
Theoretical Foundations of the UML
Lecture 15+16: A Logic for MSCs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

26. Juni 2016

Joost-Pieter Katoen Theoretical Foundations of the UML 1/41

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

Outline

1 Introduction

2 Local Formulas and Path Expressions

Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL

Model checking MSCs
Model checking CFMs
Model checking MSGs
Satisfiability

Joost-Pieter Katoen Theoretical Foundations of the UML 2/41

Overview

1 Introduction

2 Local Formulas and Path Expressions

Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL

Model checking MSCs
Model checking CFMs
Model checking MSGs
Satisfiability

Joost-Pieter Katoen Theoretical Foundations of the UML 3/41

A logic for MSCs

This lecture will be devoted to a logic that is interpreted over MSCs

Joost-Pieter Katoen Theoretical Foundations of the UML 4/41

A logic for MSCs

This lecture will be devoted to a logic that is interpreted over MSCs

Joost-Pieter Katoen Theoretical Foundations of the UML 4/41

A logic for MSCs

This lecture will be devoted to a logic that is interpreted over MSCs

The logic is used to umambigously express properties of MSCs

does a given MSC M satisfy the logical formula ϕ?

Joost-Pieter Katoen Theoretical Foundations of the UML 4/41

A logic for MSCs

This lecture will be devoted to a logic that is interpreted over MSCs

The logic is used to umambigously express properties of MSCs

does a given MSC M satisfy the logical formula ϕ?

And to characterise a set of MSCs by means of a logical formula

all MSCs that satisfy the formula ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 4/41

A logic for MSCs

This lecture will be devoted to a logic that is interpreted over MSCs

The logic is used to umambigously express properties of MSCs

does a given MSC M satisfy the logical formula ϕ?

And to characterise a set of MSCs by means of a logical formula

all MSCs that satisfy the formula ϕ

Based on propositional dynamic logic (PDL) [Fischer & Ladner, 1979]

combines easy-to-grasp concepts such as regular expressions and
Boolean operators

Joost-Pieter Katoen Theoretical Foundations of the UML 4/41

A logic for MSCs

This lecture will be devoted to a logic that is interpreted over MSCs

The logic is used to umambigously express properties of MSCs

does a given MSC M satisfy the logical formula ϕ?

And to characterise a set of MSCs by means of a logical formula

all MSCs that satisfy the formula ϕ

Based on propositional dynamic logic (PDL) [Fischer & Ladner, 1979]

combines easy-to-grasp concepts such as regular expressions and
Boolean operators

Syntax, semantics, examples and various verification problems.

Joost-Pieter Katoen Theoretical Foundations of the UML 4/41

Some informal example properties

1 The (unique) maximal event of M is labeled by ?(2, 1, a) Yes. No.

Joost-Pieter Katoen Theoretical Foundations of the UML 5/41

Some informal example properties

1 The (unique) maximal event of M is labeled by ?(2, 1, a) Yes. No.

2 The maximal event on process 2 is labeled by ?(2, 1, a) Yes. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 5/41

Some informal example properties

1 The (unique) maximal event of M is labeled by ?(2, 1, a) Yes. No.

2 The maximal event on process 2 is labeled by ?(2, 1, a) Yes. Yes.

3 No two consecutive events are labeled with ?(2, 3, c) No. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 5/41

Some informal example properties

1 The (unique) maximal event of M is labeled by ?(2, 1, a) Yes. No.

2 The maximal event on process 2 is labeled by ?(2, 1, a) Yes. Yes.

3 No two consecutive events are labeled with ?(2, 3, c) No. Yes.

4 The number of send events at process 3 is odd. No. No.

Joost-Pieter Katoen Theoretical Foundations of the UML 5/41

The need for logics

Joost-Pieter Katoen Theoretical Foundations of the UML 6/41

The need for logics

Properties stated in natural language are ambiguous.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/41

The need for logics

Properties stated in natural language are ambiguous.

We prefer to use a formal language for expressing properties.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/41

The need for logics

Properties stated in natural language are ambiguous.

We prefer to use a formal language for expressing properties.

A formal semantics yields an unambiguous interpretation.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/41

The need for logics

Properties stated in natural language are ambiguous.

We prefer to use a formal language for expressing properties.

A formal semantics yields an unambiguous interpretation.

This provides the basis for verification algorithms and common
understanding.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/41

The need for logics

Properties stated in natural language are ambiguous.

We prefer to use a formal language for expressing properties.

A formal semantics yields an unambiguous interpretation.

This provides the basis for verification algorithms and common
understanding.

