$ is a finite set of actions
 - such as $v := \exp r$ for local variable v and expression $\exp r$
 - or send j.e, i.e., send event e to statechart SC_j
- Guard g is a Boolean expression over all variables in (SC_1, \ldots, SC_k)
- $Y \subseteq N$ is a set of target nodes with $Y \neq \emptyset$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Definition (Edges)

An edge is a quintuple (X, e, g, A, Y), denoted $X \xrightarrow{e[g]/A} Y$ with:

- $X \subseteq N$ is a set of source nodes with $X \neq \emptyset$
- $e \in E \cup \{\perp\}$ is the trigger event
- $A \subseteq Act$ is a finite set of actions
 - such as $v := \exp r$ for local variable v and expression $\exp r$
 - or send j.e, i.e., send event e to statechart SC_j
- Guard g is a Boolean expression over all variables in (SC_1, \ldots, SC_k)
- $Y \subseteq N$ is a set of target nodes with $Y \neq \emptyset$

The sets X and Y may contain nodes at different depth in the node tree.

- 4 同 1 - 4 回 1 - 4 回 1

Example statechart

Joost-Pieter Katoen Theoretical Foundations of the UML

< 프 ► < 프 ►

10/31

< 同 ▶

Formal Definition of Statecharts

2 A Semantics for Statecharts

- Intuition and Assumptions
- States and Configurations
- Enabledness
- Consistency
- Priority

< 同 >

• Formal semantics: map (SC_1, \ldots, SC_k) onto a single Mealy machine

12/31

- Formal semantics: map (SC_1, \ldots, SC_k) onto a single Mealy machine
- This is done using a step semantics distinguishing macro and micro steps

(신문) (문)

- Formal semantics: map (SC_1, \ldots, SC_k) onto a single Mealy machine
- This is done using a step semantics distinguishing macro and micro steps
- Macro steps are "observable" and are subdivided into a finite number of micro steps that cannot be prolonged

- Formal semantics: map (SC_1, \ldots, SC_k) onto a single Mealy machine
- This is done using a step semantics distinguishing macro and micro steps
- Macro steps are "observable" and are subdivided into a finite number of micro steps that cannot be prolonged
- In a macro step, a maximal set of edges is performed

- Formal semantics: map (SC_1, \ldots, SC_k) onto a single Mealy machine
- This is done using a step semantics distinguishing macro and micro steps
- Macro steps are "observable" and are subdivided into a finite number of micro steps that cannot be prolonged
- In a macro step, a maximal set of edges is performed
- Events generated in macro step n are only available in macro step n+1
 - If such event is not "consumed" in step n+1, it dies, and is not available in step n+2, n+3, ...

(日) (四) (日) (日) (日)

 Input to a macro step is a set of events (and not a queue) the order of event generation is ignored, i.e., if e and e' are generated in macro step i, the order in which they are generated is irrelevant in step i+1

- Input to a macro step is a set of events (and not a queue) the order of event generation is ignored, i.e., if e and e' are generated in macro step i, the order in which they are generated is irrelevant in step i+1
- A macro step reacts to all available events events can only be used in macro step immediately following their generation

~ 프 > ~ 프 >

13/31

- Input to a macro step is a set of events (and not a queue) the order of event generation is ignored, i.e., if e and e' are generated in macro step i, the order in which they are generated is irrelevant in step i+1
- A macro step reacts to all available events events can only be used in macro step immediately following their generation
- Instantaneous edges and actions

~ 프 > ~ 프 >

- Input to a macro step is a set of events (and not a queue) the order of event generation is ignored, i.e., if e and e' are generated in macro step i, the order in which they are generated is irrelevant in step i+1
- A macro step reacts to all available events events can only be used in macro step immediately following their generation
- Instantaneous edges and actions
- Unlimited concurrency

there is no limit on the number of events that can be consumed in a macro step

- 4 同 ト - 4 回 ト - 4 回 ト

- Input to a macro step is a set of events (and not a queue) the order of event generation is ignored, i.e., if e and e' are generated in macro step i, the order in which they are generated is irrelevant in step i+1
- A macro step reacts to all available events events can only be used in macro step immediately following their generation
- Instantaneous edges and actions
- Unlimited concurrency

there is no limit on the number of events that can be consumed in a macro step

• Perfect communication, i.e., messages are not lost

• State = a set of nodes ("current control") + the values of variables

(B)

