Theoretical Foundations of the UML Lecture 17: Introduction to Statecharts

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

11. Juli 2016

Outline

- Background
- Ingredients of Statecharts
 - Mealy Machines
 - State Hierarchy
 - Orthogonality
 - Broadcast Communication
 - Some Small Examples
 - Other Features: Priority, Nondeterminism and Negated Events
- Semantics of Statecharts
- 4 Formal Definition of UML Statecharts

Overview

- Background
- Ingredients of Statecharts
 - Mealy Machines
 - State Hierarchy
 - Orthogonality
 - Broadcast Communication
 - Some Small Examples
 - Other Features: Priority, Nondeterminism and Negated Events
- Semantics of Statecharts
- 4 Formal Definition of UML Statecharts

• MSCs are a visual modelling formalism for requirements

- MSCs are a visual modelling formalism for requirements
- Statecharts is a visual modelling formalism for describing the behaviour of discrete-event systems
 - automata + hierarchy + communication + concurrency

- MSCs are a visual modelling formalism for requirements
- Statecharts is a visual modelling formalism for describing the behaviour of discrete-event systems
 - automata + hierarchy + communication + concurrency
- Developed by David Harel in 1987
 - professor at Weizmann Institute (Israel); co-founder of I-Logix Inc.

- MSCs are a visual modelling formalism for requirements
- Statecharts is a visual modelling formalism for describing the behaviour of discrete-event systems
 - automata + hierarchy + communication + concurrency
- Developed by David Harel in 1987
 - professor at Weizmann Institute (Israel); co-founder of I-Logix Inc.
- Extensively used in embedded systems, automotive and avionics

- MSCs are a visual modelling formalism for requirements
- Statecharts is a visual modelling formalism for describing the behaviour of discrete-event systems
 - automata + hierarchy + communication + concurrency
- Developed by David Harel in 1987
 - professor at Weizmann Institute (Israel); co-founder of I-Logix Inc.
- Extensively used in embedded systems, automotive and avionics
- Variants: UML Statecharts, Stateflow, hierarchical state machines
 - supported by Statemate toolset, and Matlab/Simulink

Overview

- Background
- Ingredients of Statecharts
 - Mealy Machines
 - State Hierarchy
 - Orthogonality
 - Broadcast Communication
 - Some Small Examples
 - Other Features: Priority, Nondeterminism and Negated Events
- Semantics of Statecharts
- 4 Formal Definition of UML Statecharts

Statecharts constitute a visual formalism for:

Statecharts constitute a visual formalism for:

[Harel, 1987]

• Describing states and transitions in a modular way

Statecharts constitute a visual formalism for:

- Describing states and transitions in a modular way
- Enabling clustering of states

Statecharts constitute a visual formalism for:

- Describing states and transitions in a modular way
- Enabling clustering of states
- Orthogonality, i.e., concurrency

Statecharts constitute a visual formalism for:

- Describing states and transitions in a modular way
- Enabling clustering of states
- Orthogonality, i.e., concurrency
- Refinement, and

Statecharts constitute a visual formalism for:

- Describing states and transitions in a modular way
- Enabling clustering of states
- Orthogonality, i.e., concurrency
- Refinement, and
- Encouraging "zoom" capabilities for moving easily back and forth between levels of abstraction

Statecharts := Mealy machines

+ State hierarchy

+ Broadcast communication

 $+ \ Orthogonality$

Mealy machines [Mealy, 1953]

Definition (Mealy machine)

A Mealy machine $\mathcal{A} = (Q, q_0, \Sigma, \Gamma, \delta, \omega)$ with:

- Q is a finite set of states with initial state $q_0 \in Q$
- \bullet Σ is the input alphabet
- \bullet Γ is the output alphabet
- $\delta: Q \times \Sigma \to Q$ is the deterministic (input) transition function, and
- $\omega: Q \times \Sigma \to \Gamma$ is the output function

Mealy machines [Mealy, 1953]

Definition (Mealy machine)

A Mealy machine $\mathcal{A} = (Q, q_0, \Sigma, \Gamma, \delta, \omega)$ with:

- Q is a finite set of states with initial state $q_0 \in Q$
- Σ is the input alphabet
- \bullet Γ is the output alphabet
- $\delta: Q \times \Sigma \to Q$ is the deterministic (input) transition function, and
- $\omega: Q \times \Sigma \to \Gamma$ is the output function

Intuition

A Mealy machine (or: finite-state transducer) is a finite-state automaton that produces output on a transition, based on current input and state.