As formal language for properties we use logic.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/41

Overview

1 Introduction

2 Local Formulas and Path Expressions

Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL

Model checking MSCs
Model checking CFMs
Model checking MSGs
Satisfiability

Joost-Pieter Katoen Theoretical Foundations of the UML 7/41

The logic PDL

Joost-Pieter Katoen Theoretical Foundations of the UML 8/41

The logic PDL

Local formulas

Statements interpreted for single events in an MSC
Express properties about other events at the same process
Express properties about send and matched receive events

Joost-Pieter Katoen Theoretical Foundations of the UML 8/41

The logic PDL

Local formulas

Statements interpreted for single events in an MSC
Express properties about other events at the same process
Express properties about send and matched receive events

Path expressions

Used to navigate through an MSC
Use choice, concatenation and repetition
Can be embraced in box and diamond modalities

Joost-Pieter Katoen Theoretical Foundations of the UML 8/41

The logic PDL

Local formulas

Statements interpreted for single events in an MSC
Express properties about other events at the same process
Express properties about send and matched receive events

Path expressions

Used to navigate through an MSC
Use choice, concatenation and repetition
Can be embraced in box and diamond modalities

PDL-formulas

Express properties about an entire MSC

Joost-Pieter Katoen Theoretical Foundations of the UML 8/41

Local formulas

Joost-Pieter Katoen Theoretical Foundations of the UML 9/41

Local formulas

Local formulas

These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Joost-Pieter Katoen Theoretical Foundations of the UML 9/41

Local formulas

Local formulas

These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Example local formulas

Joost-Pieter Katoen Theoretical Foundations of the UML 9/41

Local formulas

Local formulas

These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Example local formulas

!(1, 2, a) The current event is labeled with !(1, 2, a)

Joost-Pieter Katoen Theoretical Foundations of the UML 9/41

Local formulas

Local formulas

These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Example local formulas

!(1, 2, a) The current event is labeled with !(1, 2, a)

〈proc〉true There is a next event at the same process

Joost-Pieter Katoen Theoretical Foundations of the UML 9/41

Local formulas

Local formulas

These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Example local formulas

!(1, 2, a) The current event is labeled with !(1, 2, a)

〈proc〉true There is a next event at the same process

〈proc; proc〉true There are (at least) two next events at this process

Joost-Pieter Katoen Theoretical Foundations of the UML 9/41

Local formulas

Local formulas

These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Example local formulas

!(1, 2, a) The current event is labeled with !(1, 2, a)

〈proc〉true There is a next event at the same process

〈proc; proc〉true There are (at least) two next events at this process

[proc]−1false There is no preceding event at this process

Joost-Pieter Katoen Theoretical Foundations of the UML 9/41

Local formulas

Local formulas

These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Example local formulas

!(1, 2, a) The current event is labeled with !(1, 2, a)

〈proc〉true There is a next event at the same process

〈proc; proc〉true There are (at least) two next events at this process

[proc]−1false There is no preceding event at this process

〈msg〉true This event is a send matching a (next) receive event

Joost-Pieter Katoen Theoretical Foundations of the UML 9/41

Local formulas

Local formulas

These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Example local formulas

!(1, 2, a) The current event is labeled with !(1, 2, a)

〈proc〉true There is a next event at the same process

〈proc; proc〉true There are (at least) two next events at this process

[proc]−1false There is no preceding event at this process

〈msg〉true This event is a send matching a (next) receive event

〈proc〉 ?(1, 2, b) Event ?(1, 2, b) is a possible next event on this process

Joost-Pieter Katoen Theoretical Foundations of the UML 9/41

Local formulas

Local formulas

These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Example local formulas

!(1, 2, a) The current event is labeled with !(1, 2, a)

〈proc〉true There is a next event at the same process

〈proc; proc〉true There are (at least) two next events at this process

[proc]−1false There is no preceding event at this process

〈msg〉true This event is a send matching a (next) receive event

〈proc〉 ?(1, 2, b) Event ?(1, 2, b) is a possible next event on this process

[{ ¬!(1, 2, a) }]true An event is possible after any event different from !(1, 2, a)

Joost-Pieter Katoen Theoretical Foundations of the UML 9/41

Local formulas

Definition (Syntax of local formulas)

For communication action σ ∈ Act and path expression α, the grammar
of local formulas is given by:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

The syntax of path expressions α will be defined later on.

Joost-Pieter Katoen Theoretical Foundations of the UML 10/41

Local formulas

Definition (Syntax of local formulas)

For communication action σ ∈ Act and path expression α, the grammar
of local formulas is given by:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

The syntax of path expressions α will be defined later on.

Definition (Derived operators)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/41

Local formulas

Definition (Syntax of local formulas)

For communication action σ ∈ Act and path expression α, the grammar
of local formulas is given by:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

The syntax of path expressions α will be defined later on.

Definition (Derived operators)

false := ¬true

ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2

[α]ϕ := ¬〈α〉¬ϕ

[α]−1ϕ := ¬〈α〉−1 ¬ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 10/41

Intuitive meaning of local formulas

Joost-Pieter Katoen Theoretical Foundations of the UML 11/41

Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/41

Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.

σ Current event is labelled with σ

Joost-Pieter Katoen Theoretical Foundations of the UML 11/41

Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.

σ Current event is labelled with σ

¬ϕ Current event does not satisfy ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 11/41

Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.

σ Current event is labelled with σ

¬ϕ Current event does not satisfy ϕ

ϕ1 ∨ ϕ2 Current event satisfies ϕ1 or ϕ2

Joost-Pieter Katoen Theoretical Foundations of the UML 11/41

Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.

σ Current event is labelled with σ

¬ϕ Current event does not satisfy ϕ

ϕ1 ∨ ϕ2 Current event satisfies ϕ1 or ϕ2

〈α〉ϕ Some forward path satisfying α reaches an event satisfying ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 11/41

Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.