14/31

• State = a set of nodes ("current control") + the values of variables

• Edge is enabled if guard holds in current state

- State = a set of nodes ("current control") + the values of variables
- Edge is enabled if guard holds in current state
- Executing edge $X \xrightarrow{e[g]/A} Y$ = perform actions A, consume event e
 - $\bullet\,$ leave source nodes X and switch to target nodes Y
 - \Rightarrow events are unordered, and considered as a set

A 3 1 A 3 1

14/31

- State = a set of nodes ("current control") + the values of variables
- Edge is enabled if guard holds in current state
- Executing edge $X \xrightarrow{e[g]/A} Y$ = perform actions A, consume event e
 - $\bullet\,$ leave source nodes X and switch to target nodes Y
 - $\Rightarrow\,$ events are unordered, and considered as a set
- Principle: execute as many edges at once (without conflict)
 - $\Rightarrow\,$ the total execution of such maximal set is a macro step

A □ ▶ A □ ▶ A □ ▶ A

States and configurations

Definition (Configuration)

A configuration of SC = (N, E, Edges) is a set $C \subseteq N$ of nodes satisfying:

- root $\in C$
- $x \in C$ and type(x) = OR implies $|children(x) \cap C| = 1$
- $x \in C$ and type(x) = AND implies $children(x) \subseteq C$

Let Conf denote the set of configurations of SC.

・ 「 ・ ・ ・ ・ ・ ・ ・ ・

Definition (Configuration)

A configuration of SC = (N, E, Edges) is a set $C \subseteq N$ of nodes satisfying:

- root $\in C$
- $x \in C$ and type(x) = OR implies $|children(x) \cap C| = 1$
- $x \in C$ and type(x) = AND implies $children(x) \subseteq C$

Let Conf denote the set of configurations of SC.

Definition (State)

State of SC = (N, E, Edges) is a triple (C, I, V) where

- C is a configuration of SC
- $I \subseteq V$ is the set of events to be processed
- V is a valuation of the variables.

Example

Joost-Pieter Katoen Theoretical Foundations of the UML

16/31

Definition (Enabledness)

Edge $X \xrightarrow{e[g]/A} Y$ is enabled in state (C, I, V) whenever:

• $X \subseteq C$, i.e. all source nodes are in configuration C

•
$$((C_1, \dots, C_n), (V_1, \dots, V_n)) \models g$$
, i.e., guard g is satisfied

configurations variable valuations

• either
$$e \neq \bot$$
 implies $e \in I$, or $e = \bot$

Let En(C, I, V) denote the set of enabled edges in state (C, I, V).

・ 同 ト ・ ヨ ト ・ ヨ ト

• On receiving an input e, several edges in SC may become enabled

- On receiving an input e, several edges in SC may become enabled
- Then, a maximal and consistent set of enabled edges is taken

프 문 문 프 문

18/31

- On receiving an input e, several edges in SC may become enabled
- Then, a maximal and consistent set of enabled edges is taken
- If there are several such sets, choose one nondeterministically

프 문 문 프 문

18/31

- On receiving an input e, several edges in SC may become enabled
- Then, a maximal and consistent set of enabled edges is taken
- If there are several such sets, choose one nondeterministically
- Edges in concurrent components can be taken simultaneously

(B)

- On receiving an input e, several edges in SC may become enabled
- Then, a maximal and consistent set of enabled edges is taken
- If there are several such sets, choose one nondeterministically
- Edges in concurrent components can be taken simultaneously
- But edges in other components cannot; they are inconsistent

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- On receiving an input e, several edges in SC may become enabled
- Then, a maximal and consistent set of enabled edges is taken
- If there are several such sets, choose one nondeterministically
- Edges in concurrent components can be taken simultaneously
- But edges in other components cannot; they are inconsistent
- To resolve nondeterminism (partly), priorities are used

Consistency: examples

To define consistency formally, we need some auxiliary concepts

Definition (Least common ancestor)

For $X \subseteq N$, the least common ancestor, denoted lca(X), is the node $y \in N$ such that:

 $(\forall x \in X. \, x \trianglelefteq y) \quad \text{and} \quad \forall z \in N. \, (\forall x \in X. \, x \trianglelefteq z) \text{ implies } y \trianglelefteq z.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Least common ancestor)

For $X \subseteq N$, the least common ancestor, denoted lca(X), is the node $y \in N$ such that:

 $(\forall x \in X. \, x \trianglelefteq y) \quad \text{and} \quad \forall z \in N. \, (\forall x \in X. \, x \trianglelefteq z) \text{ implies } y \trianglelefteq z.$

Intuition

Node y is an ancestor of any node in X (first clause), and is a descendant of any node which is an ancestor of any node in X (second clause).

Definition (Orthogonality of nodes)

Nodes $x, y \in N$ are orthogonal, denoted $x \perp y$, if

$$\neg(x \leq y)$$
 and $\neg(y \leq x)$ and $type(lca(\{x, y\})) = AND.$

< 글 > < 글 >

< 同 ▶

Definition (Orthogonality of nodes)

Nodes $x, y \in N$ are orthogonal, denoted $x \perp y$, if

$$\neg(x \leq y)$$
 and $\neg(y \leq x)$ and $type(lca(\{x, y\})) = AND.$

Orthogonality captures the notion of independence. Orthogonal nodes can execute enabled edges independently, and thus concurrently.

Definition (Scope of edge)

The scope of edge $X \xrightarrow{\dots} Y$ is the most nested OR-node that is an ancestor of both X and Y.

Definition (Scope of edge)

The scope of edge $X \xrightarrow{\dots} Y$ is the most nested OR-node that is an ancestor of both X and Y.

Intuition

The scope of edge $X \xrightarrow{\dots} Y$ is the most nested OR-node that is **unaffected** by executing the edge $X \xrightarrow{\dots} Y$.

Joost-Pieter Katoen Theoretical Foundations of the UML

イロト イボト イヨト イヨト

 $\operatorname{scope}(A \to D) = \operatorname{root} \quad \operatorname{and} \quad \operatorname{scope}(A \to C) = G \quad \operatorname{and} \quad \operatorname{scope}(A \to B) = F$

Joost-Pieter Katoen Theoretical Foundations of the UML

23/31

Consistency: formal definition

Definition (Consistency)

• Edges $ed, ed' \in Edges$ are consistent if:

Joost-Pieter Katoen

$$ed = ed'$$
 or $scope(ed) \perp scope(ed')$.

< 2> < 2>

Consistency: formal definition

Definition (Consistency)

• Edges $ed, ed' \in Edges$ are consistent if:

$$ed = ed'$$
 or $scope(ed) \perp scope(ed')$.

2 $T \subseteq Edges$ is consistent if all edges in T are pairwise consistent.

Definition (Consistency)

1 Edges $ed, ed' \in Edges$ are consistent if:

$$ed = ed'$$
 or $scope(ed) \perp scope(ed')$.

2 $T \subseteq Edges$ is consistent if all edges in T are pairwise consistent. Cons(T) is the set of edges that are consistent with all edges in $T \subseteq Edges$

 $Cons(T) = \{ ed \in Edges \mid \forall ed' \in T : ed \text{ is consistent with } ed' \}$

A macro step is a set T of edges such that:

• all edges in step T are enabled

- A macro step is a set T of edges such that:
 - all edges in step T are enabled
 - \bullet all edges in T are pairwise consistent, that is:
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node

(B)

A macro step is a set T of edges such that:

- all edges in step T are enabled
- \bullet all edges in T are pairwise consistent, that is:
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node
- enabled edge ed is not in step T implies there exists $ed' \in T$ such that ed is inconsistent with ed', and the priority of ed' is not smaller than ed

(신문) (문)

A macro step is a set T of edges such that:

- all edges in step T are enabled
- \bullet all edges in T are pairwise consistent, that is:
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node
- enabled edge ed is not in step T implies there exists $ed' \in T$ such that ed is inconsistent with ed', and the priority of ed' is not smaller than ed
- step T is maximal (wrt. set inclusion)

(B)

Priorities

Priorities restrict (but do not abandon) nondeterminism between multiple enabled edges.

< 177 ▶

Priorities

Priorities restrict (but do not abandon) nondeterminism between multiple enabled edges.