Mealy machines [Mealy, 1953]

Definition (Mealy machine)

A Mealy machine $\mathcal{A} = (Q, q_0, \Sigma, \Gamma, \delta, \omega)$ with:

- Q is a finite set of states with initial state $q_0 \in Q$
- \bullet Σ is the input alphabet
- \bullet Γ is the output alphabet
- $\delta: Q \times \Sigma \to Q$ is the deterministic (input) transition function, and
- $\omega: Q \times \Sigma \to \Gamma$ is the output function

Intuition

A Mealy machine (or: finite-state transducer) is a finite-state automaton that produces output on a transition, based on current input and state.

Moore machines

In a Moore machine $\omega: Q \to \Gamma$, output is purely state-based.

Mealy machines

Mealy machines

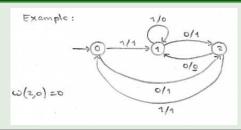
- No final (accepting) states
- Transitions produce output
- Deterministic input transition function
- ⇒ Acceptance of input words is not important, but the generation of output words from input words is important

Mealy machines

Mealy machines

- No final (accepting) states
- Transitions produce output
- Deterministic input transition function
- ⇒ Acceptance of input words is not important, but the generation of output words from input words is important

Example



- No support for hierarchy
 - all states are arranged in a flat fashion
 - no notion of substates

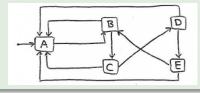
- No support for hierarchy
 - all states are arranged in a flat fashion
 - no notion of substates
- Realistic systems require complex transition structure and huge number of states
 - scalability problems yields unstructured state diagrams

- No support for hierarchy
 - all states are arranged in a flat fashion
 - no notion of substates
- Realistic systems require complex transition structure and huge number of states
 - scalability problems yields unstructured state diagrams
- No notion of concurrency
 - need for modeling independent components

- No support for hierarchy
 - all states are arranged in a flat fashion
 - no notion of substates
- Realistic systems require complex transition structure and huge number of states
 - scalability problems yields unstructured state diagrams
- No notion of concurrency
 - need for modeling independent components
- No notion of communication between automata.

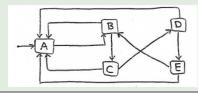
Scalability

A bit unstructured Mealy machine

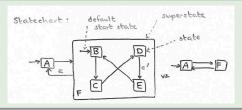


Scalability

A bit unstructured Mealy machine

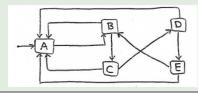


An equivalent statechart

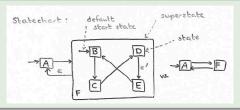


Scalability

A bit unstructured Mealy machine



An equivalent statechart



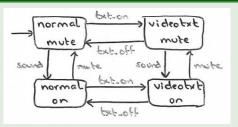
State hierarchy yields modular, hierarchical and structured models.

Two independent components



Two independent components

Mealy machine for $Image \parallel Sound$

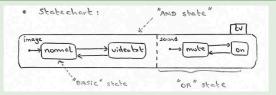


Number of states is exponential in size of concurrent components

Two independent components

Two independent components

Statechart for $Image \parallel Sound$



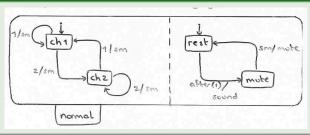
Concurrency modeled by independence

Combined with state hierarchy

Switching on and off the television I wideo | wideo | wideo | on | I ware of | standby | AND state

Broadcast

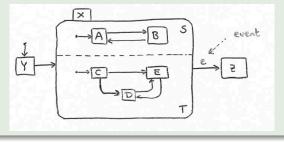
Turn off sound on switching a tv channe



- Output is broadcast that can be received by any other component
- When pushing button 1, channel switches to its state channel 1, while generating signal sm on which component SM switches off the sound.