σ Current event is labelled with σ

¬ϕ Current event does not satisfy ϕ

ϕ1 ∨ ϕ2 Current event satisfies ϕ1 or ϕ2

〈α〉ϕ Some forward path satisfying α reaches an event satisfying ϕ

〈α〉−1 ϕ Some backward path α reaches an event satisfying ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 11/41

Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.

σ Current event is labelled with σ

¬ϕ Current event does not satisfy ϕ

ϕ1 ∨ ϕ2 Current event satisfies ϕ1 or ϕ2

〈α〉ϕ Some forward path satisfying α reaches an event satisfying ϕ

〈α〉−1 ϕ Some backward path α reaches an event satisfying ϕ

[α]ϕ All forward paths satisfying α reach an event satisfying ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 11/41

Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.

σ Current event is labelled with σ

¬ϕ Current event does not satisfy ϕ

ϕ1 ∨ ϕ2 Current event satisfies ϕ1 or ϕ2

〈α〉ϕ Some forward path satisfying α reaches an event satisfying ϕ

〈α〉−1 ϕ Some backward path α reaches an event satisfying ϕ

[α]ϕ All forward paths satisfying α reach an event satisfying ϕ

[α]−1ϕ All backward paths satisfying α reach an event satisfying ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 11/41

Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.

σ Current event is labelled with σ

¬ϕ Current event does not satisfy ϕ

ϕ1 ∨ ϕ2 Current event satisfies ϕ1 or ϕ2

〈α〉ϕ Some forward path satisfying α reaches an event satisfying ϕ

〈α〉−1 ϕ Some backward path α reaches an event satisfying ϕ

[α]ϕ All forward paths satisfying α reach an event satisfying ϕ

[α]−1ϕ All backward paths satisfying α reach an event satisfying ϕ

How are path expressions like α defined?

Joost-Pieter Katoen Theoretical Foundations of the UML 11/41

Path expressions

Definition (Syntax of local formulas)

For communication action σ ∈ Act and path expression α, the grammar of
local formulas is given by:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 12/41

Path expressions

Definition (Syntax of local formulas)

For communication action σ ∈ Act and path expression α, the grammar of
local formulas is given by:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

Definition (Syntax of path expressions)

For local formula ϕ, the grammar of path expressions is given by:

α ::= {ϕ } | proc | msg | α;α | α+ α | α∗

Joost-Pieter Katoen Theoretical Foundations of the UML 12/41

Intuitive meaning of path expressions

{ϕ } specifies an event that satisfies ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 13/41

Intuitive meaning of path expressions

{ϕ } specifies an event that satisfies ϕ

proc requires a (direct) successor relation between events at the
same process

Joost-Pieter Katoen Theoretical Foundations of the UML 13/41

Intuitive meaning of path expressions

{ϕ } specifies an event that satisfies ϕ

proc requires a (direct) successor relation between events at the
same process

msg requires a matching between current event and a receive event

Joost-Pieter Katoen Theoretical Foundations of the UML 13/41

Intuitive meaning of path expressions

{ϕ } specifies an event that satisfies ϕ

proc requires a (direct) successor relation between events at the
same process

msg requires a matching between current event and a receive event

The composition α;β defines the set of pairs (e, e′) for which there
exist event e′′ such that (e, e′′) |= α and (e′′, e′) |= β

Joost-Pieter Katoen Theoretical Foundations of the UML 13/41

Intuitive meaning of path expressions

{ϕ } specifies an event that satisfies ϕ

proc requires a (direct) successor relation between events at the
same process

msg requires a matching between current event and a receive event

The composition α;β defines the set of pairs (e, e′) for which there
exist event e′′ such that (e, e′′) |= α and (e′′, e′) |= β

α+ β denotes the union of the relations α and β

Joost-Pieter Katoen Theoretical Foundations of the UML 13/41

Intuitive meaning of path expressions

{ϕ } specifies an event that satisfies ϕ

proc requires a (direct) successor relation between events at the
same process

msg requires a matching between current event and a receive event

The composition α;β defines the set of pairs (e, e′) for which there
exist event e′′ such that (e, e′′) |= α and (e′′, e′) |= β

α+ β denotes the union of the relations α and β

α∗ denotes the reflexive and transitive closure of the relation α

Joost-Pieter Katoen Theoretical Foundations of the UML 13/41

Intuitive meaning of local formulas

Local formulas are interpreted over MSC events

Joost-Pieter Katoen Theoretical Foundations of the UML 14/41

Intuitive meaning of local formulas

Local formulas are interpreted over MSC events

Event e satisfies !(p, q, a)
︸ ︷︷ ︸

σ

iff e is labelled with action !(p, q, a)
︸ ︷︷ ︸

σ

Joost-Pieter Katoen Theoretical Foundations of the UML 14/41

Intuitive meaning of local formulas

Local formulas are interpreted over MSC events

Event e satisfies !(p, q, a)
︸ ︷︷ ︸

σ

iff e is labelled with action !(p, q, a)
︸ ︷︷ ︸

σ

Path expression α defines a binary relation between events:

Joost-Pieter Katoen Theoretical Foundations of the UML 14/41

Intuitive meaning of local formulas

Local formulas are interpreted over MSC events

Event e satisfies !(p, q, a)
︸ ︷︷ ︸

σ

iff e is labelled with action !(p, q, a)
︸ ︷︷ ︸

σ

Path expression α defines a binary relation between events:

1 {ϕ} is the set of pairs (e, e′) such that e satisfies ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 14/41

Intuitive meaning of local formulas

Local formulas are interpreted over MSC events

Event e satisfies !(p, q, a)
︸ ︷︷ ︸

σ

iff e is labelled with action !(p, q, a)
︸ ︷︷ ︸

σ

Path expression α defines a binary relation between events:

1 {ϕ} is the set of pairs (e, e′) such that e satisfies ϕ

2 (e, e′) |= proc iff e and e′ reside at the same process (p, say) and e′ is
a direct successor of e wrt. <p

Joost-Pieter Katoen Theoretical Foundations of the UML 14/41

Intuitive meaning of local formulas

Local formulas are interpreted over MSC events

Event e satisfies !(p, q, a)
︸ ︷︷ ︸

σ

iff e is labelled with action !(p, q, a)
︸ ︷︷ ︸

σ

Path expression α defines a binary relation between events:

1 {ϕ} is the set of pairs (e, e′) such that e satisfies ϕ

2 (e, e′) |= proc iff e and e′ reside at the same process (p, say) and e′ is
a direct successor of e wrt. <p

3 (e, e′) |= msg iff e′ is the matching event of e, i.e., e′ = m(e)

Joost-Pieter Katoen Theoretical Foundations of the UML 14/41

Forward and backward local formulas

Joost-Pieter Katoen Theoretical Foundations of the UML 15/41

Forward and backward local formulas

Event e satisfies 〈α〉ϕ iff there is an event e′ such that (e, e′)
satisfies α and e′ satisfies ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 15/41

Forward and backward local formulas

Event e satisfies 〈α〉ϕ iff there is an event e′ such that (e, e′)
satisfies α and e′ satisfies ϕ

Formula 〈α〉ϕ looks “forward” along the partial order of the MSC
starting from the current event

Joost-Pieter Katoen Theoretical Foundations of the UML 15/41

Forward and backward local formulas

Event e satisfies 〈α〉ϕ iff there is an event e′ such that (e, e′)
satisfies α and e′ satisfies ϕ

Formula 〈α〉ϕ looks “forward” along the partial order of the MSC
starting from the current event

The interpretation of 〈α〉−1ϕ is dual, i.e., e satisfies it iff there is an
event e′ such that (e′, e) satisfies α and e′ satisfies ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 15/41

Forward and backward local formulas

Event e satisfies 〈α〉ϕ iff there is an event e′ such that (e, e′)
satisfies α and e′ satisfies ϕ

Formula 〈α〉ϕ looks “forward” along the partial order of the MSC
starting from the current event

The interpretation of 〈α〉−1ϕ is dual, i.e., e satisfies it iff there is an
event e′ such that (e′, e) satisfies α and e′ satisfies ϕ

Formula 〈α〉−1ϕ looks “backward” along the partial order of the
MSC starting from the current event

Joost-Pieter Katoen Theoretical Foundations of the UML 15/41

Example

1 u |= !(1, 2, a) u is labelled with the action !(1, 2, a)

Joost-Pieter Katoen Theoretical Foundations of the UML 16/41

Example

1 u |= !(1, 2, a) u is labelled with the action !(1, 2, a)

2 u |= [proc]−1 false u is the first event on u’s process

Joost-Pieter Katoen Theoretical Foundations of the UML 16/41

Example

1 u |= !(1, 2, a) u is labelled with the action !(1, 2, a)

2 u |= [proc]−1 false u is the first event on u’s process

3 u |= 〈msg〉?(2, 1, a) event u matches with the event v

Joost-Pieter Katoen Theoretical Foundations of the UML 16/41

Example

1 u |= !(1, 2, a) u is labelled with the action !(1, 2, a)

2 u |= [proc]−1 false u is the first event on u’s process

3 u |= 〈msg〉?(2, 1, a) event u matches with the event v

4 u |= 〈(proc + msg)∗〉!(3, 2, c) event u happens before !(3, 2, c)

Joost-Pieter Katoen Theoretical Foundations of the UML 16/41

Semantics of local formulas (1)

Definition (Syntax of local formulas)

For communication action σ ∈ Act and path expression α:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 17/41

Semantics of local formulas (1)

Definition (Syntax of local formulas)

For communication action σ ∈ Act and path expression α:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

Definition (Semantics of base local formulas)

Let M = (P, E, C, l,m,<) ∈ M be an MSC and e ∈ E.

Binary relation |= is defined such that ((M, e), ϕ) ∈ |= iff event e of MSC M

satisfies local formula ϕ. We write M, e |= ϕ for ((M, e), ϕ) ∈ |=.