Definition (Priority relation)

The priority relation $\leq Edges \times Edges$ is a partial order defined for $ed, ed' \in Edges$ by:

$$ed \leq ed'$$
 if $scope(ed') \leq scope(ed)$

So, ed' has priority over ed if its scope is a descendant of ed's scope.

Priorities

Priorities restrict (but do not abandon) nondeterminism between multiple enabled edges.

Definition (Priority relation)

The priority relation $\leq Edges \times Edges$ is a partial order defined for $ed, ed' \in Edges$ by:

$$ed \leq ed'$$
 if $scope(ed') \leq scope(ed)$

So, ed' has priority over ed if its scope is a descendant of ed's scope.

Example:

$$\boxed{ \begin{pmatrix} \vdots & B \\ 0 & 1 \\ 0 & 2 \\ \hline \end{pmatrix} \begin{pmatrix} e' & C \\ 0 & 2 \\ \hline \end{pmatrix} }$$

 $2 \leq 1$ since $scope(1) = D \leq scope(2) = root$.

Joost-Pieter Katoen Theoretical Foundations of the UML

Priority: examples

Joost-Pieter Katoen Theoretical Foundations of the UML

< □ > < □ >

27/31

Priorities rule out some nondeterminism, but not necessarily all.

Joost-Pieter Katoen Theoretical Foundations of the UML

A macro step is a set T of edges such that:

• all edges in step T are enabled

- A macro step is a set T of edges such that:
 - all edges in step T are enabled
 - \bullet all edges in T are pairwise consistent
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node

(B)

- A macro step is a set T of edges such that:
 - all edges in step T are enabled
 - \bullet all edges in T are pairwise consistent
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node
 - step T is maximal (wrt. set inclusion)
 - T cannot be extended with any enabled, consistent edge

→ Ξ → → Ξ →

- A macro step is a set T of edges such that:
 - all edges in step T are enabled
 - \bullet all edges in T are pairwise consistent
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node
 - step T is maximal (wrt. set inclusion)
 - T cannot be extended with any enabled, consistent edge
 - priorities: enabled edge ed is not in step T implies $\exists ed' \in T. \ (ed \text{ is inconsistent with } ed' \land \neg(ed' \leq ed))$

A macro step is a set T of edges such that:

A macro step is a set T of edges such that:

• enabledness: $T \subseteq En(C, I, V)$

A macro step is a set T of edges such that:

```
• enabledness: T \subseteq En(C, I, V)
```

```
• consistency: T \subseteq Cons(T)
```


A macro step is a set T of edges such that:

- enabledness: $T \subseteq En(C, I, V)$
- consistency: $T \subseteq Cons(T)$
- maximality: $En(C, I, V) \cap Cons(T) \subseteq T$

30/31

A macro step is a set T of edges such that:

- enabledness: $T \subseteq En(C, I, V)$
- consistency: $T \subseteq Cons(T)$
- maximality: $En(C, I, V) \cap Cons(T) \subseteq T$
- priority: $\forall ed \in En(C, I, V) T$ we have $(\exists ed' \in T. (ed \text{ is inconsistent with } ed' \land \neg(ed' \preceq ed)))$

- 4 同 ト - 4 回 ト - 4 回 ト

A macro step is a set T of edges such that:

- enabledness: $T \subseteq En(C, I, V)$
- consistency: $T \subseteq Cons(T)$
- maximality: $En(C, I, V) \cap Cons(T) \subseteq T$
- priority: $\forall ed \in En(C, I, V) T$ we have $(\exists ed' \in T. (ed \text{ is inconsistent with } ed' \land \neg(ed' \preceq ed)))$

Note:

The first three points yield: $T = En(C, I, V) \cap Cons(T)$.

・ロト ・ 一下・ ・ 日 ・

э

```
function nextStep(C, I, V)
T := \emptyset
while T \subset En(C, I, V) \cap Cons(T)
do let ed \in High((En(C, I, V) \cap Cons(T)) - T);
   T := T \cup \{ed\}
od
return T.
```

where $High(T) = \{ed \in T \mid \neg(\exists ed' \in T. ed \preceq ed')\}$

(人間) ト く ヨ ト (く ヨ ト