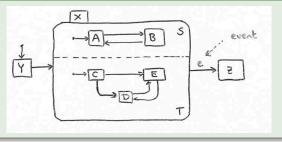
Concurrency

Example concurrency in statecharts



Concurrency

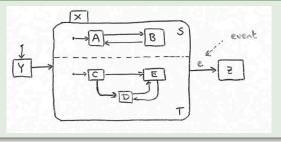
Example concurrency in statecharts



Active

ullet As long as node X is active, nodes S and T are active

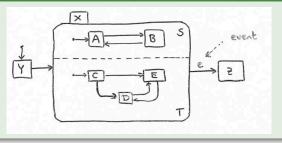
Example concurrency in statecharts



Active

- \bullet As long as node X is active, nodes S and T are active
- Node S is active when either node A or B is active

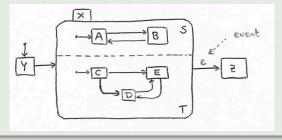
Example concurrency in statecharts



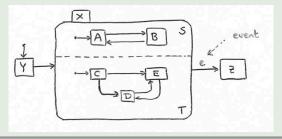
Active

- \bullet As long as node X is active, nodes S and T are active
- Node S is active when either node A or B is active
- Node T is active if one of C, D or E is active

Example concurrency in statecharts



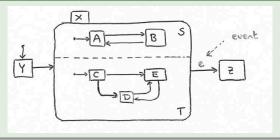
Example concurrency in statecharts



Exit behaviour

ullet When node X exits, both nodes S and T exit

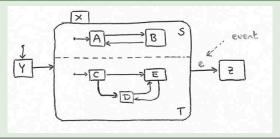
Example concurrency in statecharts



Exit behaviour

- ullet When node X exits, both nodes S and T exit
- ullet When Y exits, X starts, S starts in A, and T starts in C

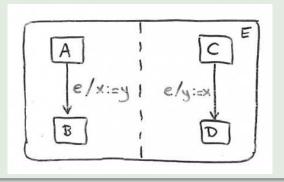
Example concurrency in statecharts



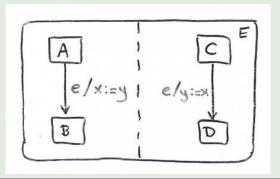
Exit behaviour

- \bullet When node X exits, both nodes S and T exit
- When Y exits, X starts, S starts in A, and T starts in C
- On the occurrence of event e, node X exits (regardless of current state in S or T)

Swapping the value of variables x and y

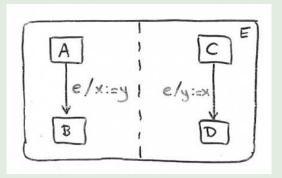


Swapping the value of variables x and y



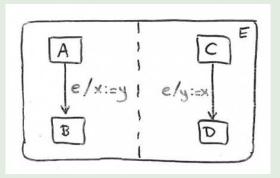
• If nodes A and C are active, assume x = 1, y = 2

Swapping the value of variables x and y



- If nodes A and C are active, assume x = 1, y = 2
- On occurrence of event e, B and D are active, and x=2, y=1

Swapping the value of variables x and y



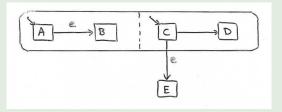
- If nodes A and C are active, assume x = 1, y = 2
- On occurrence of event e, B and D are active, and x = 2, y = 1
- ⇒ In Harel's statecharts, memory is shared, i.e., concurrent components have access to shared variables.

Priority

What if event e occurs when A and C are active?

Priority

What if event e occurs when A and C are active?