M,e |= true for all e ∈ E

M, e |= σ iff l(e) = σ

M, e |= ¬ϕ iff not M,e |= ϕ

M, e |= ϕ1 ∨ ϕ2 iff M,e |= ϕ1 or M,e |= ϕ2

Joost-Pieter Katoen Theoretical Foundations of the UML 17/41

Semantics of local formulas (2)

Definition (Semantics of forward path formulas)

Let M = (P, E, C, l,m,<) ∈ M be an MSC and e ∈ E.

e |= 〈{ψ}〉ϕ iff e |= ψ and e |= ϕ

e |= 〈proc〉ϕ iff ∃e′ ∈ E. e <·p e
′ and e′ |= ϕ

e |= 〈msg〉ϕ iff ∃e′ ∈ E. e′ = m(e) and e′ |= ϕ

e |= 〈α1;α2〉ϕ iff e |= 〈α1〉〈α2〉ϕ

e |= 〈α1 + α2〉ϕ iff e |= 〈α1〉ϕ or e |= 〈α2〉ϕ

e |= 〈α∗〉ϕ iff ∃n ∈ N. e |= (〈α〉)n ϕ

Where e <·p e
′ iff e <p e

′ and ¬(∃e′′. e <p e
′′ <p e

′), i.e., e′ is a direct
successor of e under <p.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/41

Semantics of local formulas (3)

Definition (Semantics of backward path formulas)

Let M = (P, E, C, l,m,<) ∈ M be an MSC and e ∈ E.

e |= 〈{ψ}〉−1ϕ iff e |= ψ and e |= ϕ

e |= 〈proc〉−1ϕ iff ∃e′ ∈ E. e′ <·p e and e′ |= ϕ

e |= 〈msg〉−1ϕ iff ∃e′ ∈ E. e′ = m−1(e) and e′ |= ϕ

e |= 〈α1;α2〉
−1ϕ iff e |= 〈α1〉

−1〈α2〉
−1ϕ

e |= 〈α1 + α2〉
−1ϕ iff e |= 〈α1〉

−1ϕ or e |= 〈α2〉
−1ϕ

e |= 〈α∗〉−1ϕ iff ∃n ∈ N. e |=
(
〈α〉−1

)n
ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 19/41

Overview

1 Introduction

2 Local Formulas and Path Expressions

Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL

Model checking MSCs
Model checking CFMs
Model checking MSGs
Satisfiability

Joost-Pieter Katoen Theoretical Foundations of the UML 20/41

PDL formulas

Definition (Syntax of PDL formulas)

For local formula ϕ, the grammar of PDL formulas is given by:

Φ ::= ∃ϕ | ∀ϕ | Φ ∧ Φ | Φ ∨ Φ

Negation

Negation is absent. As existential and universal quantification, as well as

conjunction and disjunction are present, PDF-formulas are closed under

negation.

Joost-Pieter Katoen Theoretical Foundations of the UML 21/41

Intuitive meaning of PDL formulas

MSC M satisfies ∃ϕ if M has some event e satisfying ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 22/41

Intuitive meaning of PDL formulas

MSC M satisfies ∃ϕ if M has some event e satisfying ϕ

MSC M satisfies ∃〈α〉ϕ if from some event e in M , there exists an
α-labelled path from e to an event e′, say, satisfying ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 22/41

Intuitive meaning of PDL formulas

MSC M satisfies ∃ϕ if M has some event e satisfying ϕ

MSC M satisfies ∃〈α〉ϕ if from some event e in M , there exists an
α-labelled path from e to an event e′, say, satisfying ϕ

MSC M satisfies ∃[α]ϕ if from some event e in M , every event that
can be reached via an α-labelled path satisfies ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 22/41

Semantics of PDL formulas

Definition (Semantics of PDL formulas)

Let M = (P, E, C, l,m,<) ∈ M be an MSC.

(M,Φ) ∈ |= iff PDL formula Φ holds in MSC M .

M |= ∃ϕ iff ∃e ∈ E.M, e |= ϕ

M |= ∀ϕ iff ∀e ∈ E.M, e |= ϕ

M |= Φ1 ∧ Φ2 iff M |= Φ1 and M |= Φ2

M |= Φ1 ∨ Φ2 iff M |= Φ1 or M |= Φ2

Joost-Pieter Katoen Theoretical Foundations of the UML 23/41

Example (1)

The (unique) maximal event of M is labeled by ?(2, 1, a) Yes. No.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/41

Example (1)

The (unique) maximal event of M is labeled by ?(2, 1, a) Yes. No.

∀ (〈(proc + msg)∗〉([proc] false ∧ ?(2, 1, a))) Yes. No.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/41

Example (2)

The maximal event on process 2 is labeled by ?(2, 1, a) Yes. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 25/41

Example (2)

The maximal event on process 2 is labeled by ?(2, 1, a) Yes. Yes.

∃ ([proc] false ∧ ?(2, 1, a)) Yes. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 25/41

Example (3)

No two consecutive events are labeled with ?(2, 3, c) No. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 26/41

Example (3)

No two consecutive events are labeled with ?(2, 3, c) No. Yes.

∀ ([{ ?(2, 3, c) }; proc; { ?(2, 3, c) }] false) No. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 26/41

Example (4)

The number of send events at process 3 is odd. No. No.

Joost-Pieter Katoen Theoretical Foundations of the UML 27/41

Example (4)

The number of send events at process 3 is odd. No. No.

See next slide

Joost-Pieter Katoen Theoretical Foundations of the UML 27/41

Example

MSC M has an even number of messages sent from process 1 to 2:

∀
(

[proc]−1 false ∧ P1
︸ ︷︷ ︸

minimal event on process 1

→ 〈α〉 [proc] false
︸ ︷︷ ︸

maximal event on process

)

where P1 =
∨

j∈P,j 6=1
(!1,j ∨ ?1,j) with !1,j =

∨

a∈C !(1, j, a) and ?1,j is
defined in a similar way, i.e., e |= P1 iff e occurs at process 1.

Path expression α is defined by:

α = (({¬!1}; proc)∗; {!1}; proc; ({¬!1}; proc)∗; {!1}; proc; ({¬!1}; proc)∗)∗

and where !1 abbreviates
∨

a∈C !(1, 2, a)

Joost-Pieter Katoen Theoretical Foundations of the UML 28/41

Overview

1 Introduction

2 Local Formulas and Path Expressions

Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL

Model checking MSCs
Model checking CFMs
Model checking MSGs
Satisfiability

Joost-Pieter Katoen Theoretical Foundations of the UML 29/41

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Proof.

(Sketch). Let Φ be a PDL formula.

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Proof.

(Sketch). Let Φ be a PDL formula. In subformulae 〈α〉ϕ and 〈α〉−1ϕ of Φ, view α as

regular expression over finite alphabet { proc,msg, {ϕ1}, . . . , {ϕn} } with local

formulae ϕi (in Φ).

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Proof.

(Sketch). Let Φ be a PDL formula. In subformulae 〈α〉ϕ and 〈α〉−1ϕ of Φ, view α as

regular expression over finite alphabet { proc,msg, {ϕ1}, . . . , {ϕn} } with local

formulae ϕi (in Φ). Any such expression can be transformed into a corresponding

finite automaton of linear size.

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Proof.

(Sketch). Let Φ be a PDL formula. In subformulae 〈α〉ϕ and 〈α〉−1ϕ of Φ, view α as

regular expression over finite alphabet { proc,msg, {ϕ1}, . . . , {ϕn} } with local

formulae ϕi (in Φ). Any such expression can be transformed into a corresponding

finite automaton of linear size. We proceed by inductively labelling events of the

given MSC with states of the finite automata.

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Proof.

(Sketch). Let Φ be a PDL formula. In subformulae 〈α〉ϕ and 〈α〉−1ϕ of Φ, view α as

regular expression over finite alphabet { proc,msg, {ϕ1}, . . . , {ϕn} } with local

formulae ϕi (in Φ). Any such expression can be transformed into a corresponding

finite automaton of linear size. We proceed by inductively labelling events of the

given MSC with states of the finite automata. This state information is then used to

discover whether or not an event of M satisfies a sub-formula 〈α〉ϕ and 〈α〉−1ϕ

which yields labellings in { 0, 1 }.

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Proof.

(Sketch). Let Φ be a PDL formula. In subformulae 〈α〉ϕ and 〈α〉−1ϕ of Φ, view α as

regular expression over finite alphabet { proc,msg, {ϕ1}, . . . , {ϕn} } with local

formulae ϕi (in Φ). Any such expression can be transformed into a corresponding

finite automaton of linear size. We proceed by inductively labelling events of the

given MSC with states of the finite automata. This state information is then used to

discover whether or not an event of M satisfies a sub-formula 〈α〉ϕ and 〈α〉−1ϕ

which yields labellings in { 0, 1 }. Boolean combinations and ∃ϕ and ∀ϕ are then

handled in a straightforward manner.

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

Model checking MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Proof.

(Sketch). Let Φ be a PDL formula. In subformulae 〈α〉ϕ and 〈α〉−1ϕ of Φ, view α as

regular expression over finite alphabet { proc,msg, {ϕ1}, . . . , {ϕn} } with local

formulae ϕi (in Φ). Any such expression can be transformed into a corresponding

finite automaton of linear size. We proceed by inductively labelling events of the

given MSC with states of the finite automata. This state information is then used to

discover whether or not an event of M satisfies a sub-formula 〈α〉ϕ and 〈α〉−1ϕ

which yields labellings in { 0, 1 }. Boolean combinations and ∃ϕ and ∀ϕ are then

handled in a straightforward manner. Time complexity: O(|E| · |Φ|2) with |E| is the

number of events in M and |Φ| the length of Φ.

Joost-Pieter Katoen Theoretical Foundations of the UML 30/41

PDL model checking algorithm for MSCs (1)

Joost-Pieter Katoen Theoretical Foundations of the UML 31/41

PDL model checking algorithm for MSCs (2)

Joost-Pieter Katoen Theoretical Foundations of the UML 32/41

PDL model checking algorithm for MSCs (3)

Joost-Pieter Katoen Theoretical Foundations of the UML 33/41

PDL model checking algorithm for MSCs (4)

Joost-Pieter Katoen Theoretical Foundations of the UML 34/41

Communication finite-state machines

Let a CFM now be accepting if all its processes have reached a local accepting

state and either halt there or visit a local accepting state infinitely often.

An example CFM and an infinite MSC accepted by it

Client-server interaction to get access to an interface. Accepting state is (s3, t0, q0).

Joost-Pieter Katoen Theoretical Foundations of the UML 35/41

PDL formulas on CFMs

A CFM is accepting if all its processes have reached a local accepting
state and reside their ad infinitum.

Joost-Pieter Katoen Theoretical Foundations of the UML 36/41

PDL formulas on CFMs

A CFM is accepting if all its processes have reached a local accepting
state and reside their ad infinitum.

The language L(A) of CFM A is the set of MSCs that admit an
accepting run.