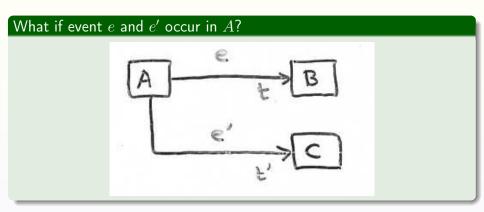
Solution:

Add a priority mechanism that decides whether:

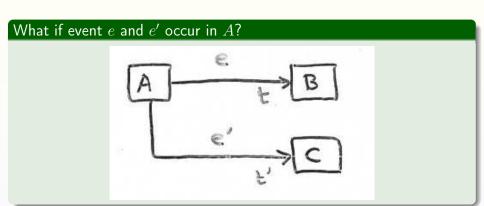
- inter-level transitions (such as $C \to E$), or
- intra-level transitions (such as $A \to B$)

prevail in case both are enabled.

Nondeterminism



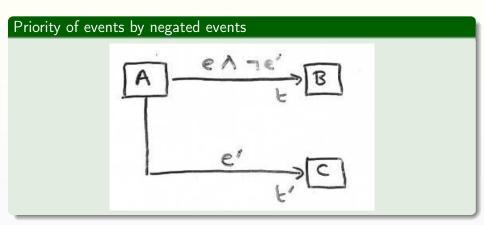
Nondeterminism



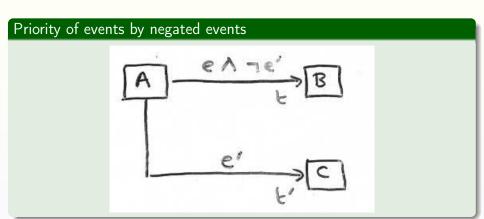
Solution:

Choice is resolved nondeterministically, i.e., the next state is either B or C, but not both.

Negation of events



Negation of events



Note:

In UML statecharts, negated events do not occur

Overview

- Background
- Ingredients of Statecharts
 - Mealy Machines
 - State Hierarchy
 - Orthogonality
 - Broadcast Communication
 - Some Small Examples
 - Other Features: Priority, Nondeterminism and Negated Events
- Semantics of Statecharts
- 4 Formal Definition of UML Statecharts

Semantic problems with Statecharts

- Synchrony hypothesis (or: zero response time)
- Self-triggering
- Negated trigger events
- Transition effect is contradicting its cause
- Interrupts

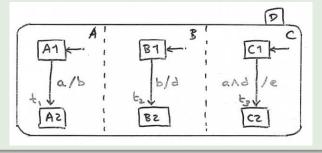
Semantic problems with Statecharts

- Synchrony hypothesis (or: zero response time)
- Self-triggering
- Negated trigger events
- Transition effect is contradicting its cause
- Interrupts

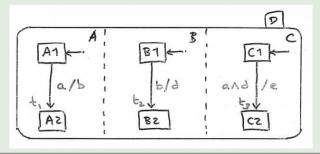
Note: [von der Beeck, 1994]

Due to all these problems, hundred(s) (!) of different semantics for Statecharts have been defined in the literature.

Event may yield chain of reactions



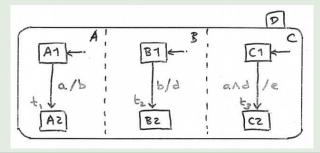
Event may yield chain of reactions



Note:

• If A1, B1 and C1 are active and event a occurs, a chain of reactions occurs: transition t_1 triggers t_2 , and t_2 triggers t_3

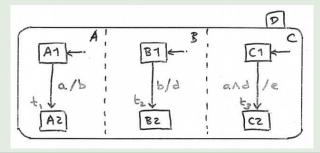
Event may yield chain of reactions



Note:

- If A1, B1 and C1 are active and event a occurs, a chain of reactions occurs: transition t_1 triggers t_2 , and t_2 triggers t_3
- But transitions t_1 , t_2 , t_3 occur at the same time as events do not take time (except for after(d) events with real d)

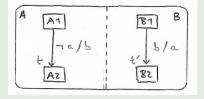
Event may yield chain of reactions



Note:

- If A1, B1 and C1 are active and event a occurs, a chain of reactions occurs: transition t_1 triggers t_2 , and t_2 triggers t_3
- But transitions t_1 , t_2 , t_3 occur at the same time as events do not take time (except for after(d) events with real d)

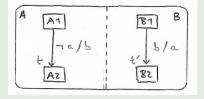
Negated events and synchrony may yield paradox



The paradox:

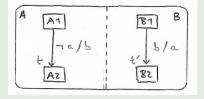
 \bullet Assume events a and b are not alive

Negated events and synchrony may yield paradox



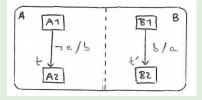
- \bullet Assume events a and b are not alive
- ullet Transition t can be taken, generating event b

Negated events and synchrony may yield paradox



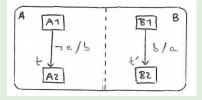
- Assume events a and b are not alive
- Transition t can be taken, generating event b
- Transition t' can be taken, generating event a

Negated events and synchrony may yield paradox



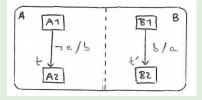
- \bullet Assume events a and b are not alive
- \bullet Transition t can be taken, generating event b
- Transition t' can be taken, generating event a
- But then t should not have taken place as it is not enabled

Negated events and synchrony may yield paradox



- \bullet Assume events a and b are not alive
- \bullet Transition t can be taken, generating event b
- Transition t' can be taken, generating event a
- But then t should not have taken place as it is not enabled
- But then t' cannot be taken since b does not occur

Negated events and synchrony may yield paradox



- Assume events a and b are not alive
- \bullet Transition t can be taken, generating event b
- Transition t' can be taken, generating event a
- But then t should not have taken place as it is not enabled
- But then t' cannot be taken since b does not occur
- \bullet Hence, a does not occur and t cannot be taken

Simplifications in UML statecharts

- No shared variables
- ② No negated and no compound events (like $e \wedge e'$)
- 3 Two-party communication rather than broadcast
- No synchrony hypothesis:
 - events generated in step i can only be consumed in step i+1,
 - and die otherwise, i.e., when they are not consumed in step i+1, events disappear

Overview

- Background
- Ingredients of Statecharts
 - Mealy Machines
 - State Hierarchy
 - Orthogonality
 - Broadcast Communication
 - Some Small Examples
 - Other Features: Priority, Nondeterminism and Negated Events
- Semantics of Statecharts
- 4 Formal Definition of UML Statecharts

Statecharts

Definition (Statecharts)

A statechart SC is a triple (N, E, Edges) with:

- \bullet N is a set of nodes (or: states) structured in a tree
- 2 E is a set of events
 - pseudo-event after(d) denotes a delay of $d \in \mathbb{R}_{\geq 0}$ time units
 - $\bot \notin E$ stands for "no event available"
- 3 Edges is a set of (hyper-) edges, defined later on.

Statecharts

Definition (Statecharts)

A statechart SC is a triple (N, E, Edges) with:

- \bullet N is a set of nodes (or: states) structured in a tree
- 2 E is a set of events
 - pseudo-event after(d) denotes a delay of $d \in \mathbb{R}_{\geq 0}$ time units
 - $\bot \notin E$ stands for "no event available"
- 3 Edges is a set of (hyper-) edges, defined later on.

Definition (System)

A system is described by a finite collection of statecharts $(SC_1,\ldots,SC_k).$

Syntactic sugar

this is an elementary form; the UML allows more constructs that can be defined in terms of these basic elements

- Deferred events
- Parametrised events
- Activities that take time
- Dynamic choice points
- Synchronization states
- History states

simulate by regeneration simulate by set of parameter-less events simulate by start and end event simulate by intermediate state use a hyperedge with a counter (re)define an entry point

Tree structure

Function children

Nodes obey a tree structure defined by function children: $N \to 2^N$ where $x \in children(y)$ means that x is a child of y, or equivalently, y is the parent of x.