Joost-Pieter Katoen Theoretical Foundations of the UML 36/41

PDL formulas on CFMs

A CFM is accepting if all its processes have reached a local accepting
state and reside their ad infinitum.

The language L(A) of CFM A is the set of MSCs that admit an
accepting run.

CFM versus PDL

A CFM A satisfies PDL-formula Φ, denoted A |= Φ, whenever for all
MSCs M it holds: M ∈ L(A) if and only if M |= Φ.

Joost-Pieter Katoen Theoretical Foundations of the UML 36/41

PDL formulas on CFMs

A CFM is accepting if all its processes have reached a local accepting
state and reside their ad infinitum.

The language L(A) of CFM A is the set of MSCs that admit an
accepting run.

CFM versus PDL

A CFM A satisfies PDL-formula Φ, denoted A |= Φ, whenever for all
MSCs M it holds: M ∈ L(A) if and only if M |= Φ.

The example CFM satisfies ∀ (P1 → (〈proc∗;msg; proc∗;msg〉P3) where for

i ∈ P , formula Pi =
∨

j∈P,j 6=i(!i,j ∨ ?i,j), i.e., M, e |= Pi iff e occurs at process

i. The PDL formula asserts that process 3 (Interface) can be “reached” from 1

(Client) by exactly two messages using an intermediate process in between.

Joost-Pieter Katoen Theoretical Foundations of the UML 36/41

PDL model checking problem

Model checking CFMs versus PDL

The following model-checking problem is undecidable:

Input: a CFM A, PDL-formula Φ

Output: is there an MSC M ∈ L(A) with M |= Φ?

Joost-Pieter Katoen Theoretical Foundations of the UML 37/41

PDL model checking problem

Model checking CFMs versus PDL

The following model-checking problem is undecidable:

Input: a CFM A, PDL-formula Φ

Output: is there an MSC M ∈ L(A) with M |= Φ?

Proof.
Follows immediately from the fact that the emptiness problem for CFMs is

undecidable. By using the formula true, the above problem encodes the

emptiness problem.

Joost-Pieter Katoen Theoretical Foundations of the UML 37/41

PDL model checking problem

Model checking CFMs versus PDL

The following model-checking problem is undecidable:

Input: a CFM A, PDL-formula Φ

Output: is there an MSC M ∈ L(A) with M |= Φ?

Proof.
Follows immediately from the fact that the emptiness problem for CFMs is

undecidable. By using the formula true, the above problem encodes the

emptiness problem.

To obtain decidable model-checking problems, we consider B-bounded MSCs.

Joost-Pieter Katoen Theoretical Foundations of the UML 37/41

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.

(Sketch).

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.

(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ.

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.

(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture.

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.

(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This

synthesis step is independent of the channel bound size B (if any).

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.

(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This

synthesis step is independent of the channel bound size B (if any). The size of

AΦ is exponential in the length of Φ and the number of processes in P .

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.

(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This

synthesis step is independent of the channel bound size B (if any). The size of

AΦ is exponential in the length of Φ and the number of processes in P . Then

construct a CFM accepting L(A) ∩ L(AΦ).

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.

(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This

synthesis step is independent of the channel bound size B (if any). The size of

AΦ is exponential in the length of Φ and the number of processes in P . Then

construct a CFM accepting L(A) ∩ L(AΦ). Decide whether the resulting CFM

accepts some ∃B-bounded MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.

(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This

synthesis step is independent of the channel bound size B (if any). The size of

AΦ is exponential in the length of Φ and the number of processes in P . Then

construct a CFM accepting L(A) ∩ L(AΦ). Decide whether the resulting CFM

accepts some ∃B-bounded MSC. This can all be done in polynomial space.

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

Model checking CFMs versus PDL

Model checking CFMs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.

(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This

synthesis step is independent of the channel bound size B (if any). The size of

AΦ is exponential in the length of Φ and the number of processes in P . Then

construct a CFM accepting L(A) ∩ L(AΦ). Decide whether the resulting CFM

accepts some ∃B-bounded MSC. This can all be done in polynomial space.

The PSPACE-hardness follows from the hardness of LTL model checking.

Joost-Pieter Katoen Theoretical Foundations of the UML 38/41

Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Joost-Pieter Katoen Theoretical Foundations of the UML 39/41

Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.)

Joost-Pieter Katoen Theoretical Foundations of the UML 39/41

Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.) For every vertex v, we can determine a linearization of the MSC λ(v).

Joost-Pieter Katoen Theoretical Foundations of the UML 39/41

Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.) For every vertex v, we can determine a linearization of the MSC λ(v).

Construct a finite automaton AG that accepts a linearization for every M ∈ L(G),

and vice versa, each word accepted by AG is a linearization of some M ∈ L(G).

Joost-Pieter Katoen Theoretical Foundations of the UML 39/41

Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.) For every vertex v, we can determine a linearization of the MSC λ(v).

Construct a finite automaton AG that accepts a linearization for every M ∈ L(G),

and vice versa, each word accepted by AG is a linearization of some M ∈ L(G). The

size of AG is linear in the size of G.

Joost-Pieter Katoen Theoretical Foundations of the UML 39/41

Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.) For every vertex v, we can determine a linearization of the MSC λ(v).

Construct a finite automaton AG that accepts a linearization for every M ∈ L(G),

and vice versa, each word accepted by AG is a linearization of some M ∈ L(G). The

size of AG is linear in the size of G. Construct a CFM AΦ for PDL-formula Φ with

M ∈ L(AΦ) iff M |= Φ.

Joost-Pieter Katoen Theoretical Foundations of the UML 39/41

Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.) For every vertex v, we can determine a linearization of the MSC λ(v).

Construct a finite automaton AG that accepts a linearization for every M ∈ L(G),

and vice versa, each word accepted by AG is a linearization of some M ∈ L(G). The

size of AG is linear in the size of G. Construct a CFM AΦ for PDL-formula Φ with

M ∈ L(AΦ) iff M |= Φ. Construct a transition system by running AG and AΦ

simultaneously.

Joost-Pieter Katoen Theoretical Foundations of the UML 39/41

Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.) For every vertex v, we can determine a linearization of the MSC λ(v).

Construct a finite automaton AG that accepts a linearization for every M ∈ L(G),

and vice versa, each word accepted by AG is a linearization of some M ∈ L(G). The

size of AG is linear in the size of G. Construct a CFM AΦ for PDL-formula Φ with

M ∈ L(AΦ) iff M |= Φ. Construct a transition system by running AG and AΦ

simultaneously. This construction terminates as AG only accepts linearizations that

are B-bounded (as every linearization of MSG G is ∃B-bounded by definition).

Joost-Pieter Katoen Theoretical Foundations of the UML 39/41

Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.) For every vertex v, we can determine a linearization of the MSC λ(v).

Construct a finite automaton AG that accepts a linearization for every M ∈ L(G),

and vice versa, each word accepted by AG is a linearization of some M ∈ L(G). The

size of AG is linear in the size of G. Construct a CFM AΦ for PDL-formula Φ with

M ∈ L(AΦ) iff M |= Φ. Construct a transition system by running AG and AΦ

simultaneously. This construction terminates as AG only accepts linearizations that

are B-bounded (as every linearization of MSG G is ∃B-bounded by definition).

Deciding whether some simultaneous run is accepting can be done in polynomial

space.

Joost-Pieter Katoen Theoretical Foundations of the UML 39/41

Model checking MSGs versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.) For every vertex v, we can determine a linearization of the MSC λ(v).

Construct a finite automaton AG that accepts a linearization for every M ∈ L(G),

and vice versa, each word accepted by AG is a linearization of some M ∈ L(G). The

size of AG is linear in the size of G. Construct a CFM AΦ for PDL-formula Φ with

M ∈ L(AΦ) iff M |= Φ. Construct a transition system by running AG and AΦ

simultaneously. This construction terminates as AG only accepts linearizations that

are B-bounded (as every linearization of MSG G is ∃B-bounded by definition).

Deciding whether some simultaneous run is accepting can be done in polynomial

space. The PSPACE-hardness follows from the hardness of LTL model checking.

Joost-Pieter Katoen Theoretical Foundations of the UML 39/41

Satisfiability problem for MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

Joost-Pieter Katoen Theoretical Foundations of the UML 40/41

Satisfiability problem for MSCs

Model checking MSCs versus PDL [Kern, 2009]

The following model-checking problem is decidable in polynomial time:

Input: MSC M , PDL-formula Φ

Output: does M |= Φ?

MSC satisfiability for PDL [Bollig et. al, 2011]

The following satisfiability problem is undecidable:

Input: PDL-formula Φ

Output: is there an MSC M with M |= Φ?

Joost-Pieter Katoen Theoretical Foundations of the UML 40/41

Other PDL decision problems

Theorem: [Alur et al., 2001, Bollig et al., 2007]

Let Φ be a PDL formula. Then:

1 The decision problem “does there exist a CFM A such that for any
MSC M ∈ L(A) we have M |= Φ” is undecidable.

Joost-Pieter Katoen Theoretical Foundations of the UML 41/41

Other PDL decision problems

Theorem: [Alur et al., 2001, Bollig et al., 2007]

Let Φ be a PDL formula. Then:

1 The decision problem “does there exist a CFM A such that for any
MSC M ∈ L(A) we have M |= Φ” is undecidable.

2 The decision problem “does there exist a CFM A such that for
some ∃B-bounded MSC M ∈ L(A) we have M |= Φ” is decidable in
PSPACE.

Joost-Pieter Katoen Theoretical Foundations of the UML 41/41

Other PDL decision problems

Theorem: [Alur et al., 2001, Bollig et al., 2007]

Let Φ be a PDL formula. Then:

1 The decision problem “does there exist a CFM A such that for any
MSC M ∈ L(A) we have M |= Φ” is undecidable.

2 The decision problem “does there exist a CFM A such that for
some ∃B-bounded MSC M ∈ L(A) we have M |= Φ” is decidable in
PSPACE.

3 The decision problem “for MSG G, is there an MSC M ∈ L(G)
such that M |= Φ” is NP-complete.

Joost-Pieter Katoen Theoretical Foundations of the UML 41/41

	Introduction
	Local Formulas and Path Expressions
	Syntax
	Formal Semantics

	PDL Formulas
	Verification problems for PDL
	Model checking MSCs
	Model checking CFMs
	Model checking MSGs
	Satisfiability