Partial order ⊴

The partial order $\unlhd \subseteq N \times N$ is defined by:

- $\bullet \ \forall x \in N. \ x \leq x$
- $\forall x, y \in N. \ x \leq y \text{ if } x \in children(y)$
- $\bullet \ \forall x,y,z \in N. \ x \unlhd y \ \land \ y \unlhd z \ \Rightarrow \ x \unlhd z$

 $x \subseteq y$ means that x is a descendant of y, or equivalently, y is an ancestor of x. If $x \subseteq y$ or $y \subseteq x$, nodes x and y are ancestrally related.

Root node

There is a unique root with no ancestors, and $\forall x \in N. x \leq \text{root}$.

Functions on nodes

The type of nodes

Nodes are typed, $type(x) \in \{ BASIC, AND, OR \}$ such that for $x \in N$:

- type(root) = OR
- $type(x) = BASIC iff children(x) = \emptyset$, i.e., x is a leaf
- $type(x) = AND implies (\forall y \in children(x). type(y) = OR)$

Default nodes

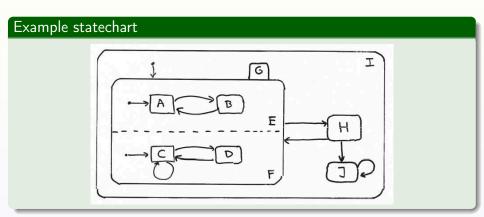
 $default: N \to N$ is a partial function on domain

 $\{x \in N \mid type(x) = OR\}$ such that

default(x) = y implies $y \in children(x)$.

The function default assigns to each OR-node x one of its children as default node that becomes active once x becomes active.

Example



Edges

Definition (Edges)

An edge is a quintuple (X, e, g, A, Y), denoted $X \xrightarrow{e[g]/A} Y$ with:

- $X \subseteq N$ is a set of source nodes with $X \neq \emptyset$
- $e \in E \cup \{\bot\}$ is the trigger event
- $A \subseteq Act$ is a set of actions
 - such as $v := \exp r$ or local variable v and expression $\exp r$
 - or send j.e, i.e., send event e to statechart SC_i
- Guard g is a Boolean expression over all variables in (SC_1, \ldots, SC_k)
- $Y \subseteq N$ is a set of target nodes with $Y \neq \emptyset$

Edges

Definition (Edges)

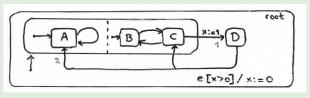
An edge is a quintuple (X, e, g, A, Y), denoted $X \xrightarrow{e[g]/A} Y$ with:

- $X \subseteq N$ is a set of source nodes with $X \neq \emptyset$
- $e \in E \cup \{\bot\}$ is the trigger event
- $A \subseteq Act$ is a set of actions
 - such as $v := \exp r$ or local variable v and expression $\exp r$
 - or send j.e, i.e., send event e to statechart SC_i
- Guard g is a Boolean expression over all variables in (SC_1, \ldots, SC_k)
- $Y \subseteq N$ is a set of target nodes with $Y \neq \emptyset$

The sets X and Y may contain nodes at different depth in the node tree.

Example (1)

Example statechart

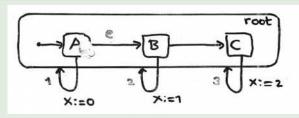


edge 1:
$$\{C\} \xrightarrow{\perp [true]/\{x:=1\}} \{D\}$$

edge 2: $\{D\} \xrightarrow{e[x>0]/\{x:=0\}} \{A,C\}$

Example (2)

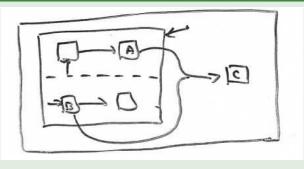
Example statechart



$$\begin{array}{c} \text{edge 1: } \{\,A\,\} \xrightarrow{e[true]/\varnothing} \{\,B\,\} \\ \\ \text{edge 2: } \{\,B\,\} \xrightarrow{\perp [true]/\{\,x:=1\,\}} \{\,\text{root}\,\} \end{array}$$

Example (3)

Example statechart



edge : $\{A, B\} \xrightarrow{\cdots} \{C\}$

